
WHITEPAPER

AGILE EVOLUTION — 20 YEARS LATER

Agile has come a long way since its infancy as a software development
method in the 1980s. Here, we chart its emergence and maturation into
a tool and philosophy that allows large corporations to move fast, remain
nimble, and deliver superior business outcomes.

External Document © 2021 Infosys Limited

External Document © 2021 Infosys Limited

From humble beginnings, the Agile
methodology has become the 21st-
century’s panacea for all things digital,
innovative, and fast moving. But there
are fears that its potency is being lost
along the way as its usage spreads.
Twenty years later, it’s time to reassess
the principles and practices of Agile for
today’s world.

Agile began as a lean software
development method that delivered
higher-quality code in less time.
However, in the past decade, its
concepts have increasingly been
adopted by nontechnical business
teams, from creative agencies to
innovation labs, and from marketing
groups to human resources
departments.

The simplicity and flexibility of Agile is
what made it so compelling. However,
this is also a potential weakness.
Among those who use it today, there
is ambiguity about what Agile is and
should be. While many now apply the
term to their own work, few are fluent
in the fundamentals.

This leads to the common complaint
that many projects are Agile in name
only — either running these practices
in a waterfall method or focusing on
rituals rather than actual outcomes.

Meanwhile, COVID-19 has led
organizations to fully embrace cloud
architecture and remote working.
This phenomenon is simultaneously
increasing the need for flexible and
rapid development, while challenging
some of the core precepts of the
Agile manifesto regarding how teams
collaborate.

This paper, therefore, acts as both a
primer for those unfamiliar with Agile
as well as a refresher and reappraisal of
its history and evolution for those who
feel it’s losing its way.

Practices versus
principles
Agile is based on a simple and direct
set of values and principles that make
it at once compelling, broad ranging,

and ambiguous. In order to turn the
philosophy into reality, dozens of Agile
practices and toolkits have sprung up
over the years.

Over time, however, the use and
ritualization of these practices have
caused some Agile projects to overly
rely on method over purpose — one
of the key problems that Agile was
supposed to fix.

Today, business leaders often complain
that Agile practitioners are overzealous
in their application of these methods.
This often alienates other teams within
large enterprises rather than acting as
a force for change.

On the other hand, projects and teams
that adopt the spirit of Agile thinking
— focusing on agility, responsiveness,
and flexibility — often struggle to
scale across an organization. These
types of teams tend to rely on specific
members or leaders that imbue the
right culture but often do not embrace
enough documented methodology for
Agile to be replicable.

It’s helpful to think of these two
challenges as separate but interrelated
capabilities that organizations need
to hone — and balance — in order to
deliver truly transformative outcomes
across the entire enterprise.

Our Agile framework pits “adherence
to toolset” against “adherence to
mindset” (Figure 1). Those who are
strong on the methods and practices
that support Agile projects are doing
Agile, whereas those who are strong
on the mindset and cultural elements
are being Agile. Those who are able to
balance both are truly transforming
their enterprises through scaling
Agile practices.

We use “mindset” to describe the
cultural and organizational traits and
values that are most aligned with
the principles and values of the Agile
Manifesto. We use the term “toolset”
to describe those teams that adhere
closely to the recognized tools and
practices associated with Agile — the
most prominent of which we list later
in this paper.

Figure 1. A framework to understand the balance between toolset
and mindset in Agile

Source: Infosys

Do
ing

Ad
he

re
nc

e
to

 to
ol

se
t

Tra
nsf
orm
ing

Being

Adherence to mindset

External Document © 2021 Infosys Limited

Mindset — the
foundations of Agile
In 2001, 17 programmers met at a
ski resort in the Wasatch Mountains
of Utah to share best practices in
software development. Each came
from a different programming
background, but all were keen
on developing a new lightweight
approach to their craft. The meeting
resulted in the Agile Manifesto, a
statement of four values (Figure 2),
backed by 12 principles.

This was a seminal moment for the
software development community.
The manifesto was revolutionary, and
its hidden message marked a profound
shift from the received business

The roots of Agile
Agile practices and principles developed from three different roots: manufacturing, software development, and
project team management.

Manufacturing

Most people see Agile as an alternative to the waterfall software-development model. However, many of its ideas
originated with manufacturing principles. After World War II, W. Edwards Denning used principles from Bell Labs
studies conducted by his mentor to improve products and processes in Japanese manufacturing. Toyota hired
Denning to train their managers in these techniques, which led to the development of the Toyota Production
System. This is the main source of today’s Lean methodologies.

