
VIEW POINT

MODERN UI APPLICATION
DEVELOPMENT

Abstract
User Interface development has come a long way in the last decade and a half.

Earlier UI development was primarily focused on generating presentable
markup for one or two leading browsers. In modern times, UI development
is expected to create remarkable user experiences (UX) that can run across
a multitude of browsers and client devices. The main transformation drivers
for this change have been the improvements in edge device capabilities and
network bandwidth.

In the current era, UI/UX is arguably one of the key differentiators for
online business success. This stream is currently drawing huge creative and
engineering talent. It has also inspired creation of numerous UI development
frameworks for building applications that target browsers, mobile and other
client devices.

This paper presents a point of view on challenges, best practices and patterns
for building UI applications in modern times - collectively referring to such
applications as Modern UI Applications.

While there are many leading UI development frameworks for browser, mobile,
desktop and other client devices, this paper focuses more on generic patterns
and best practices rather than delving into any individual framework.

Modern UI applications need to provide a
rich user experience that is fine-tuned to the
user, their choice of interaction channel and
driven by insights and intelligence .

In online business, user experience is
absolutely crucial for acquiring, retaining
and keeping customers engaged.

Businesses continue to allocate a large part
of their IT spend towards user experience
improvement. This is one of the leading
drivers for the large-scale re-architecture
effort commonly referred to as “Digital
transformation.”

Modern UI should live up to the many
and sometimes conflicting expectations.
It should be intuitive, responsive, adapt to
different screen sizes, accessible (WCAG
compliant), support multiple languages/
locales, be dynamic, reactive, adapt to user
behavior, run on multiple browsers/devices,
be contextual and predictive, provide
advanced visualizations and of course be
visually appealing with high usability.

 If we envision each of these expectations
as a separate dimension, the application
needs to shine in each of these dimensions
independently.

Below is a (very) brief summary of what
these dimensions mean

1)	 Intuitive: Easy to understand and use,
without need of special assistance or
training.

2)	 Responsive: Usable at all times, should
continually provide feedback for user

actions. At no point should it look frozen or
non-responsive.

3)	 Adapt to different screen sizes: Should be
fluid enough to adapt to different display
and device sizes including resized browsers
and device orientations.

4)	 Accessible: Should be usable by people
with disabilities. It should provide alternate
content and additional information e.g. text
as backup for images and videos, additional
information on the role of a specific UI
control, improved contrast and so on. In
essence, disabled users should be able to
easily perceive and navigate through the
content. More information here.

5)	 I18N and L13N support: Same UI should
be able to support different languages,
measurement units, currencies, date/time
format and any other display metrics which
are locale specific.

6)	 Dynamic: UI is likely to change much
more frequently than anything else in an
application. It should therefore be designed
for ease of rapid change. The “dynamic”
capability here refers to the ability of being
easily and independently changed.

7)	 Reactive: UI should be always on; it
should be able to allow new data to flow in
and automatically react i.e. update itself to
reflect the changes.

8)	 Adapt to User Behavior: Modern UI is
anticipated to adapt to user behavior. UI
should adapt and present the most relevant
content to users. The experience should be

as focused and frictionless as possible.

9)	 Run on Multiple Browsers and Devices:
While server-side software runs in controlled
and predictable environments, UI typically
runs on user devices i.e. in environments
which are uncontrolled, unreliable and
likely not up to date. UI applications need to
adapt to these environments gracefully.

10) Predictive: Modern AI/ML (Artificial
Intelligence / Machine Learning) provide
Natural Language Processing and predictive
capabilities to predict and enhance user
experience. UI applications should be
designed to benefit from and leverage these
capabilities.

11) Advanced Visualizations: Advanced
visualization libraries and frameworks like
AR/VR (Augmented Reality/ Virtual Reality),
WebGL, OpenGL are now available natively
in most UI frameworks. With client devices
getting more powerful (GPU processing),
modern UI applications are well placed to
leverage these libraries to support business
use cases, gamification and innovation
possibilities.

For UI Applications to support these
capabilities, they need to follow certain best
practices, approach and design patterns.

The rest of this POV attempts to bring out
some of the salient ones.

