
VIEW POINT

HEADLESS WITH SITECORE
JAVASCRIPT SERVICES (JSS)

Abstract

Digital content is becoming key to engage audiences across all industry domains.
However, as customer touchpoints rapidly increase, marketing teams are
challenged with several technological and operational challenges. This paper
looks at headless architecture as a solution that enables massive flexibility by
decoupling authoring and publishing capabilities, and driving the consumption
of content at scale. It also provides a real-world case study of a Sitecore JSS
implementation by Infosys along with key recommendations for digital content
marketing teams.

External Document © 2021 Infosys Limited

What is Headless Architecture?

Headless architecture is a specialization of
decoupled architecture where presentation
layer of an application is separated from its
backend services. In the digital marketing
domain, this architectural paradigm
polymorphs as a headless content
management system (CMS), or Content-as-
a-Service.

Content is managed in a centralized
platform and delivered to disparate
channels through application
programming interfaces (APIs). Headless
architecture provides flexibility to
decouple CMS platforms from channels.
It also modernizes content strategies
either in parts or in a big bang way
without impacting channels. Further, it
equips designers with the freedom to
create marketing assets without being
constrained by backend technologies,
including the CMS. On the cost side, it
helps reduce maintenance involved in
multi-site/multi-app content scenarios.

Sitecore’s Offerings for Headless
Architecture

Sitecore has emerged as the pioneer
of the item-based headless CMS and
offers multiple ways to build headless
applications. Digital content users can
leverage any one of the following software
development kits (SDK) or accelerators
according to their business needs:

•	 Sitecore	JSS	using	JavaScript	SDK	–	This	
helps implement headless architecture
using modern JavaScript technologies
like React, Angular, or Vue. JavaScript
developers need not necessarily
be trained in Sitecore. The entire
implementation can be done at the
front-end and deployed later to Sitecore
to create the necessary artefacts in
Sitecore. This also enables users to
develop applications using modern
technology without sacrificing
CMS capabilities and advanced
marketing features.

•	 .NET	Core	SDK	–	This	is	another	type	of	
headless architecture implementation
that accelerates website development
by	using	the	latest	.NET	technology.	This	
capability is provided by Sitecore for
Sitecore 10 version onwards.

•	 Next.js	SDK	–	This	is	a	cutting-edge	
feature provided by Sitecore. It
improves performance, reduces the load
on backend servers, and ensures client-
side application stability. It simplifies
JSS development by supporting
internationalization, out-of-the-box
(OOB) Server-side rendering (SSR),
TypeScript, environment-level variable
management, performance metrics,
image optimization, component-
level cascading style sheet (CSS)
management, lazy loading, etc. Static
site generation (SSG) is a significant
feature	provided	by	Next.js	that	
pre-renders the app rendering code
thereby reducing or eliminating the
time spent to process the app

Introduction

Enterprises	are	viewing	the	importance	
of ‘content’ as more than informational
relevance. Content is now a powerful
tool that drives accurate marketing
and enhances personalization, creating
a powerful network of influencers.
The constant proliferation of digital
consumer touchpoints and the
increasing need for channel-specific
delivery and content variance have
made it necessary for digital content
management teams to quickly
address technological and operational
challenges. This is difficult as marketers
handle disparate marketing content
in silos across systems that must be
curated to channel-specific needs.

Headless architecture is emerging as a
solution to address these challenges.

External Document © 2021 Infosys Limited

rendering code when the end-user
interacts with a page.

•	 Sitecore	Experience	Accelerator	(SXA)	
–	Headless	architecture	can	also	be	
implemented	using	SXA.	Sitecore	
provides	JavaScript	Object	Notation	
(JSON)	artefacts	such	as	JSON	layout,	
JSON	renderings,	and	JSON	variants.	
These should be used to build the
page	so	that	the	SXA	layout	service	can	
render	the	data	in	JSON	format.

Why Choose Sitecore JSS
1. It supports headless and hybrid

headless architecture

 Sitecore JSS provides capabilities to
build websites using headless and
hybrid headless architecture.

 If modern JavaScript frameworks like
React, Angular, etc., are being used to
develop the presentation components
due to their lightweight and high-
performing nature and content is
consumed through APIs, then the
content management capabilities are
compromised. Sitecore JSS bridges
this gap. It enables developers to build
components using modern JavaScript
frameworks like React, Angular, Vue,
or	Next.js	while	retaining	the	benefits	
of CMS and advanced marketing
capabilities.

