
WHITE PAPER

BATCH MODERNIZATION USING THE
OPEN DATA ANALYTICS PRODUCT SET

Abstract

Application modernization has become critical for enterprises looking to embrace
new opportunities. Batch jobs play an important role in enterprise IBM Z® workloads
and, hence, require a custom approach for modernization. The right approach
transforms batch applications while considering the end-to-end lifecycle of
batch jobs.

This paper focuses on the different aspects of batch modernization like identifying
the right modernization candidates, choosing the implementation language and
more. The paper also elucidates batch modernization tools and solutions from IBM
and Infosys that helps enterprises reduce cost and mitigate risk through efficient
data processing.

External Document © 2023 Infosys Limited

Introduction

IBM Z mainframes are the backbone of many enterprises and
plays a pivotal role in the daily operations across industries. By
leveraging immense amounts of data and insights,
IBM Z has transformed from being a mere platform that
support operations to a revenue generating platform playing a
central role in hybrid multi-cloud environments.

There is a common misunderstanding that the IBM Z and
its technologies are aging and outdated. The reality is that
latest technologies such as cloud, artificial intelligence (AI),
blockchain, Internet-of-Things (IoT), and open-source packages
can be leveraged on IBM Z. With new generation programming
languages such as Java™, Python™, Node.js™, Swift ®, etc., and
open source based integrated development environments
(IDEs), continuous integration/continuous delivery (CI/CD)
pipelines are providing a similar developer experience as on
any other platform. This developer experience is not limited
to only new generation languages but also applies to legacy
languages like COBOL, PL/I and Assembler.

IBM Z workloads can be broadly classified into online
transactional processing (OLTP) and batch processing. For
almost all enterprises across industries, batch processing is still
a fundamental and mission-critical component. Applications
on IBM Z are no different; with some enterprises running batch
workloads up to 60% of total workload. Mission-critical batch
windows often run on the IBM Z with minimal on-site staff (or
even fully unattended in some cases), thereby processing large
quantities of data at relatively low cost with great reliability.

Batch processing is used for a variety of applications. Some
common examples are:

• Bulk updates to data/database (end-of-day transaction
processing)

• Generating reports for daily, weekly, or monthly
transactions

• Creating weekly or monthly account statements for
customers of an organization

• Payroll processing of an organization

• Creating backups of files and databases for disaster
recovery purposes

• Archiving historical data at periodic intervals

• Extract, transform, load (ETL) jobs to offload data to data
lakes and data warehouses

Batch processing has significant advantages when executing
repetitive logic. Static data is read only once, cached, and then
used throughout the program. Thus, batch processing, i.e.,
bulk processing of massive amounts of transactions during
non-office hours, remains a viable and strategic option.

Advantages of batch processing over OLTP

Batch processing is sometimes considered as the bulk

processing of OLTP logic. However, there are some unique

advantages of using batch jobs over OLTP:

• Real time processing is not always possible due to

unavailability of dependencies. In such situations, batch

processing is preferred

• In cases where extensive repetitive processing is needed,

batch jobs are more efficient than OLTP due to their ability to

cache static fields

• When bulk processing of data and online transactions

happen simultaneously, bulk processing can negatively

impact the service level agreements (SLAs) of online

transactions and hinder user experience. This can be avoided

by running bulk processing as batch jobs at later point of

time

• Batch jobs ensures optimal system utilization during off peak

hours

• Building periodic interface files with logical grouping of

records that are to be sent to the information systems of

partner organizations, it may be more efficient and reliable

to send one big file with many records every day rather than

each record in real-time

External Document © 2022 Infosys LimitedExternal Document © 2023 Infosys Limited

Strength of z/OS for batch processing

Compared to other platforms, IBM z/OS® provides high quality

of service through its reliability, availability, security, scalability,

and serviceability. In fact, IBM Z processes 68% of the world’s

production workload capacity with only 6.2% of server load

demonstrates the superior efficiency of z/OS systems. It offers

trusted computing with the highest security certification for

commercial servers. The application availability of 99.99999%

in IBM z15™ is the highest in the world.