Expectations and Challenges

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Natural_language_processing

Consider building experience
as a separate application
In the past, UI was mostly built as part
of server applications. As different
programming languages became more and
more popular there were corresponding
server-side web application development
frameworks created for them e.g. ASP.
NET (C#), J2EE & Spring Web MVC (Java),
Symfony (PHP), Ruby on Rails (Ruby) and
Django (Perl).

These frameworks handled all application
concerns including UI specific concerns.
They generate presentation using
templating engines running on the server
and send it over the network to the browser.

The main drawback with this approach is
that UI concerns, which are fundamentally
different, get very tightly coupled to the
server-side framework, programming
language and infrastructure.

Even if these concerns can be better
addressed by a more focused framework,
programming language or rendering
engine, that opportunity is lost. Also,
presentation going via the network makes
the experience quite sluggish.

The success of Gmail (Google’s email
application) brought in impetus to build
experience as a separate application. Gmail
was built as a Single Page Application
(applications that run within the browser)
which provided a much more responsive
and richer experience.

A decoupled UI application provides full
control and flexibility over addressing UI
specific concerns independently. The server
interaction happens via a headless backend.

Angular, React, Vue are some of the leading
UI development frameworks based on
JavaScript for building decoupled browser
applications.

Some of the key experience capabilities
like the ability to rapidly change and adapt
experience, while keeping it responsive,
can be much successfully achieved with a

decoupled experience approach. Mobile
Application development frameworks like
Android and iOS also create fully decoupled
UI applications that have truly transformed
experience possibilities.

Layer your UI Applications
well. Consider building
client SDK for RESTful APIs to
keep your Presentation tier
decoupled
MVC (Model View Controller) or its variants
like MVVM (Model-View-View Model)
and MVP (Model View Presenter) are the
fundamental “separation of concern”
patterns for building UI applications.
When building decoupled UI applications,
it is essential to follow them and also
the “layered architecture paradigm”. The
presentation tier within the UI application
should be totally decoupled from other
layers.

Most of the UI applications require
integration with RESTful web services for
supporting CRUD operations. One of the
ways to approach this integration is to
create client SDKs for RESTful web services
with published APIs for presentation tier to
consume. The presentation tier does not
worry about how the data is provided – it
only knows about the SDK APIs for CRUD
operations. Like any good SDK the APIs
should be well versioned and backwards
compatible.

One obvious benefit of creating a client
SDK for a given platform (e.g. JavaScript,
Android, iOS) is reusability. It can be used for
building other UI applications for the same
platform.

The other important but often overlooked
benefit is testability of the presentation tier.
With client SDK abstracting data source and
providing a standard API, it is very easy to
mock data (test double) in order to validate
presentation for different scenarios without
depending on web services.

With this approach, it is much easier
to make changes to the presentation

independently (even creating a new
presentation). Presentation specific
concerns like fluidity and accessibility can
be scoped to the presentation tier and
changed independently. It also provides
better structure to development teams with
well-defined responsibilities. Presentation
tier and backend integration teams can
work independently and in parallel.

Making changes to presentation tier or
integration layer becomes much easier and
independent.

Don’t build your Presentation
tier, Compose it
The componentization of the presentation
tier is a central theme in building Modern
UI applications. Leading UI frameworks
are built around the concept of creating
reusable UI components and composing the
presentation tier with them.

With composition, presentation is built
with components – like building with Lego
blocks. It provides ability to easily swap one
component with another and promotes
reusability; teams can build reusable
component libraries that can be used across
applications.

One important aspect of UI components is
the state that they hold. State can be looked
as the logic and smarts that a UI component
possesses.

UI components that include logic and
smarts are closer to the application state
and hence lesser reusable. These are Stateful
components.

On the other hand, UI components that hold
no state have no knowledge of application
state or context and are highly reusable.
These are Stateless components.

We are essentially categorizing UI
components based on “display logic” and
“only display” responsibilities. With this, if
there are any display logic changes, they can
be handled in Stateful components whereas
if there are any display changes, they can be
handled in Stateless components

Patterns and Best Practices

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

https://martinfowler.com/bliki/TestDouble.html

Some examples of stateless components
could be like date-picker, type-ahead
search, dropdown, accordion or carousel
type of components - they are devoid
of any application state. Everything that
these components require is passed to
them as reference. Typically, properties to
initialize and configure the component and
functions to serve as event callbacks. Think
of them as stateless functions – the caller
needs to pass all the information to the
function to operates on Examples of stateful

components would be the entire page or
workflow type of components. They hold
the state and logic to decide what to display
and how to configure the display (stateless)
component .