Software development

Kent Beck developed Extreme Programming in 1996, while leading a rewrite of Chrysler’s payroll application.
Extreme Programming is responsible for introducing the ideas of small early code releases, automated testing, pair
programming, refactoring, and team ownership of code as standards for all projects. Though it predates Agile, it has
since incorporated Agile values and principles.

Team management

Scrum is the most popular Agile variant. It originates with a 1986 Harvard Business Review article titled “The New
New Product Development Game.” Authors Hirotaka Takeuchi and Ikujiro Nonaka describe a new approach to
product development that eschews the standard notion of completing project phases that are then passed to new
teams (a relay race). Instead, it favors a method in which a single team produces a product from start to finish (a
rugby approach). By organizing teams for entire product life cycles instead of specific phases, technical expertise
is not lost. Additionally, early choices made by product teams have to be managed by the same team, instead of
becoming others’ problems.

Figure 2. Values in Agile Manifesto

Agile Manifesto

Individuals and interactions

Working software

Customer collaboration

Responding to change

That is, while there is value in the items on the right, we value items on the left more.

Processes and toolsOver

Over

Over

Over

Comprehensive documentation

Contract negotiation

Following a plan

Source: Agile Manifesto

External Document © 2021 Infosys Limited

Priorities Culture Team organization Work processes

wisdom of the 20th century. Agile was
not about a one-size-fits-all, mass-
produced product built on assembly
lines. It was about freeing engineers
to be creators who could explore
their craft and respond to the needs
of end users and customers flexibly
and rapidly.

Agile brought in the concept
of engineer-as-creator,
responding flexibly and rapidly
to customer needs

The 12 principles of
Agile
Though an inspirational starting point,
the Agile values are still vague and not
prescriptive of any particular practice
or method. The 12 Agile principles help
bring clarity and focus on the type of
organizational culture needed to make
Agile succeed.

We find it useful to organize them into
four categories: priorities, culture, team
organization, and work processes.

Priority principles focus on delivering
quality and valuable software. Cultural
principles ensure business alignment,
a focus on continuous improvement,
and the need for team members to
meet in person. Team organization
principles and work process principles
focus on effectiveness, transparency,
and accountability.

•	 Agile processes
promote sustainable
development. The
sponsors, developers,
and users should
be able to maintain
a consistent pace
indefinitely.

•	 Continuous attention
to technical excellence
and good design
enhances agility.

•	 Simplicity — the
art of maximizing
the amount of
unnecessary work not
done — is essential.

•	 At regular intervals,
the team reflects
on how to become
more effective, then
tunes and adjusts its
behavior accordingly.

•	 Our highest priority is
to satisfy the customer
through early and
continuous delivery of
valuable software.

•	 We deliver working
software frequently,
from every couple
of weeks to couple
of months, with a
preference for the
shorter timescale.

•	 Working software is
the primary measure
of progress.

•	 We welcome new
requirements, even
late in development.
Agile processes
harness change
for competitive
advantage.

•	 Business staff and
developers must
work together daily
throughout the
project.

•	 The most efficient
and effective
method of conveying
information to and
within a development
team is face-to-face
conversation.

•	 Projects are built
around motivated
individuals.
Organizations
should give them
the environment and
support they need,
and trust them to get
the job done.

•	 The best architectures,
requirements, and
designs emerge from
self-organizing teams.

External Document © 2021 Infosys Limited

Toolset — Agile’s
practices and techniques
As teams have applied Agile
principles, specific practices have
emerged as synonymous with this
methodology. The most dominant
are Scrum and Kanban, which can be
applied to a wide range of technical
and nontechnical projects. But as
business demands have changed and
understanding of Agile has deepened,
other practices have emerged to take
center stage. Notably, Scaled Agile
Framework (SAFe) was designed to
enable large software projects to be
agile, and DevOps, which has become
increasingly popular as a way to
increase automation.

Yet, the popularity of these tools can
overshadow others that might be
better suited to today’s enterprises,
even if those tools didn’t initially
capture the public’s imagination.
The following list provides a brief

introduction to many of these
practices, with notes about usage
derived from an internal survey of 25
senior Agile practitioners and their
experience with more than 90 clients.

We break these down into three major
project groups: planning, execution,
and tracking.

