Applying machine intelligence to assurance practices

Our approach on artificial intelligence (AI)/machine learning (ML) based quality assurance is design based, complying with the following steps - Discover > Learn > Sense > Respond cycle. The knowledge base constantly helps in storing and building pattern, which in turn helps in self-learning and responding to actions.

Discover - Create smart assets using data repositories including defects, tickets, logs, etc. that can be used for analysis

Learn - Identify causal relationships between test assets such as defects and software requirement documents for developing insights

Sense - Predict the occurrence of an incident, impact and likelihood led by analytics and insights

Respond - Respond to an incident, input the resolution, and results for continuous learning

Test Suite Optimizer (TSO)

Need:
- Growing test repository — Duplicity or considerable overlap
- Huge regression suite versus short time boxed execution window
- Reduce automation effort

Benefits:
- Test case optimization — Upto 15 percent effort savings due to identification of similar test cases
- Structured Risk Based Testing
- Reduced Automation effort

Predicting the next

Need:
- High test coverage within time boxed window
- Unavailability of scientific methods to identify buggy modules
- Enables prioritizing regression

Benefits:
- Helps in regression suite prioritization
- Stop test framework — strategic decision to abort testing of a module
- Shift left on high risk area
- Better positioning of skills

Impact Analysis

Need:
- Identify impact with minimal subject matter expert involvement
- Unavailability of UML diagrams
- Take over from incumbent vendor
- Find relationships across different artifacts / entities in a document

Benefits:
- Faster knowledge transfer and enablement during the support phase
- Easier impact analysis
- More effective triage of the defects

Traceability

Need:
It proves to be of help when test cases do not get written for some requirements. Owing to poor review or traceability, these missing test cases are not detected until the end of the LC stage

Benefits:
Expensive rework can be avoided by identifying missing and impacted test cases early in the life cycle

ARTIFICIAL INTELLIGENCE-LED QUALITY ASSURANCE
Test scenario mining
Need:
Ability to execute the appropriate test cases based on potential failure areas of application
Benefits:
• Next-gen intelligent automation
• Intelligent risk based testing - algorithms act as a deciding factor for test cases to be executed
• Reduced cost due to early defect detection
• Increased testing efficiency by identifying optimal regression suite

Data analytics
Need:
• Perform analytics on huge amount of data on defects / incidents / tickets
• Identify granular contributors of defects which cannot be done by the conventional tools
• Identify key issues responsible for majority of the defects
• Identify applications at higher risk
• Ensure adequate testing for frequent changes and roll outs
Benefits:
• Improved risk management through prioritization of critical areas
• Increased testing efficiency by identifying optimal regression suite
• Detection of top issues for different applications

Customer sentiment analytics
Need:
• Mining end user feedback to gain insights on customer needs
• Identify, most rigorous issues impacting customer behavior
• Ensure real-time learning and complete the feedback loop
Benefits:
• Enhanced customer experience
• Better risk management by prioritizing critical areas
• Increased testing efficiency by identifying optimal regression suite

We have implemented our AI led quality assurance (QA) solutions successfully across verticals, including proof-of-concepts (PoC), projects, etc. Here are few of our success stories:

• For one of the largest food and beverages companies in North America, large test case suite had accumulated over a period of time. Test Case optimizer of AI led QA tool helped in identifying the duplicate test cases ensuring higher risk based testing with an effort savings of around 10-15 percent per cycle
• For a leading aerospace manufacturing company, Test Case Optimizer of AI led QA tool helped in reducing automation preparation and execution time by 10 percent through optimization of regression test suite
• For the world’s largest health care insurer in the US, test scenario mining and defect analytics of AI led QA tool were used to improve test effectiveness during last minute changes in agile environment
• For one of the leading banks in Australia, we have implemented our Traceability solution and Predicting the Next solution to improve efforts savings upto five percent in test coverage review and predict the weakest module
• Implemented customer sentiment analytics solution for a leading pharmacy retailer in Canada, reduced negative customer comments from 75 percent to 14 percent and improved regression coverage based on customer feedback collated through the tool

For more information, contact askus@infosys.com