The best practice is to keep most of your
presentation composed of stateless
components and keep your stateful
components minimal and well structured.
The stateful components should only focus
on composing the UI without taking on any

presentation responsibility.

This allows for easily changing UI
composition i.e. replacing one presentation
component with other and hence making
UI changes faster and simpler.

This ability to easily swap, rearrange or
present new components based on state
is key for Modern UI applications where
experience needs to keep adapting - to be
as usable and frictionless as possible.

Keep your content markup
well-structured and as
semantic as possible
It is important to keep the markup of
content well-structured and semantic.
Semantic markup is the cornerstone
for making your content readable and
meaningful to browsers, accessibility tools,
search engines and even users. Essentially
markup should strive to convey everything
about the content. Instead of using generic
tags, sematic tags should be used to give
meaning to content. ARIA tags should be
used as fallback in case content cannot be
described semantically. This way content
is well understood and can be decoupled
from how it should be presented.

Presentation may need to adapt to
device form-factors, theming and other

requirements but content structure
usually stays the same.

CSS (Cascading Style Sheets) is a standard
style sheet language to apply styling to
content elements. Based on configuration
(form factor, theming requirements), the
right set of styling can be applied to the
target markup element using appropriate
CSS selectors.

Presentation or styling becomes a thin
veneer over your content which can be
easily changed.

A basic example could be a page having
header, footer, navigation, main content
area - all described by semantic tags. While
mobile and desktop browsers would include
the same navigation content, presentation
would be very different. In case of a mobile
browser, a slide out menu but for a desktop

browser, a simple navigation bar.

Writing structured and maintainable CSS
is an advanced topic and warrants its own
point of view. Most of the CSS written today
uses preprocessor style sheet languages
like LESS and SASS which get compiled to
CSS. These languages fundamentally allow
writing DRY and maintainable CSS.

Semantic markup is a simple yet very
powerful concept. UI fluidity and
accessibility largely depend on how well the
content is structured and how semantic it is.

Many-a-times this aspect does not get the
desired attention from the beginning. This
can lead to a lot of re-work and heartburn
later when different presentation/
styling requirements come up and more
importantly when there are accessibility
compliance issues.

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

https://en.wikipedia.org/wiki/Semantic_HTML
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://www.w3schools.com/css/css_intro.asp
https://www.w3schools.com/cssref/css_selectors.asp
http://lesscss.org/
https://sass-lang.com/
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Micro front-end design
pattern – Breaking the UI
Monolith
UI Applications can become very sizable,
spanning multiple functional areas. Most
UI applications were typically built as single
monolithic applications. This approach
is now being reconsidered as monolithic
application are much harder to build,
maintain and change.

With the popularity of microservices
architectural style, the possibility of
developing UI applications as modular
Micro frontends is gaining traction Micro-
frontend is not a new pattern, but now
we are seeing higher adoption and this
architectural style is getting mainstream.

Like Microservices, the micro frontend
approach is based around breaking the
UI into independent modules. It can be
visualized as vertically slicing the layered
architectural view based on functional areas.
It aligns with the modern development
paradigm wherein functional teams can
build and release their applications very
independently and on their own release
schedule.

We have done large-sized UI
implementations using the micro front-
end pattern. One of the approaches used
has been to build micro frontends as web
components (that wrap a complete module)
using frameworks like ReactJS or VueJS.

These web components are actually light-
weight single page applications that can be
wrapped and deployed as per specification
and support of the Web CMS (Content
Management System) or Digital experience
platform being used.

Mobile development is also slowly moving
away from the monolithic application
mindset. Mobile applications that are sizable
and provide a large set of functionalities are
being broken into smaller modules that can
be built and tested independently.

Implementation of micro frontend is an
involved effort, it requires a well laid out
architecture, careful planning and discipline.
It is definitely worthwhile considering

this approach for the huge flexibility and
benefits that it brings in. With a micro-
frontend architecture, we have the ability to
independently and rapidly add or change
individual modules without impacting the
overall application.