 Sitecore JSS is useful when a website
is transactional or dynamic in
nature with several upstream and

downstream transactions and when
all the features of CMS and advanced
marketing capabilities are needed.
Additionally, Sitecore supports the
co-existence of headless JSS apps
as	well	as	traditional	.NET	Core	or	
Sitecore model-view-controller (MVC)
apps within the same application
in the same instance. Sitecore
leverages a hybrid approach and
allows enterprises to migrate to JSS
at their own convenience. It offers the
flexibility of building a few parts of the
application in MVC and other parts in
JSS as per the requirement and design.

2. It provisions Sitecore experience
platform capabilities

	 ‘Experience	editing’	and	‘preview’	are	
vital features of a CMS. In a traditional
headless architecture implementation,
these features are compromised.

 JSS brings in the same content
authoring and editing experience as
traditional	Sitecore.	Node	Package	
Manager	(NPM)	packages	include	
the necessary techniques to support
experience editing. It enables authors
to preview the page in device
simulators before publishing. JSS also
offers a robust experience platform
covering analytics, personalization,
and A/B testing as described below:

	 •	 Analytics	–	Every	‘layout	service	call’	
for the route is considered as a ‘page
view’ of the route. Page views and
page events can be triggered using

the	JSS	Analytics	service.	Experience	
analytics and path analyzer reports
are supported in JSS.

	 •	 Personalization	–	It	enables	
content authors and marketers
to personalize JSS components
and understand the reach of each
component

	 •	 A/B	testing	–	A/B	testing	can	be	
performed on the variants of the
JSS components similar to how
it is done on traditional Sitecore
components. A complete page can
undergo A/B testing with another
page or previous version of the
same page.

3. It provides extensive
documentation

Detailed documentation is available for
the developers to start using the SDK.
Sitecore provisions a quick start kit and
sample	apps	in	React,	Angular,	Vue,	Next.
js,	and	.NET	Core.	Sitecore	communities	
like	Sitecore	Stack	Exchange	and	Sitecore	
Slack Community are useful resources for
developers looking for help if they are
stuck with an issue.

JSS Reference Architecture

JSS is constructed with several APIs and
services as shown in Figure 1. A Sitecore
page is called as a route in JSS and all the
components and data of the routes are
defined dynamically by Sitecore to support
data-driven personalization and A/B testing.

External Document © 2021 Infosys Limited

The key JSS elements are:

•	 A	JSS	library	that	includes	a	wide	range	
of	NPM	packages.	It	facilitates	working	
with Sitecore data and layouts in JSS.

•	 A	layout	service	that	exposes	the	
component details and the data for
each component

•	 A	JavaScript	view	engine	that	enables	
Sitecore to perform SSR of JavaScript
apps for experience editing

•	 An	app	import	feature	that	enables	
Sitecore to import the JSS app into
Sitecore and create the necessary
Sitecore artefacts (layouts, templates,
placeholders, items, etc.)

How to Get Started with
Sitecore JSS

JSS offers various workflows and several
modes of working. A few configuration
changes and server set-up must be done to
activate JSS. These are explained in detail
below:

1. Choose developer workflow

 Sitecore JSS offers two types of

developer workflows to get started
with JSS. These are:

•	 Code-first	workflow	–	This	workflow	
helps developers work with mock
content in the ‘disconnected mode’
without connecting to the Sitecore
instance. Front-end developers
can create a manifest of layouts,
templates, items, fields, etc., using
client SDKs and file structure. The
application import pipeline is used
to import the JSS app to Sitecore
and create the necessary artefacts.
This approach is recommended
when the application has a simple
content structure and contains more
dynamic data.

•	 Sitecore-first	workflow	–	This	
is similar to building a non-JSS
Sitecore site. Developers must use
the JSS-built base templates instead
of Sitecore base templates. For
example,	JSON	rendering	needs	to	
be used instead of view/controller/
extensible Stylesheet Language
Transformations	(XSLT)	rendering.	
This workflow is recommended

when the application has a complex
content structure.

2. Set up the JSS server

 Setting up the JSS server is necessary
to import the JSS app into the Sitecore
instance. The app works in connected
mode and the SSR works only if
the JSS server is set up. Some key
requirements to set up the JSS app are:

•	 Procure	a	JSS-enabled	Sitecore	
license for the Sitecore instance

•	 There	should	be	a	node	server	
running in the Sitecore instance for
the JSS app

•	 Create	an	API	key	in	Sitecore	in	the	
‘Services’ folder

•	 Install	the	Headless	Server	
Components Sitecore package from
the official JSS website in order to
unlock the server components

3. Configure the apps

 The Sitecore instance must know
which app should be imported. Thus,
configuring the JSS app in Sitecore is a
mandatory step to run the app in the
‘integrated mode’.