Project planning

Project planning is a major feature
of all software development. Agile,
however, seeks to re-engineer that
process in significant ways. With this
methodology, requirements don’t
have to be exhaustively defined in the
earliest stages. This important benefit
lowers lead times and enables a quick
release cycle.

CRC cards

Class responsibility collaborator (CRC)
cards are among the earliest forms
of software development planning.
Introduced in 1988, CRC cards

physically show the relationships
among the different classes used
in object-oriented programming. A
team typically creates these cards as a
group exercise to design how pieces of
software interact and fit together.

Planning poker

Planning poker is one of the earliest
elements of project planning. It was
first described in 2002 as a way to
estimate the length and difficulty of
tasks without members influencing
each other. In planning poker, team
members receive cards with different
point values (typically in Fibonacci
sequence). After the product owner
describes a user story, each team
member silently chooses a card with
the point value he or she thinks the
user story should be assigned and
places the card face down. Once all
team members have voted, the cards
are revealed, and the team members
with the highest and lowest estimates
explain their reasoning. The team then

External Document © 2021 Infosys Limited

tries to come to a consensus point
value by playing additional rounds.

Magic estimation

Because some planning poker
sessions would fill an entire day, magic
estimation was developed in 2010 as
a method to shorten the time spent
assigning points to user stories. This
approach is most useful for estimating
entire backlogs and getting a rough
idea of the size and complexity of
a project.

With magic estimation, point values
are placed on the floor or wall, and
every user story or backlog item is
written on a card. The product owner
then briefly describes items in the
backlog, and the team settles on a user
story or backlog item that will serve as
the baseline task. This task is assigned
a total that is close to the middle of the
range of points on the wall.

Each team member then receives a
unique set of backlog item cards. The
team places those cards under point
values as compared to the relative
complexity of the baseline task. If
a team member is uncertain, the
card is placed to the side for further
explanation by the product owner. In
further rounds, cards can be moved
from one point value to another by
team members. But cards that are not
moved or not moved very far have
their point values written on them and
are given to the product owner. The
entire backlog can be estimated in an
hour or less.

User stories

User stories divide features in a
software project into functional
increments. Their use originated with
the practice of Extreme Programming
in 1998, but was more formally
described a few years later. User stories
have become the standard for creating
feasible units of work on Agile teams,
and our survey respondents indicate
that their use is almost universal today.

INVEST checklist

The INVEST checklist was promoted
in 2003 as a way to codify useful user
stories. According to the document, a
good user story should be negotiable,
valuable, estimable, small, testable,
and independent of all other stories. If
it fails to meet these criteria, the team
should consider rewording or rewriting
the story.

Story mapping

In 2008, the concept of story mapping
was introduced to help teams consider
whether a set of features will be useful
for each type of user. This generally
takes the form of plotting user stories
against the independent dimensions
of complexity and priority. The aim is
to avoid a situation where valuable
business features are deferred
because they depend on other, lower
priority features.

Domain-driven design

The core of domain driven design,
created in 2003, is to have code be
more “human readable” by naming
functions and classes in the code
using the nomenclature of the specific
business in question.

Definition of done

Used in Scrum, the term “definition of
done” was coined in 2005. This idea
helps teams create consistent and well-
understood acceptance criteria. It aids
in limiting the cost of rework once a
feature has been accepted as done and
limits the risk of misunderstandings
between the development team and
the product owner. The definition
of done is a shared understanding;
obsessing over a list of criteria can be
counterproductive.

Definition of ready

In 2008, the definition of done
expanded into the “definition of
ready,” which encompassed the
beginning of user stories. This helps
determine whether a feature is ready

to be developed. The aim is to avoid
beginning work on features that do
not have well-defined completion
criteria. This helps avoid rework.

Project chartering

Project chartering was developed
in 2006 to define the scope and
objectives of a project. This is done so
that projects do not fall into indefinite
release cycles. This chartering
approach fell out of favor as software
developers began to choose more
product-based approaches instead of
project-based ones.

Project execution

While the elements of Agile that
concern project planning and tracking
are useful, the major goal was to
change attitudes regarding project
execution. Instead of insisting that
all features be defined before the
first line of code is written, Agile
adopts the mentality that changes are
inevitable and should be welcomed.
Instead of treating the customer as
an antagonist to be wrangled, teams
should work daily with the business to
ensure program features carry value.
To execute these ideas, teams needed
better defined examples of what this
looked like.

Lean, Scrum, and Extreme
Programming all predate Agile
but have elements that are now
considered components of Agile.