The primary advantages of using z/OS for batch processing

are:

• z/OS provides a dedicated batch processing environment

with a job scheduler, job entry subsystem (JES), a spool

and job management tool, and system display and search

facility (SDSF)

• z/OS Workload Manager makes it possible to run many

parallel batch jobs while sharing resources that are prioritized

according to SLA specifications

• z/OS can provide maximum up-time through a unique

clustering technology called Parallel Sysplex®

• Failures in batch programs can be recovered automatically.

Execution of a batch program can be deferred to another

logical partition (LPAR) or system in case of a disaster

• With z/OS Parallel Sysplex, peaks in batch processing can be

scaled throughout the system by acquiring additional resources

when needed

• z/OS ensures better overall utilization through resource sharing

and data proximity

Challenges with batch processing

Currently, batch processes are optimally implemented in terms

of performance, process control and monitoring. However,

there are some challenges that can be addressed through batch

modernization by adopting new tools and technologies. The main

challenges with current batch processing methods are:

• Programming languages: Most of the applications on the

IBM Z are still written in traditional procedural programming

languages such as COBOL and PL/I. These languages cannot

support new functional requirements such as creating PDF

documents, sending e-mails, etc.

• Availability of skills: A rising concern for many companies is

the difficulty in finding talent that is skilled in certain traditional

technologies

• Shorter batch windows: The traditional batch window needs

to be shortened to accommodate the increasing demand for

OLTP windows. Business agility also demands that batches run

quickly, thereby mandating shorter batch windows in order to

achieve business outcomes faster

• Running batches on-demand: Besides enabling chunk

processing of huge batch data, there is a need to run batches

on-demand for business agility without affecting the SLAs of

OLTP

• Difficult to maintain: The number and complexity of batch

programs can result in long turnaround time to implement

new business requirements, especially when batch programs

contain numerous lines of code for formatting and transforming

data

• Application agility: The time taken to introduce changes in

modern/functional languages is shorter compared to legacy

languages

External Document © 2023 Infosys Limited

Approach to batch modernization
As batch workloads are critical for organizations, batch
modernization is an important aspect in the application
modernization journey. Batch modernization needs an
approach for transforming batch applications considering
the end-to-end lifecycle of batch jobs.

Some important aspects to be considered for batch
modernization are:

• Identifying the right candidates for batch modernization

• Determining the languages of implementation

• Discovering business rules and dependencies of existing
applications

• Enabling simple and easy access to data from multiple
data sources

• Enabling fast and efficient processing of data through
parallelization

• Allowing easy consumption of job outputs by
downstream applications

• Handling different types of batch workloads

These aspects of batch modernization can be achieved in

z/OS using the following offerings from IBM and Infosys:

• IBM Z Platform for Apache Spark

• IBM Data Virtualization Manager

• IBM Application Discovery and Delivery Intelligence
(ADDI)

• Infosys Live Enterprise Application Development
Platform
- Infosys SMF Log Analyzer
- Infosys Business Rules Extractor

External Document © 2023 Infosys Limited

Journey to Open Data Analytics

Journey to Open Data Analytics for z/OS integrates key
open-source analytics technologies with advanced data
access and abstraction services. Designed to simplify data
analysis, it combines open source run times and libraries
with analysis of z/OS data at its source. This reduces data
movement and increases the value of insights from current
data.

This journey consists of the following components:

IBM Z Platform for Apache Spark:

This is built on Apache Spark™, a high-performance general
execution engine for large-scale data processing. One of its
key features is the ability to perform in-memory computing.
Unlike traditional data processing technologies, Spark
allows caching of intermediate results in-memory rather
than writing them to a disk, thereby dramatically improving
the performance of iterative processing.

 IBM Data Virtualization Manager (DVM):

This component provides integration capabilities for IBM Z and
other off-platform data sources. The data service can provide Spark
or Python applications with optimized, virtualized, and parallel
access to a wide variety of data.