Dictionary
Service

View Engine
(SSR) using
Node Server

Items

<app/>con�g

Node JS Server Browser/App

Forms
Service

Experience Editor

Development using front end technology
and generate Code manifest post build

Graph QL,
Item OData

Page
Events

Route
JSON

Pre rendered HTML

Route
JSON

App Import Service

Si
te

co
re

Layout Service Analytics
Service

JSS Architecture

Figure 1 – JSS refence architecture

External Document © 2021 Infosys Limited

Utilities service provider leverages Sitecore JSS for stronger analytics on dynamic webpages

4. Choose the application mode

 JSS gives developers the option of
choosing various modes of working
so they can accelerate and simplify
the development process. These
modes are:

•	 Disconnected	mode	–	Developers	
can work with local mock content
without a Sitecore instance for faster
development

•	 Connected	mode	–	Developers	
can work in the system’s local host
in connection with Sitecore by
fetching the data from Sitecore

•	 Integrated	mode	–	Developers	can	
work in the Sitecore instance URL
in connection with Sitecore by
fetching data from Sitecore

•	 API-only	mode	–	Any	platform	that	
understands	JSON	can	consume	the	
JSS APIs and personalized layout
information

5. Implement analytics

	 Every	layout	service	call	is	counted	as	a	
page view in Sitecore. To disable page
view tracking of the layout service,
developers must set the parameter
“tracking=false” and send this to the
service as an additional parameter.
If tracking is deliberately disabled,
then A/B testing and personalization

reports will not be generated. Thus,
the tracking parameter should be
disabled only when there is no
requirement of analytics. This decision
must	be	made	judiciously.	The	
analytics tracking API allows firing
events, goals, outcomes, campaigns,
and page/route views from the
JSS app.

6. Deploy the application

 There are various JSS commands
available to deploy the JSS app into
Sitecore.	Ex-	“JSS	deploy	app”	deploys	
files and items of the app to Sitecore,
“JSS deploy app -c -d” deploys files
and items along with the content and
dictionary, there are several other
commands available which can be
used as per your app requirement.

7. Hosting

 JSS fits into all the deployment
models supported by Sitecore. Hence,
it can be deployed to Platform-as-a-
Service (PaaS) servers for enterprises
with Sitecore 9.x versions as well
as containers for those with
Sitecore 10.x versions.

8. Other considerations

 There are other useful concepts in JSS
to be considered during development
as per the requirements. These are:

Background

Infosys collaborated with a leading power
service provider to build a public customer-
facing website. The website had a few
dynamic self-service pages for actions like
making a payment, starting a new service,
terminating a service, etc. It also hosted
several information-rich static pages. The
website was heavily used by millions of
end-users.

The static pages rendered content from
Sitecore. However, in the self-service

•	 GraphQL	support	–	This	is	a	
powerful concept in JSS. With
GraphQL	queries,	the	format	of	the	
route data returned for a specific
component can be modified. Users
can query the data source and
retrieve the data as needed from
the	layout	service.	JSON	renderings	
have	a	GraphQL	editor	that	helps	
write the queries

•	 Forms	service	–	It	can	consume	and	
post Sitecore forms from JSS apps

•	 Dictionary	service	–	JSS	SDK	has	a	
simple API to utilize the dictionary
service

•	 Support	for	existing	MVC	
components	in	a	JSS	app	–	
Sitecore MVC components and
JSS components can coexist in an
application. If there are existing
static MVC components such as
header or footer, those can be
leveraged in the JSS application
instead of creating new ones. To
do this, a simple step should be
performed on the static component,
i.e.,	mark	the	attribute	“json=false”	
in the MVC rendering. An important
consideration here is that the
front-end code should be dynamic
so as to pull the data from the MVC
renderings.

dynamic pages, the user was presented
with a multi-step form to collect inputs.
In the last step, the user had to submit
the form. Multiple API calls were made
to perform upstream and downstream
transactions on these dynamic pages. As
users proceeded through the multiple
steps of filling a form on a dynamic page,
the URL of the page did not change,
similar to a single page application (SPA)
implementation.

Infosys leveraged hybrid architecture to
execute a headless architecture Sitecore
implementation. Static pages were built
using Sitecore MVC. Since multiple API
calls were needed for the dynamic pages,
React was chosen to build the front-end
presentation layer, fetch transactional data,
and improve website performance. The
content for the dynamic pages remained
in Sitecore and was served using a custom
API. The container for dynamic pages were
Sitecore pages with React components.

AN INFOSYS CASE STUDY

External Document © 2021 Infosys Limited

Challenges

Sitecore Analytics was used to extract
reports of the application users. A key
outcome here was that analytics reports
for the static pages were displayed within
the	Experience	Analytics,	Path	Analyzer,	
and	Experience	Profile	modules.	However,	
analytics data for dynamic pages was
scarce. The client wanted in-depth
analytics reports for dynamic pages in
order to understand exactly at which step
did users abandon the form, how many
users reached a particular step on the form,
how to personalize React components,
what is the level of A/B testing on React
components, etc. Such insights could not
be supported by a traditional headless
architecture approach where React was at
the front-end, consuming Sitecore content
through APIs.