Effectively use functional
programming paradigm for
building UI Applications
Most of the UI application runtime
environments support development
languages that are based on functional
programming. JavaScript, Swift and Kotlin
are leading examples. Effective use of
functional programming paradigm is crucial.

You should strive to write most of your
data processing and business logic code
as pure functions. The main attribute of a
pure function is that it does not cause any
side effects i.e. it does not alter application
state or mutate any data. For a given input,
it always produces the same output without
exception.

Functional programming is a different
programming paradigm and requires a
mindset change to truly benefit from it. It is
quite different from the traditional object-
oriented paradigm where it is common to
share state and mutate shared data.

Functional programming languages do not
provide any restriction in terms of usage.
Developers can continue using these
languages with an object-oriented mindset
and this is where the main challenge lies.

Effective use of functional programming
paradigm will make your code much more
testable and declarative (as opposed to
imperative).

One of the other areas where functional
programming is essential is for building
reactive applications i.e. applications that
support processing of events as they
happen in real-time. For UI applications
this could be processing of UI events or
API responses as they happen. A reactive
application is always on. It keeps reacting
and adapting to internal and external
events. Functional programming is central
for implementing reactive behavior.

Reactive frameworks expect you to write
your code as pure functions, in a more
declarative manner.

It is important to understand and leverage
the true power of functional programming
to build testable, composable, declarative
and reactive UI applications.

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

https://micro-frontends.org/
https://medium.com/javascript-scene/master-the-javascript-interview-what-is-functional-programming-7f218c68b3a0
https://medium.com/javascript-scene/master-the-javascript-interview-what-is-functional-programming-7f218c68b3a0
https://medium.com/javascript-scene/master-the-javascript-interview-what-is-a-pure-function-d1c076bec976

Keep your UI Application
lightweight – Consider using
external cloud / third-party
services when possible
One of ways to keep UI Applications more
dynamic and maintainable is to keep
them lightweight and simple by avoiding
inclusion of intelligence or logic that is not
presentation specific.

With the emergence of several cloud
services that support/enhance UI
applications, there is a huge opportunity
to leverage them instead of building
something custom and adding complexity
to the application.

Some of the leading examples of such
services are around Storage, Authentication,
Realtime database, Notification, AI/ML,
RemoteConfig, Dynamic Links, Logging,
Analytics and GraphQL.

These services are available via client SDKs
as APIs and provide a reliable and fully
managed solution. The SDKs usually follow
the same pattern across providers wherein
UI applications can centrally initialize the
SDK and use exposed services via APIs.

Moving processing and complexity to
external services also make applications
more secure and performant as most of
the processing is moved away from client
device to backend servers.

One other benefit with using external services
is the ability to track usage and sharing of data
across channels. It is common for users to use
multiple platform versions of the same app
e.g. iOS, Android or Web.

While using external services via SDKs it is
important to design interfaces that abstract
the service provider from the application.
This allows for flexibility in terms of
swapping one provider with the other.

Currently the leading UI service providers
are the Firebase group of services from
Google and Mobile/UI services from
Amazon and Azure.

There are many third-party service providers
as well that target niche segments.

In summary, by using external services
via APIs, we get a range of infrastructure
services (like logging, authentication and
storage) and intelligent capabilities (like AI
and ML) without including any significant
code or logic. The key benefits are that
the application is more lightweight,
maintainable and can focus more on
experience. It also brings in consistency and
possibility to share data across applications.
In modern times, the approach should be
to consider composing your application
behavior (using existing services) rather
than building everything. This also aligns
with cloud native architecture guidelines -
to leverage SAAS service where possible.

One other area where integration with
cloud services is gaining momentum is on
real-time processing of clickstream data and
applying machine learning. This brings in
opportunity of optimizing experience and
providing improved recommendations in
real-time. It is a rapidly evolving area and
slated to drive the next wave of experience
and personalization possibilities.

Maximize usage of third-party
(sometimes De-facto) libraries
A whole eco-system of tools and libraries
has evolved around UI application
development frameworks to make
development easier, faster and standardized

There are several open source and third-
party libraries that have become de-facto
standards. They significantly reduce
development effort and keep complexity
out.