Python AI Toolkit for z/OS:

Python AI Toolkit for IBM z/OS is a library of relevant open-source
software to support today’s artificial intelligence (AI) and machine
learning (ML) workloads. It is a collection of Python packages for
IBM Enterprise Python that can be installed and managed using
Package Installer for Python (pip), the common Python package
manager. These packages are provided to pip from an IBM-hosted
PyPi-style repository, leveraging supply chain security, that makes
your software management experience common across your
Python environments.

Fig 1: Journey to Open Data Analytics on z/OS

The products can also integrate with the IBM z/OS Connect Enterprise Edition if clients want to achieve consistent management across all

RESTful services on z/OS.

External Document © 2023 Infosys Limited

Features and advantages of leveraging the products in the journey

Fig 2: Features and benefits of leveraging the products in the journey

Some key benefits of Open Data Analytics:

• It eliminates the need to consolidate data before
processing or analytics. It leverages abstractions of
data from multiple disconnected sources on z/OS
and other platforms and integrates them to perform
a variety of large data processing using open-source
technologies

• It provides industry standard open-source technologies and
offers an optimized, in-memory approach. It delivers analytics
results that can be integrated with business processes to
discover previously hidden value

• It helps developers and data scientists quickly develop
analytics applications using Java, Scala, or Python. It increases
development capabilities with Apache Spark and Anaconda
math, science, and parallel computing packages

Data Gravity Speed Cost Digital

• Compute where data is
present

• Compute of most current
data

• No need for data
replication

• Avoid data redundancy

• Computes data in quick
time by divide and
process

• Near real time decision
and analytical capability

• As most of the
transactions originate
from mainframe

• Reduce cost
• Workload can be

o�oaded to zIIP
processor

• Depending on use case,
it can o�oad up to 97%
to zIIP

• Become future ready
• Flexible architecture
• Simple interface for build,

deploy and run
• Integrate with other

systems easily
• Can bring data from

external sources to
mainframes

Security

• Comes with IBM
mainframe security

• With Z14, pervasive
encryption is also
enabled

External Document © 2023 Infosys Limited

IBM Application Discovery and Delivery Intelligence (ADDI)

IBM Application Discovery and Delivery Intelligence is the most
comprehensive platform for IBM Z application understanding and
modernization. It consists of two components:

• IBM Application Discovery for IBM Z – It helps developers
better understand their application landscape through detailed
graphical views, reports, flow diagrams, and many other features

• IBM Application Delivery Intelligence for IBM Z – It is a web-
based tool that provides insights of the applications analyzed by

IBM Application Discovery for IBM Z. It uses a dashboard
to present application details like run-time performance,
static code quality and testing information, thereby
enabling early problem detection. It also allows users to
discover business rules that are embedded in the logic
of web, online and batch applications. These rules can
be identified, validated, and transformed. Dashboard
information can also be exported through APIs to be used
by other tools.

Fig 3: Architecture of ADDI

The output of ADDI processing in the ADDI application
repository can be fed into DVM. The data studio associated with
DVM provides a wizard-like interface for clients to choose what
data environments associated with the code artifacts should be

virtualized. With this approach, ADDI can be used to identify the
landscape of batch applications and dependencies while DVM can
be used to identify and virtualize the right subset of data artifacts in
preparation for batch modernization.

ADDI Application Repository

z/OS

ADDI : RDZ ADDI: ANALYZE ADDI: Delivery
Intelligence

3rd Party

ADDI: Build

ADDI: Connect

IDE
Integration Graphical

Analysis Reports
‘Where
Used’

Analysis

Application
Health

DB2
CICS
IMS
SMF
TWS
CA7
CA Endevor
CA Librarian
ChangeMan
PDS
Natural

PDF
Excel
JPEG
XML
Visio
JSON
CSV
EMF

Mainframe
Agents

External Document © 2023 Infosys Limited

Identify the right candidate for batch
modernization
Since all batch workloads may not be suitable for modernization,
it is important to prioritize these based on certain criteria, thereby
ensuring maximum return on investment. Some of the criteria
include long-running jobs (or job streams that take a lot of time)
and high CPU consuming jobs or job streams.