Continuous integration

One of the best-known features
of Agile software development is
continuous integration. The term had
been in use for many years before
Martin Fowler, an American software
developer and public speaker, gave
a more complete description in
2000. Earlier, the best practice was
“scheduled” integration because
of a lack of thorough testing in
continuous integration. When tools
were developed for automatic testing,

https://www.martinfowler.com/articles/originalContinuousIntegration.html

External Document © 2021 Infosys Limited

continuous integration became
more popular. Integrating code
automatically is one of the key drivers
Agile uses to produce working code in
a short time.

Continuous delivery

Automation of code integration
catalyzed the idea of further
software automation, resulting in the
innovation of continuous delivery.
This approach automates the next
step of software development by
automatically pushing code to
the quality assurance or staging
environment. Continuous delivery
requires manual approval after
regression tests are completed. These
tests confirm that new functionality
does not break existing systems and is
ready for production.

Continuous deployment

In 2006, software authors Jez Humble,
Chris Read, and Dan North published
the first article describing continuous
deployment. This further automates

software development by automating
— without human intervention — the
deployment of code to production.
The authors noted that this is only
possible with fully automated unit,
integration, and regression tests to
minimize the chance of introducing
error into production environments.

DevOps

DevOps is the combination of
microservices, continuous integration
and delivery, monitoring and logging,
and infrastructure as code. This was
developed in 2009 to solve friction
between development and operations
teams trying to implement Agile
practices. Since then, DevOps has
become one of the most popular
flavors of Agile.

Pair programming

Pair programming started in 1996 as
an element of Extreme Programming.
Coding is done in pairs, with one
developer typing the code while the
other helps direct how it should be

written. This practice has always had
a mixed reception. Some developers
like the back-and-forth brainstorming.
However, working with people has
been antithetical to the persona
of many programmers and is often
rejected as a practice.

Ping-pong programming

First appearing in 2003, ping-pong
programming was an evolution
of pair programming. It combines
pair programming and test-driven
development. With this approach,
developer A writes a test that fails,
and developer B writes the code to
make the test pass. Then developer B
writes a test that fails, and developer
A writes the code to make the test
pass. This method is used to keep both
programmers engaged in the problem
so the risk of one developer zoning out
is minimized.

Acceptance testing

Acceptance testing was developed
in 2002 and uses automated tests to

https://semaphoreci.com/blog/2017/07/27/what-is-the-difference-between-continuous-integration-continuous-deployment-and-continuous-delivery.html
http://dl.acm.org/citation.cfm?id=1155519
http://dl.acm.org/citation.cfm?id=1155519
https://aws.amazon.com/devops/what-is-devops/
https://devops.com/the-origins-of-devops-whats-in-a-name/
https://computingnow.computer.org/web/agile-careers/content?g=8504655&type=article&urlTitle=two-heads-are-better-than-one
http://www.c2.com/cgi/wiki?PairProgrammingPingPongPattern
http://www.c2.com/cgi/wiki?PairProgrammingPingPongPattern
https://www.agilealliance.org/glossary/acceptance/

External Document © 2021 Infosys Limited

determine whether a feature is ready
for release. These tests are created
with the customer and show whether
the code resulting from a user story is
producing the correct output.

Reflection workshops

Reflection workshops were developed
in 2001 and became popular soon
after. These were designed to help
teams determine when to end a
current release iteration or begin a
new one. The purpose is to reflect,
as a group, on what portions of the
iteration or sprint went well and what
portions did not succeed. Using the
information from the workshops or
retrospectives, the teams can make
adjustments to their process.

Lean software development

Lean was first described in the book
Lean Software Development: An Agile
Toolkit in 2002. The principles are to
eliminate waste, amplify learning,
decide what code to build as late as
possible, deliver as early as possible,
empower the team, build integrity into
the product, and optimize the whole.

FitNesse

FitNesse is a tool that was developed
in 2003 to facilitate automated
integration testing and to support
acceptance testing, rather than just
unit testing. FitNesse allows software
end users to create tests that are
then turned into code and can be run
automatically to test new features.

Acceptance test driven development

Acceptance test driven development
(ATDD) is the practice of having all
team members, including customers
and testers, collaboratively write tests
before any code is created. It was
initially dismissed as impractical by
Kent Beck, Extreme Programming’s
founder. However, it became popular
as a way to allow nontechnical people
to contribute to test design.

reasons rather than in spite of them.
According to the State of Agile report
released in 2020, SAFe is about twice
as popular as the next most popular
scaling framework, Scrum of Scrums.