It is important to analyze and identify such
libraries right at the outset to avoid any
unnecessary custom code and associated
complexity.

While there are many open source UI
component libraries as well, in our
experience we’ve seen that the presentation
part is always a more custom effort to
align with the UX and branding needs of a
specific brand.

The third-party libraries referred here
are more focused on non-presentational
concerns like Networking, Dependency
Injection, Data Serialization/Deserialization,
Reactive extension, State Management etc.

Few Examples -

Android: Retrofit, Picasso, Dagger, RxJava.

iOS: AFNetworking, SDWebImage, Almofire,
SwfityJSON

React: Redux, Enzyme, Axios

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

https://firebase.google.com/

Leverage Native Capabilities
– for a more predictable and
consistent experience
Over the past decade, client device
capabilities have become extremely
powerful, most of these capabilities are
exposed as Native APIs but many-a-times
they remain underutilized.

Location, camera, audio/video playback,
data storage, notification, biometrics
are some of the leading capabilities that
modern client environments expose. For
example, Biometric authentication using
fingerprint of Face Id is still not being
utilized in many mobile apps.

Applications should leverage these
capabilities as much as possible. In fact,
one of the main objectives of UI application

should be to utilize these capabilities for
a much richer and consistent experience
improving overall usability and avoiding any
custom implementation.

Plan for Browser/Device
compatibility for your UI
Application
As earlier mentioned, decoupled UI
application run in client browser/device
environments which the application
developers has no control on. This brings
in additional complexity – to ensure that
the application runs seamlessly on all these
environments.

For browser environments, HTML5
specification is trying to bring
standardization in terms of APIs and
capabilities that different browsers provide.

Still there are many discrepancies in browser
implementations. Also, many customers
don’t upgrade their browsers and continue
using older versions .

The application development effort should
plan for such discrepancies.

The approach could either be to include
that capability via Polyfills, provide alternate
experience or any other approach but it
should be planned for and not left to be
discovered later. One of the techniques we
typically use is to encourage developers
to use different browsers in a round-robin
fashion, so the application keeps getting
tested in all browsers.

caniuse.com is a reliable reference to
validate browser support for various
capabilities.

Conclusion
Front-end development cannot be
considered by any means superficial.
Modern UI Applications need to be
extremely well designed and architected to
be able to address the ever-increasing list
of challenges and expectations.

In this point of view, we’ve tried to
cover some of the important design
and approach considerations that we’ve
employed in our implementations, but
the list is in no manner complete or
comprehensive in nature.

We believe that it should provide guidance
to UI developers and architects and
hopefully trigger more thoughts and ideas
to improve the design and architecture of
your UI applications.

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

https://developer.mozilla.org/en-US/docs/Glossary/Polyfill
https://caniuse.com/

© 2020 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

About the Authors

Manish Kumar Jain

Senior Principal Architect, DX - Infosys

Manish is a Senior Principal Architect – and 22+ year Infosys veteran – who has architected IT solutions for numerous
clients in the Hi-Tech, Retail and Financial sectors. His depth of experience across Digital Enterprise, Mobility, Cloud,
Social Media, Analytics, eCommerce, and engagement solutions has allowed him to partner with clients to effectively
define and design technology solutions for large, complex, multi-platform enterprise architectures. Manish currently
heads the Architecture practice in our Digital Experience Unit. In the past, Manish has served as Chief Architect for
our SocialEdge Platform solutions, Engineering lead for iEngage Social Commerce platform, and executed numerous
architecture and design engagements for global, enterprise finance, technology, entertainment, and pharma clients.
Manish holds a Bachelor of Technology from IIT Bombay. His interests include squash, cricket, tennis, cycling, yoga and
most other sports.

He can be reached at manishkj@infosys.com.

Amit Nigam

Principal Technology Architect, DX - Infosys

Amit is a Principal Technology Architect with Infosys. He has over 20 years of experience in IT with recent focus on
Digital Modernization and Transformation programs.

His current technology focus areas are Modern Web Applications, JavaScript UI Frameworks, Mobile Applications and
Cloud Native Application Architectures.

Amit holds a Bachelor of Technology for IIT (BHU) Varanasi.

He can be reached at amitnigam@infosys.com.

https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
https://www.infosys.com/