The above-mentioned tools and processes can help identify the
right candidates for modernization based on multiple parameters
that are extracted by static code analysis as well as interaction with
SMEs for a top-down approach.

Batch modernization begins with a detailed assessment. Infosys
uses a combination of function-driven and tool-based analysis
enabled by IBM and Infosys in-house tools. Infosys also conducts
meetings and workshops and leverages proven expertise and
knowledge to understand the business requirements.

In addition to IBM ADDI, Infosys Mainframe Dynamic Attribute
Extraction tool is useful for assessing applications. This tool can
generate metrics at a capability/use case level that helps determine
whether the workload is a right fit for modernization. Infosys SMF
Log Analyzer is another tool that identifies the active inventory,
thereby helping organizations save costs on modernizing entire
applications. The tool can identify redundant, long-running, step-
level long running, and high CPU consuming jobs in an application.
It can also measure the run frequency of a job for a particular
duration.

Determine the language of implementation
Most batch applications on the IBM Z were written many decades
ago in traditional procedural programming languages such as
COBOL or PL/I. While such jobs may run at optimal performance,
control, and monitoring, they may be insufficient to meet the
current business challenges and needs of clients.

New functional requirements such as creating PDF documents,
sending e-mails, etc., are difficult to implement with legacy

languages like COBOL. Moreover, many organizations want to
reduce the batch window. When dealing with large volumes of
enterprise data, this is only possible by increasing the parallel
processing of bulk data – and popular frameworks for parallel
processing of big data support only new generation languages.
Finally, addressing other major challenges with batch jobs
(like availability of skills on legacy languages and maintaining
huge monolithic batch applications) is possible only when the
applications are refactored or rewritten.

The most popular big data processing engine is Spark, which
supports languages like Java, Scala, Python, and R. Hence,
it is important to choose one of these languages for batch
modernization. R is primarily used by data scientists for predictive
or descriptive analytics and is not ideal for batch jobs. Thus, we will
consider only Java, Scala, or Python for batch modernization.

Java and Scala are JVM-based languages that produce similar
bytecodes and run on the same Java virtual machines. In the
earlier days of Scala, the primary differentiator was the functional
programming paradigm. This difference was significantly reduced
with the introduction of lambdas in Java 8 along with further
enhancements. Scala is more concise whereas Java is more verbose
in programming; but Scala is harder to learn compared to Java.
Java is considered to be more readable with more availability of
marketplace skills. Bearing this in mind, it is up to the programmer
to choose either Java or Scala since both the languages use the
same runtime and have similar performance.

When comparing with Python, Scala has better performance.
It supports powerful concurrency through primitives like Akka
actors. In Python, the Global Interpreter Lock often causes issues
when maximizing parallelization during data ingestion and
execution. Moreover, Scala is type safe and, hence, less error prone
during runtime. However, Python is easy to learn and less verbose
compared to Scala.

In summary, Python is ideal for proofs of concepts (PoC), demos or
small applications whereas Java and Scala are recommended for
production applications including batch.

External Document © 2023 Infosys Limited

Discover business rules and dependencies using IBM ADDI and Infosys Business Rules Extractor

For batch modernization, IBM Application Discovery provides
detailed reports on the inventory of batch applications, batch
flow visualization and code complexities. Users can also access
information about scheduler and dead code. This can help identify
components that need not be modernized. Business Rule Discovery
of IBM Application Delivery intelligence helps unravel potential
business rules within the artifacts identified by Application
Discovery. Application Delivery Intelligence scans the files and
automatically discovers keywords and their implementation names.

Infosys Mainframe Modernization architects analyze the reports
and leverage their domain knowledge to create the business rules
document. This document is then reviewed with application SMEs
to ensure that the functionality aligns with the technology. It is the
basis for enterprise architects to easily modernize batches.