Agile testing

Created in 2017, Agile testing employs
collaborative practices that occur
from inception to delivery, supporting
frequent delivery of quality. Agile
testing focuses on defect prevention
rather than defect detection. It also
includes asking questions to test ideas;
automating tests; exploratory testing;
and testing for reliability, security, and
performance.

Project tracking

Tracking the progress of a sprint or
project is essential in order to ensure
that working software is delivered on
time. This ties into the first principle
of Agile — that the highest priority
is to satisfy the customer with early
and continuous delivery of valuable
software.

Velocity

The first defined Agile methods
for project tracking were velocity,
burndown, and burnup rates. All
these methods became popular in
2002. Velocity is a measurement used
in Scrum that shows the number of
story points a team has accomplished
in a given sprint. Velocity is a useful
measure of the same team across
sprints. But it cannot be used to
compare teams since the number of
story points assigned to a given task
can vary greatly. Additionally, even
within the same team, the velocity
measure can be gamed by allowing
the team to inflate the story points
required for tasks in future sprints.

Burndown

The burndown rate, first described in
2000, is a way to see whether a team
is on target for the current sprint or

Backlog grooming

Backlog grooming, also known
as backlog refinement, was first
mentioned in 2005 but not formally
described until 2008. This involves
the product owner and the rest of the
team reviewing items in the backlog
for importance and priority. The goal
is to remove irrelevant user stories,
add new user stories based on net
information, estimate or re-estimate
user stories, and refine any current
user stories that are too large to fit into
an iteration.

Behavior-driven development

Behavior driven development
(BDD), also known as specification
by example and first described by
Dan North in 2006, is an adaptation
of test-driven development (TDD).
North’s initial insight was to think
about writing test functions as testing
a behavior in one sentence. This
limits the scope of a test because
there is only so much that can be
described. The method also codifies
where to start in a process by asking
the question “What is the next most
important behavior that the system
does not currently do?” Though not
expressed in his initial article, the Agile
Alliance explained that BDD asks team
members to apply the “Five Why’s” to
each user story and ensure it is related
to business outcomes.

SAFe

SAFe originated in 2007 as a solution
to the problem of large software
projects. It is a set of practices and
organizational structures that guides
enterprises in scaling lean and Agile.
SAFe is a prescriptive framework
that creates agile teams of Agile
teams. SAFe generally fits well into
established hierarchical structures.
Practitioners sometimes criticize the
framework as “not Agile” because of its
prescriptive nature. But it has gained in
popularity, perhaps because of those

http://www.amazon.com/dp/0201699699
http://web.archive.org/web/20031208002014/http:/xpday3.xpday.org/sessions.php#Retro
http://web.archive.org/web/20031208002014/http:/xpday3.xpday.org/sessions.php#Retro
http://www.amazon.com/dp/0321150783
http://www.amazon.com/dp/0321150783
http://www.amazon.com/dp/0321150783
http://docs.fitnesse.org/FitNesse.UserGuide
https://www.agilealliance.org/glossary/atdd/
https://content.cdntwrk.com/files/aT0xMjUxNDE3JnY9MiZpc3N1ZU5hbWU9MTR0aC1hbm51YWwtc3RhdGUtb2YtYWdpbGUtcmVwb3J0JmNtZD1kJnNpZz0xOGQ5NDI4YTM5MTMzNTI5ODU2MmZhYjI5NDNkNmRjMg%253D%253D
http://agiletester.ca/definition-agile-testing/
http://tech.groups.yahoo.com/group/scrumdevelopment/message/617
https://www.agilealliance.org/glossary/burndown-chart/
http://kanemar.com/2008/02/14/story-time-the-hidden-scrum-meeting/
https://dannorth.net/introducing-bdd/
https://dannorth.net/introducing-bdd/
https://www.agilealliance.org/glossary/bdd/
https://www.agilealliance.org/glossary/bdd/
https://en.wikipedia.org/wiki/Five_whys
https://en.wikipedia.org/wiki/Scaled_agile_framework
https://en.wikipedia.org/wiki/Scaling_of_innovations
https://en.wikipedia.org/wiki/Agile_software_development
https://medium.com/@seandexter1/beware-safe-the-scaled-agile-framework-for-enterprise-an-unholy-incarnation-of-darkness-bf6819f6943f