Another	major	challenge	with	the	dynamic	
pages was that content authors could not
‘experience edit’ the page or preview the
page before publishing. The reason for
this is that content was being created in
Sitecore as labels and exposed through
APIs. There was no structured content
for the dynamic pages in Sitecore. A few
workarounds were recommended to set up
the	Experience	Editor	by	adding	renderings	
with dynamic placeholders and sourcing
the data of each label in the rendering.
However, these were effort intensive and
complex.

Infosys Solution

Sitecore JSS offered several critical features
that would address the requirements of the
utility company with respect to its dynamic
webpages, experience editing, previewing,
analytics, personalization, and A/B testing.
It also offered all CMS and advanced
marketing capabilities for dynamic pages.

Infosys conducted a proof of concept (PoC)
in JSS 12.0 for a single self-service dynamic
page where the container was a Sitecore
page and each step was created as a route
in JSS. The layout service in JSS pulls data
from	the	routes.	Every	time	the	layout	
service is called for a particular route, the
page view of the route increases by 1. In
this way, analytics was also established.

Infosys chose to implement a hybrid
headless architecture model with JSS
primarily because the dynamic page
container was still a Sitecore page with
React JSS components. JSS supported the
creation of templates, data sources, and
renderings	on	the	client-side	using	NPM	
packages. Thus, content was structured,
enabling experience editing, previewing,
and device previewing of a page. Various
components were created to increase
modularity, thereby allowing Infosys to
perform A/B testing and personalization.
Sitecore JSS was eventually used for all the
dynamic pages. These pages could also
leverage the CMS and advanced marketing
capabilities provided by Sitecore.

Infosys Notes

•	 In	the	code-first	workflow,	the	data	
schema and content are developed in
the front-end in JavaScript and YAML
Ain’t Markup Language (YAML) files.
Once this manifest is deployed to
Sitecore using the import pipeline, there
is no reverse-sync mechanism to push
data from Sitecore to the JSS app. Thus,
Infosys chose to shift from a code-first
approach to a Sitecore-first approach
for the already developed components
once the app was deployed to
production.

•	 There	is	no	OOB	feature	to	deploy	the	
JSS manifest into Sitecore at the desired
location for the benefit of content
authors. It will always deploy to the
default location.

•	 In	the	layout	service	calls,	if	tracking	
is disabled for a route, then the
page view does not increase for
the route. Additionally, A/B testing
and personalization reports are not
generated. Thus, it is important to be
judicious	when	creating	the	number	of	
routes and disabling tracking for routes.

External Document © 2021 Infosys Limited

Advantages of Sitecore JSS

•	 It	enables	headless	and	
hybrid headless architecture
implementation by retaining
content management and
advanced marketing features

•	 It	empowers	JavaScript	developers	
to implement CMS-based
applications using cutting-edge
technologies

•	 JSS	and	SXA	can	coexist	in	an	
application that supports hybrid
models

Challenges of Sitecore JSS

•	 Any	implementation	at	the	
foundation layer or at the
application start layer still resides
on the server-side. For example, if a
pipeline needs to be tweaked, then
it has to be done on the server-side.

About the Infosys Sitecore Practice

Infosys has extensive experience implementing and delivering successful digital
transformation programs to multiple customers across geographies and business domains
using Sitecore JSS.

Infosys has wide and deep expertise in pure headless and hybrid headless architecture
implementations	using	JSS.	These	implementations	cover	all	JSS	features	such	as	Experience	
Editor,	device	preview,	personalization,	A/B	testing,	firing	page	events,	and	Path	Analyzer.	
Infosys has worked extensively with Sitecore on the analytics aspects of JSS and has a deep
understanding of its features.

Infosys is a Sitecore implementation partner with rich experience in transforming over 200
customer experience channels. The Infosys Sitecore Practice covers the entire spectrum from
websites/apps development and multilingual implementations to technology migration to
Sitecore, Sitecore version upgrades, and migrating customer experience solutions to cloud.

KEY TAKEAWAYS

Shakti Patro
Lead Consultant, Digital Marketing, Infosys

Shakti is a Lead Consultant for Digital Marketing in
Infosys. She has 13 years of IT and consulting experience
with expertise in architecture definition, design, and
development across the Microsoft application stack
as well as web content management systems. She is
Sitecore-certified and has architected several Sitecore-
based marketing and dynamic applications. Shakti has
effectively	led	multiple	projects	and	provided	innovative	
solutions for clients to suit their business needs.

About the Author

© 2021 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
https://www.infosys.com/