Infosys Business Rules Extractor tool can further aid this process.
Besides the rules that are generated by ADDI, if additional
documentation of rules is needed, Infosys Business Rules Extractor
can centrally document all the rules with program management
features like:

• Assigning tasks

• Updating completed status of tasks

• Tracking overall progress in terms of use cases lines of code
(LOC) documented

• Creating multiple personas for different access levels

• Enabling rule chaining across modules based on documentation
by analysts

Fig 4: How Infosys Business Rules Extractor accelerates business rules extraction

Report generation in the
form of Excel and xml that

enables direct consumption

Higher level of accuracy
through rules chaining

Responsive UI for analyst to
navigate the programs easily

Con�gurable repository to
generate reports and move to
di�erent platform if required

Reduction in total e�ort

Consolidation of rules across
various programs at use case

level to align with business �ow

Interactive dashboard to
track the status of project

Alert mechanism for
missing of any rules

External Document © 2023 Infosys Limited

Streamlining access to multiple data sources with IBM Data Virtualization Manager

The first step in data processing is accessing the data sources.
Hence, for batch modernization, it is important to ensure simple
and easy access to data sources. IBM Z systems comprise of many
data sources like Db2®, Virtual Storage Access Method (VSAM),
IMS™, etc., and each of these have different access methods. For
example, Db2 is a relational database management system (RDBMS)
and can be read using SQL queries. IMS is a hierarchical database
and is accessed as parent/child records whereas VSAM can be read
as a flat file using its schema. Hence, it is challenging for application
developers to create and maintain batch applications with multiple
data sources.

IBM Data Virtualization Manager is a simple, easy, and efficient way
to access different data sources in IBM Z. These sources include
Db2, IMS, VSAM, physical sequential dataset (PS), partitioned data
set extended (PDSE), Adabas, Integrated Database Management
System (IDMS), CICS® queues, virtual tape, System Managed
Facility (SMF) records, Syslog, etc. Access is enabled through
virtual integration into a single, logical data source that can then
be imported into a Spark DataFrame for programming online
and batch applications. The DVM also provides data integration
facilities for off-platform data sources like Db2 for Linux®, UNIX®
and Microsoft® Windows® (Db2 LUW), Oracle Enterprise, Teradata,
Hadoop Distributed File System (HDFS), etc., so that the application
can access distributed data sources while processing IBM Z data.

The main advantages of using the DVM for data access are:

• All data sources (including non-relational databases like IMS,
VSAM, PDSE, etc.) can be accessed as relational data through
virtual tables and views

• The DVM is highly IBM z Integrated Information Processor (zIIP)

eligible, thereby minimizing total million service units (MSU)
consumption for accessing data

• DVM performs in-memory caching of data that is being read from
data sources until the application is ready to consume it, thereby
accelerating data access

• DVM has a unique ‘direct-read’ feature for Db2 and IMS that
performs a bulk fetch of data directly from the back-end datasets.
This streamlines data access, avoids negative impact on the
service level agreements (SLA) of other applications that access
IMS and Db2 subsystems and increases overall zIIP eligibility

• The DVM is fully integrated with z/OS prime features like
workload management and security and hardware features like
Simultaneous Multithreading (SMT2),

 IBM zEnterprise® Data Compression (zEDC), etc.
• DVM provides configurable data privacy through column or row

obfuscation/removal across any data source
• DVM automatically generates optimized data access codes for

faster application development

The DVM offers a client application/user interface called the Data
Service Studio. The first step in accessing data is to configure the
data sources (that were identified in the discovery phase) into
virtual tables and views in the DVM using the Data Service Studio.
Following this, all data sources can be seamlessly accessed from the
Spark application using SQL statements without being concerned
about the type of database or access methods of the original data
source.

The DVM can pull the Db2 table information from the Db2 catalog
and IMS information from the IMS RESLIB. The schema of VSAM
datasets or flat files can be taken from the COBOL copybook or PL/I
Include files.

External Document © 2023 Infosys Limited

Fig 5: Using IBM ADDI to automatically discover/configure data sources to the DVM

IBM ADDI can be used to automatically discover and configure datasets and databases into virtual tables and views. Once batch applications and
various data sources are fed to IBM ADDI, it uncovers the meta data of data sources and feeds this into the DVM. It also matches the high-level
language structure to physical datasets and databases. The DVM then validates this according to the type of data. Virtual tables and views are
then generated using simple wizards without the need to collect additional data.