External Document © 2021 Infosys Limited

Tracking progress ensures
software is delivered on time and
at high quality, tying in with the
first principle of Agile

Three-column task board

That previous task board was
supplanted in 2007 by the three-
column task board, which removed
the “story” and “to verify” columns.
Task boards feature very heavily in
most Agile implementations since
they focus the team on progress and
obstacles during daily meetings. It
is important to have a physical task
board in a physical space as a constant
reminder of team progress. Virtual
boards can be too easily forgotten. The
Kanban board was also introduced in
2007, and closely resembles the three-
column board. The key difference of
the Kanban board is that the team

limits the number of items that are
allowed to be in progress. This keeps
teams on track to release working
code at the end of a sprint by forcing
them to complete a user story before
starting a new one. Respondents
to our survey indicated that they
universally use Kanban boards.

Daily meetings

The idea of daily meetings was
described in 1994 by computer science
researcher James “Cope” Coplien in his
observations of the Borland Quattro
Pro team, wherein he described
the effect of frequent meetings
on the teams process, quality, and
productivity. In 1997, Ken Schwaber,
a software developer and industry
consultant, described the “daily scrum.”
And by 1998, the daily “standup”
meeting was a core practice of
Extreme Programming. In 2004, daily
meetings were generalized as a core

project. It shows the quantity of work
remaining versus the amount of time
remaining, along with an expected
position for any future point. The
drawback to the burndown chart is
that changes in the scope of the sprint
or project are not captured and teams
that are working as expected may look
like they are falling behind.

Burnup

Burnup charts fix the issue of
uncaptured scope changes by
showing the ideal burnup rate relative
to the team’s performance and also the
total scope.

Five-column task board

In 2003, the five-column task board
was formally described by Mike Cohn,
a programmer and one of the founders
of the Scrum Alliance. The columns
include story, to do, in process, to
verify, and done.

http://web.archive.org/web/19970411223403/http:/www.controlchaos.com/scrumday.htm
http://www.mountaingoatsoftware.com/scrum/task-boards

External Document © 2021 Infosys Limited

Agile practice. This practice has not
changed, as daily meetings are a large
part of Agile teams. Sometimes a lack
of effectiveness in carrying out Agile
lies with who is in the daily meetings.
Less than half of our respondents
indicated they work with the relevant
businesspeople on a daily basis.

Kanban

Kanban emerged in 2007 as a way to
manage projects by balancing capacity
and removing workflow bottlenecks.
Kanban’s four principles —
visualization of workflow, limiting the
work in progress, improving workflow,
and continuous improvement by
reducing friction — show its practices
are meant to be an iterative change
process, not just in production but

also in culture. This is important since
cultural change is often one of the
biggest challenges to Agile adoption.

Agile offers a vast number of tools and
practices. However, to be successful,
they must not be shoehorned into
existing processes. Rather, Agile
must work at scale across the
organization, with employees free
to use technologies and techniques
that fit the specific context. To work
holistically, all people, processes, and
technology must work with the Agile
Manifesto, which requires significant
cultural change. Doing Agile well is,
in fact, more about mindset than a
rigorous attunement to its techniques.
The need for a continuously evolving
and learning culture is critical.

Agile is not just about software. In
a post-COVID-19 world, with all the
turbulence buffeting business and
operating models, Agile must extend
beyond technology and make itself
felt in all business functions and across
all industry segments. As we have
underscored in other Agile papers
in this portfolio, the zenith for any
agile organization is one where the
business and operating model is agile
in both name and substance. Such
an organization can react quickly
to environmental shocks, and its
leadership is able to rally the whole
team around new ways of delivering
the bottom line, at scale.

https://kanbanize.com/kanban-resources/getting-started/what-is-kanban

External Document © 2021 Infosys Limited

Author

Isaac LaBauve
Senior Consultant – Infosys Knowledge Institute
isaac.labauve@infosys.com

External Document © 2021 Infosys Limited

About Infosys Knowledge Institute
The Infosys Knowledge Institute helps industry leaders develop a deeper understanding of business and technology trends
through compelling thought leadership. Our researchers and subject matter experts provide a fact base that aids decision
making on critical business and technology issues.
To view our research, visit Infosys Knowledge Institute at infosys.com/IKI

© 2021 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

Stay ConnectedInfosys.com | NYSE : INFY

For more information, contact askus@infosys.com

http://infosys.com/IKI
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
www.infosys.com
mailto:askus%40infosys.com?subject=

