
VIEW POINT

Abstract

Organizations are increasingly adopting agile methodology to
reduce time-to-market for product releases. However, unlike the
traditional waterfall model with assigned roles, agile requires
continuous integration (CI) and continuous deployment (CD)
strategies for testing and deployment of code. This paper provides a
7-step framework for implementing CI and CD for ETL testing.

A 7-STEP FRAMEWORK TO
IMPLEMENT CICD IN ETL TESTING
Kiran Beemanakolly,
Senior Project Manager, Infosys Limited

Vasuki Rao,
Technical Test Lead, Infosys Limited

Many organizations are looking to drive
digital transformation by adopting agile
methodology for Extract, Transform, Load
(ETL) testing. The agile methodology
mandates continuous integration (CI) to
avoid manual intervention for effective
test validation. It also requires continuous
deployment (CD) to ensure that small
increments of product releases can
be delivered at regular intervals. Thus,
automation becomes the key to reduce
time to market.

Automating validation tasks ensures that
validations are completed within sprint
timelines. Further, it accelerates the process
of re-validation arising from changes
by minimizing manual effort spent on
ensuring that the data is clean and as per
the business requirements.

Introduction

External Document © 2019 Infosys Limited External Document © 2019 Infosys Limited

How ETL validation processes work
An ETL testing workflow comprises of
servers, databases and reporting tools.
Servers are code repositories that store
source files, intermediate files and

output files and execute ETL jobs for
data extraction, processing and loading.
Databases are repositories containing the
source and target data of ETL processing.

Reporting tools such as HP-ALM, JIRA, TFS,
etc., are used to update test execution
status.

Drivers for implementing CI/
CD for ETL testing
Business drivers: Most organizations want
to shift from the traditional waterfall model
to agile methodology for speedy project
execution and to overcome challenges
such as:

• Lengthy and exhaustive testing owing
to complex business rules, high data
volumes and ever-changing business
requirements

• Inefficient test validation arising from
the need for manual intervention across
the testing lifecycle

• High dependency on external teams

Automation and CI helps
businesses reduce manual
intervention and accelerate
time-to-market.
Technical drivers: The existing testing
processes create several technical
challenges such as:

• Manual execution of high number of
wrapper scripts for Ab Initio ETL code
takes 3 to 4 weeks

• Significant effort and time spent on
rework during every sprint due to
requirement changes

Typically, ETL validation processes involve
data extraction, transformation and
validation that are often executed on

different platforms. Thus, to automate the
ETL validation process, these components
must first be integrated to enable a

continuous cycle of validation and
deployment.

Fig 1: Components of an ETL testing workflow

Server (ETL Code/Data Files) Database Status Reporting

• Lack of automation in status reporting
(HP ALM and JIRA) resulting in
additional man-hours spent on
updating teams about the status of
each script

External Document © 2019 Infosys Limited External Document © 2019 Infosys Limited

Through automation and CI, testing teams can achieve 100% test coverage with zero defects
within sprint timelines.
Key requirements for iterative
ETL testing
To support agile product delivery, the
ETL validation steps of job execution,
data validation and status reporting
should be automated and integrated to
run continuously as a single process, i.e.,
continuous integration. First, the validation
steps must be interlinked to minimize

manual intervention and create iterative
and continuous cycles of validation. In-
house or external tools can be used to
create a CI workflow that automates and
interlinks the validation process.

Once the code is successfully validated by
the CI workflow, it must be continuously
deployed in order to achieve continuous
cycles of validation and deployment for

agile product delivery. Here, a deployment
script is created and linked with the
integrator. After the CI workflow, the
integrator triggers the deployment and
code is automatically deployed without
manual intervention. As in the case
of continuous validation, in-house or
external tools can be used to automate
deployment, thereby ensuring iterative ETL
testing.

CI

CD
Trigger Deployment Trigger Regression

Acknowledgement

Integrator

Linux – Abinitio ETL Job
Execution

Checkout Script Creation

Air Load Process

Production Check Out

Element List Validation

Linux – SQL Execution for
Data Validation

Status Updates in HP ALM & JIRA

Source Code Repository

Fig 2: CI and CD workflow for continuous ETL testing

External Document © 2019 Infosys Limited External Document © 2019 Infosys Limited

Step 1: Identify an integrator
An integrator unifies all the components
of ETL testing for continuous validation
cycles. It acts as an interpreter by
converting the output of one component
into input for another component. To
trigger suitable actions in each component,
the output should be easily interpreted by
the integrator. This requires creating job
execution or data validation scripts.

The following criteria should be considered
when selecting an integrator:

• Plugin availability – Different
components are integrated using plugins
that connect and perform the required
action, making this a key criteria when
choosing an integrator

• Usability – Configuring an integrator
to perform the desired functionality should
be simple

• Cost effectiveness – Based on the
requirement, either an open source or
licensed integrator can be selected

Step 2: Determine the source
code repository
The code repository stores all the ETL
job execution and data validation scripts
so that users can easily access the latest
versions. The integrator is connected to
the source code repository and, when
triggered, fetches the latest version of the
appropriate component (ETL job execution
or validation script) from the source code
repository.

In certain scenarios, the actual code can
reside in the source code repository along

7 steps to implement CI and
CD in ETL Testing
1. Identify an integrator

2. Determine the source code repository

3. Create an ETL code execution script

4. Define the data validation approach

5. Combine the ETL code execution and
 data validation

6. Enable automated status reporting

7. Create the deployment script

with validation components. Here, the
integrator can be programmed to execute
the ETL job execution and validation
wrapper whenever the code changes in
the source code repository. This ensures
that validations are properly triggered after
code change without manual intervention.