Efficient batch processing using Spark Runtime
Apache Spark is a fast and general-purpose cluster computing
framework. It has an in-memory data processing engine for big data
processing along with in-built modules for streaming, SQL, machine
learning, and graph processing. Apache Spark is well-known for its
speed, ease of use and extensibility. When used on z/OS with zEDC,
it optimizes compression.

Fig 6: Components of the Spark cluster on z/OS

Resilient distributed datasets (RDD) are the fundamental data
structure in Apache Spark. These are an unchanging distributed
collection of objects. Each RDD is divided into logical partitions that
can be computed on different nodes of a cluster.

Driver Program

Cluster Manager

Worker Node

Worker Node

Executor

Task Task

Cache

Task Task

Cache
Executor

SparkContext

•
•
•

The Spark cluster on z/OS consists of the following components:

• Driver program – Spark Driver is the program that declares
the transformations and actions on RDDs and submits requests
to the master. It runs the main function of the application that
prepares the SparkContext. The SparkContext object in the main
program orchestrates all the activities within a Spark cluster.
Each driver schedules its own tasks.

• Cluster manager – Cluster manager is an external service
for acquiring resources on the cluster. The SparkContext object
connects to the cluster manager, which allocates resources
across applications. Spark applications run as independent sets
of processes on the Spark cluster.

• Worker node and executor – Any node that can run
application code in the cluster is a worker node. An executor is a
process launched for an application on a worker node that runs
tasks and keeps data in memory or Direct Access Storage Device

(DASD) storage. Each application has its own executor processes,
which are active for the duration of the whole application while
running tasks in multiple threads.

When submitted as a Spark job, the batch application distributes
the work to multiple executors for parallel processing, enabling
efficient data processing in lesser time compared to traditional
batch jobs.

Here is an example to explain how batch processing using IBM Z
Platform for Apache Spark runtime improves efficiency.

Assume an enterprise has two systems of records (SORs) containing
billions of rows of data. The business demands that these two SORs
are synced on a weekly basis. In the traditional batch method, this
entails having a series of jobs that read data in a serial manner.
The data is then compared using utilities like ‘sort’ along with data
manipulation, data convergence and divergence. Executing this
entire series of jobs is time-consuming and expensive.

Fig 7: Traditional batch jobs to sync two system of Records

The same job can be processed very efficiently, cost effective and
less time consuming in a Spark environment. The spark job gets
split into independent smaller tasks and distributed

among the executors in the worker nodes for parallel processing.
Spark would keep all the data in memory, making all computes very
efficiently, cost effective and less time consuming.

External Document © 2023 Infosys Limited

SOR -1 SOR -2

Unload
Files of
SOR-1

Match
Records

Mismatch
Records

Unload
Files of
SOR-2

Fig 8: Transforming a traditional batch job to parallel processing in Spark environment

Easy consumption of batch output using
Apache Spark result data store

The Spark job output is stored in an in-memory virtual table called
the ‘result data store’. The output can be accessed from anywhere
through REST APIs, JDBC, ODBC, or MongoDB interface using the
DVM. If the output has to be stored permanently, it can be pushed
to a Db2 table as a result data store, which can be accessed like any
other data source.

If the batch output is fed as an input to another batch job, then the
output of the previous batch job need not be persisted and can be
processed as in-memory storage. However, if the batch job output
has to be accessed on-demand by other systems or applications,
then it is better to persist the data.

Handling different types of batch workloads

During the batch modernization journey, various types of batch
workloads can be handled differently to improve efficiency and ROI.

ETL jobs form a significant batch workload when moving IBM Z
data into data lakes or data warehouses for analytics or insights.
An IBM analysis reveals that, for most enterprises, an average of
16% to 18% of total MSU consumption is caused by ETL jobs. The
traditional approach of processing ETL jobs can lead to high data
latency and significant processing cost. Moreover, moving data

and maintaining multiple copies can cause data inconsistencies,
resulting in greater security risk and non-compliance. As ETL jobs
typically run parallel to other batch workloads, it puts undue load
on resources, significantly impacting the processing efficiency and
SLA of all processing workloads.