Step 3: Create an ETL code
execution script
A wrapper script must be designed to
execute ETL jobs in the right sequence. The
script should be designed such that when
any ETL job is aborted the status of the
wrapper changes to ‘fail’. This status must
be communicated to the integrator so
that it can generate a suitable response. In
case the wrapper script status is ‘pass’, the
integrator should trigger the next action in
the workflow.

Step 4: Define the data
validation approach
It is important to build the validation script
in a way that it is executed on the same
server as the ETL job. This eliminates the
need for manual intervention in executing
validation queries on the database using
any interface. Once the ETL job execution
wrapper is successfully completed, the
validation script must be triggered by the
integrator.

In case data validation occurs in the
database, the validation wrapper should
connect to the database from the server,
execute data validation queries and
capture these results. The format of these
results (whether ‘pass’ or ‘fail’) should be
easily interpreted by the validation script
and passed to the integrator to generate
the correct response.

In cases where it is necessary to validate
output/intermediate files in the server, the
validation script should be executed on the
server. The results from this (whether ‘pass’
or ‘fail’) should be captured in a format
that is easily interpreted. These results are
then passed to the integrator to generate a
desired response.

Step 5: Combine the ETL code
execution and data validation
jobs
Sometimes the ETL job execution follows
data validation and these two steps are
interlinked. Here, a combined wrapper can
be created that envelops the validation
wrapper as well as the ETL job execution
wrapper and provides the input to the
integrator. This combined wrapper is useful
for regression testing where existing ETL
jobs and validation queries have to be re-
executed.

Step 6: Enable automated
status reporting
Across the CI workflow lifecycle, the
execution status is updated in a test
management/user stories tracking tool.
This provides a real-time overview of the
execution status during sprints. Once
data validation is completed, the status
is updated in the tracking tool. An email
with the above details is sent to confirm
the status for job execution and data
validation.

Step 7: Create the
deployment script
A deployment script must be created and
linked with the integrator such that it
triggers the deployment of code without
any manual intervention once the CI
workflow is successfully completed.

External Document © 2019 Infosys Limited External Document © 2019 Infosys Limited

Fig 3: Framework for implementing CI/CD in ETL testing where Ab Initio is the ETL, Jenkins is the integrator and GitHub is the source code
repository.

Implementing CI and CD in ETL testing helps
organizations:

• Increase testing efficiency by automating ETL
job execution, data loading, data validation,
and results reporting

• Accelerate time to market by reducing
turnaround time to production and as well as
reduce time to deployment to minutes instead
of days

• Reduce regression effort by 50%, system
testing effort by 40% through iterative
validation in time-boxed sprints

• Save cost by reducing the dependency on
multiple external teams as execution can be
triggered by any user (QCA, developer, business
analyst, etc.)

• Improve quality by reducing the number of
errors in code through automation

Benefits

CI

CD
Trigger Deployment Trigger Regression

Acknowledgement

Linux – Abinitio ETL Job
Execution

Checkout Script Creation

Air Load Process

Production Check Out

Element List Validation

Linux – SQL Execution for
Data Validation

Status Updates in HP ALM & JIRA

External Document © 2019 Infosys Limited External Document © 2019 Infosys Limited

Even as organizations adopt agile methodology, they need to implement
CI and CD across the pipeline to ensure timely and frequent product
releases. The lack of CI and CD in ETL testing can lead to lengthy sprint
timelines and frequent sprint failure, resulting in delayed time-to-market.
The 7-step framework mentioned in this white paper provides a clear
guideline on how organizations can enable CI and CD for ETL testing
in agile environment without Java or Selenium. While the workflow
for implementing agile may differ among teams, the overall approach
remains the same. It is important to integrate all the steps in ETL
validation so that a continuous and iterative workflow can be created.
This ensures that validations are performed round-the-clock with
minimal manual intervention, allowing organizations to deliver small
and incremental releases of shippable products at regular intervals.

Conclusion

A case study

Automated ETL testing slashes effort by 50%
The client wanted to enable agile product
delivery by shifting from the traditional
waterfall model to Scrum methodology. To
ensure effective test validation, they had to
automate key processes, eliminate manual
intervention and enable continuous
integration. They needed to identify an
integrator to unify the different platforms

(Linux, Oracle DB, Windows). However,
the traditional Jenkins plug-in was not
available for Ab Initio ETL and there were
connectivity issues with Jenkins and Linux
QA Server. They also needed a solution
to update test cases automatically using
Jenkins.

Infosys used the flexible 7-step framework
to implement CI and CD for agile Ab Initio
ETL testing across the enterprise. The key
highlights are:

• Created CI ETL framework for job
execution, data load, data validation,
and results reporting

• Successfully integrated Jenkins with
Linux Server, HP ALM and JIRA

• Leveraged GitHub to store source
scripts and connect with Linux Server

• Created a script to connect Sandbox
in Linux Server via Jenkins to execute
Ab-initio Graph

The flexible ETL testing framework helped
the client achieve benefits such as:

• Automation of ETL job execution,
data load, data validation, and results
reporting

• Faster turnaround time to production
with the capacity to deliver shippable
increments every two weeks

• Higher validation frequency in
time-boxed sprints by validating 30 user

stories every 2 weeks instead of 4 weeks

• Simple execution that could be
triggered by any user (QCA, developer,
information analyst, etc.)

• 50% effort reduction by completely
automating the regression suite
through CI

A case study

Sprint Team 1 Functional EME

Functional EME

Functional EME

Abinitio
Regression

EME

Abinitio QA Server

Jenkins

Jira/HPALM

Sprint Team 2

Sprint Team 3

External Document © 2019 Infosys Limited External Document © 2019 Infosys Limited

© 2019 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/Infosys
http://www.slideshare.net/Infosys
https://www.infosys.com/