IBM Z systems are enabled with seamless data processing, efficient
data access and open industry leading frameworks like Apache
Spark to run batch jobs efficiently while performing analytics and
machine learning functions. Any risk arising from data movement
can be averted or significantly reduced if analytics and data
processing are performed at the point where data is generated.

Even when data needs to be accessed by other systems or shared
with enterprise partners, its physical movement can be avoided.
Data can be accessed on-demand through REST APIs or JDBC using
the DVM. Preparation, distillation, aggregation, etc., of raw data
can be done at the data source and the processed data or insights
can be stored in the result data store. This allows other systems or
business partners to access the processed data or insights on-
demand from anywhere and at any time.

For batch jobs with read only data, the Db2-direct and IMS-direct
feature to directly read data from backend VSAM datasets instead
of going through the database manager is useful for IMS and Db2
databases. In this way, batch jobs can be processed along with
online transactions without impacting the SLA.

External Document © 2023 Infosys Limited

Z/OS Z/OS

IBM ODA

Spark Job_n

Spark Job_2

Spark Job_1

Job_1

Data Processing

JCL

Worker_1 Worker_n

Worker_1 Worker_n

Worker_1 Worker_n

Job_2

Job_3

Job_5

Job_4

Job_n

Sc
he

du
le

r

Sc
he

du
le

r

VSAM/
PS

Data
Layer

Data
LayerDB2 IMS

VSAM/
PS DB2 IMS

External Document © 2023 Infosys Limited

Conclusion
For nearly every enterprise, batch processing is still a fundamental
and mission-critical component with 40-60% of an enterprise’s
total workload running through batch. To effectively manage
dynamic business requirements, stiff competition, dwindling
resources, and technological disruption, it is important for
enterprises to adopt batch modernization by leveraging new
capabilities of IBM Z.

Embarking on batch modernization requires an approach that
transforms batch applications while considering the end-to-end
lifecycle of batch jobs. Using IBM Z Platform for Apache Spark, IBM
Data Virtualization Manager for z/OS (DVM), and IBM Application
Discovery and Delivery Intelligence (ADDI) along with Infosys
solutions deliver specific capabilities for batch modernization.
The business rules of the existing legacy batch application and
its dependencies can be discovered with ADDI and Infosys tools.
Access to different data sources, efficient processing of batch
application and easy consumption of job outputs can be

achieved using the open data analytics product set analytics
runtime on IBM Z.

The open data analytics product set combines efficient, fast, and
cost-effective data access using IBM Data Virtualization Manager
for z/OS and highly parallelize efficient batch compute with
Apache Spark, leveraging in-memory features for intermediary
data sets. This delivers a key advantage when used on the IBM Z
where the vast majority of data for batch processing originates.

The traditional approach of ETL jobs and data movement leads
to high costs, risk, and data latency. These overheads can be
significantly reduced if analytics and data processing is done on
IBM Z using IBM Z Platform for Apache Spark. If data needs to be
accessed by other systems or shared with partners for business
needs, IBM Data Virtualization Manager for z/OS can prepare the
data at the data source and share only the processed data. This
eliminates the need to move huge volumes of raw data, thereby
improving efficiency and reducing cost.

Appendix

Acronyms:

ADDI - Application Discovery and Delivery Intelligence

AI - Artificial Intelligence

CI - Continuous Integration

CICS - Customer Information Control System

CD - Continuous Delivery

COBOL - Common Business Oriented Language

CPU - Central Processing Unit

DASD - Direct Access Storage Device

DVM - Data Virtualization Manager

ETL - Extract, Transform, Load

HDFS - Hadoop Distributed File System

IDE - Integrated Development Environment

IDMS - Integrated Database Management System

IMS - Information Management System

IOT - Internet of Things

JDBC - Java Database Connectivity

JES - Job Entry Subsystem

LOC - Line of Code

LPAR - Logical Partition

LUW - Linux UNIX Windows

MSU - Million Service Units

ODBC - Open Database Connectivity

OLTP - Online Transaction Processing

PDSE - Partitioned Data Set Extended

PL/I - Program Language One

POC - Proof of Concept

PS - Physical Sequential

RDD - Resilient distributed datasets

RDBMS - Relational Database Management System

REST - Representational State Transfer

ROI - Return of Investment

SDSF - System Display and Search Facility

SLA - Service Level Agreement

SME - Subject Matter Expert

SMF - System Management Facility

SMT - Simultaneous Multithreading

SOR - System of Record

SQL - Structured Query Language

VSAM - Virtual Storage Access Method

zEDC - zEnterprise Data Compression

zIIP - z Integrated Information Processor

External Document © 2023 Infosys Limited

Dr. Sameer Goel

Global Practice Head for Mainframe Modernization in Infosys and has been leading modernization programs since last five years. He is a
Profit center head with 28+ years of experience of managing large IT global portfolio, large complex programs, stakeholder management
and delivery excellence of the IT transformation projects. He also conceptualizes Go-To-Market Plans, Alliance Plans and created new
opportunities through relationship building with business sponsors.

Mythili Venkatakrishnan

Distinguished Engineer with IBM Z and has been with IBM for over 30 years. Mythili is the IBM Z Financial Services Sector CTO and works
with enterprise clients on digitally transforming and modernizing core systems for agile interaction with hybrid cloud. In that role, she
collaborates across IBM as well as industry and ecosystem partners to enable clients to realize faster time to value via optimized integration
of their IBM Z investments. In addition, Mythili is the technical lead for the IBM Z Digital Integration Hub focused on real-time information
sharing between z/OS core systems of record and hybrid cloud. Her previous roles have included leading the analytics architecture and
technology for IBM Z, business resilience architecture and design, systems design and solution prototyping.

Nasser Ebrahim

Technical Lead for IBM Z Digital Integration Hub and a Senior Solution Architect on Data and AI with IBM Systems Lab. As the technical
leader, he works closely with clients and business partners to integrate IBM Z with Hybrid cloud for real-time information flow. Working
with global systems integrators, he also specializes in analytics and cognitive solutions on IBM Z. He has over 25 years of IT experience,
which includes systems programming, Java, Spark, Kafka, IBM Watson®, Machine Learning, Deep Learning, and Swift. He was Java Current
Release Technical Leader with IBM Software Lab before taking on his current role.

Anjali Abraham

IBM Z DevOps Solution Architect with IBM Systems Lab. She has more than 17 years of IT experience, all on IBM Z. This includes application
programming and solution architecting.

About the authors

References

https://www.infosys.com/services/application-modernization/offerings/mainframe-modernization.html

https://www.ibm.com/in-en/marketplace/open-data-analytics-for-zos

https://www.ibm.com/support/knowledgecenter/en/SS3H8V_1.1.0/com.ibm.izoda.v1r1.izodalp/izoda.htm

https://www.ibm.com/us-en/marketplace/app-discovery-and-delivery-intelligence

https://www.ibm.com/support/pages/ibm-application-discovery-and-delivery-intelligence-ibm-z-library

http://www.redbooks.ibm.com/abstracts/redp5217.html?Open

http://www.redbooks.ibm.com/abstracts/sg247779.html?Open

http://www.redbooks.ibm.com/abstracts/sg248325.html?Open

https://www.ibm.com/in-en/marketplace/open-data-analytics-for-zos
https://www.ibm.com/support/knowledgecenter/en/SS3H8V_1.1.0/com.ibm.izoda.v1r1.izodalp/izoda.htm
https://www.ibm.com/us-en/marketplace/app-discovery-and-delivery-intelligence
https://www.ibm.com/support/pages/ibm-application-discovery-and-delivery-intelligence-ibm-z-library
http://www.redbooks.ibm.com/abstracts/sg247779.html?Open
http://www.redbooks.ibm.com/abstracts/sg248325.html?Open
https://www.infosys.com/services/application-modernization/offerings/mainframe-modernization.html

© 2023 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys

