
CASE STUDY

DEVOPS TOOLING FOR
DEVOPS SUCCESS

DevOps is more about people than tools, something we explored
in the first two articles of this six-part case study, outlining one
global bank’s DevOps transformation journey.

But a software development process cannot work effectively
without the right tools. IT giants like Google, Facebook and
Salesforce have invested to establish their DevOps tooling
framework so that they can boost productivity while continuing
to serve their customers at the highest level. In this third article,
we continue on the bank’s transformation journey. We introduce
the DevOps tooling framework that allows development and
operations to work well together so that they can enable process
automation, reduce deployment time and continuously integrate
and deploy software when and where it’s needed.

External Document © 2019 Infosys Limited

Introduction
In the previous articles in this series we
have seen that DevOps is more about
people than tools.

But a software development process
cannot work effectively without the
right tools. These tools enable process
automation, reduce deployment time
and continuously integrate and deploy
software when and where it’s needed.

When all these tools work in concert,
and with the right mindset, DevOps
enables large firms to innovate like a
startup and bring new applications to
market quickly. IT giants like Google,
Facebook and Salesforce have invested
to establish their DevOps tooling
framework so that they can boost
productivity while continuing to serve
their customers at the highest level.1

The second article in this series
introduced the new operating model

that a leading global bank used
to become more agile. Instead of
developers throwing code over the
wall to operations teams, a combined
team of development and operations,
along with testers and other support
functions, worked together on a
product backlog in a series of sprints.

Over a period of 18 months, the deployment
time for new code reduced from two weeks
to two days for several teams. This dramatic
success meant that the bank could overcome
the competition of smaller, tech-driven, agile
financial services disrupters.

In this article, we continue to follow
this global bank’s transformation
journey and introduce the DevOps
tooling framework that allows
development and operations to work
well together.

External Document © 2019 Infosys Limited

When DevOps works effectively, all
code is delivered in a continuous
fashion, with no bottlenecks in the
process.2

Code is frequently checked in so that
an orchestrator (like Jenkins) can build
the solution in a continuous fashion;
code quality is also checked with every
build with an enterprise-wide code
analysis tool like SONAR.

After the quality check, code is
prepared for build before peer reviews
are conducted. The tooling framework
also ensures that testing is performed
early in the process. Once these steps
are complete, code is packaged and
deployed automatically into higher
environments of testing or production.

Figure 1. Agile teams demonstrate continuous integration, validation (testing) and delivery of software in
the DevOps engineering framework

This life cycle isn’t rigid, however,
and can be set up in numerous ways
using a wide range of off-the-shelf
technologies.

How is code integrated, validated and delivered in DevOps?

One such life cycle - from the point of
view of a developer working in an agile
team on distributed systems - is shown
in Figure 2.

IDE

Eclipse, RDz,
RDi

Monitoring
BMC Patrol, Splunk, Geneos

Deployment
In-house tool, CA ALC, ARCAD

Repository
Nexus, Endevor, ARCAD

Test Automation
Tricentis TOSCA, HP UFT

SCM

Git, RTC,
Endevor

Build

Maven, RDz,
RDi

Unit Testing

JUnit, XaTester

Peer Code
Review

SmartBear
Collaborator

Code Quality

SONAR

Deployment
In-house tool, CA

ALC,
ARCAD

End-to-End Story Management (JIRA, RTC)

End-to-End Release Automation

Continuous Integration (Jenkins, CA ALC, ARCAD)

Continuous Feedback

Continuous
Build/

Integration

Unit
Testing

Static Code
Analysis

Continuous
Deployment

to Test
Environment

Operations
and Monitor

Continuous
Deployment

to Production

Packaging
and Achieving Testing

This DevOps framework makes use
of end-to-end story management (in
JIRA), continuous integration (through
technologies such as Jenkins, CA ALC
and ARCAD), continuous feedback and
end-to-end release automation (see
Figure 1).

External Document © 2019 Infosys Limited

DevOps as a practice
Software integration is a process
of merging two or more diverse
software programs so that the data
and functionality flow between them
smoothly. It is intended to make an
existing application better and more
robust.3 Getting that application or
product to market is the next stage
in the process. These two steps are

Figure 2. Off-the-shelf technologies are integrated in the DevOps life cycle of continuous integration,
testing and delivery of code

typically difficult in traditional software
environments, with many milestones
along the way. Software quality must
be manually reviewed before rigorous
checks (quality gates) are carried
out. Additionally, this software must
meet the nonfunctional requirements
of a huge enterprise, including
quality attributes such as testability,
maintainability and scalability.

These checks lead to delays and
sometimes obscure feedback loops
as system experts provide their input.
Additionally, the whole process is
subject to human error.

With DevOps approach, these review
processes are automated. DevOps
tools improve quality, increase speed
and cut costs.

De
ve

lo
p

Assign

Eclipse

Commit

Unit Test

Re
vie

w

Bu
ild

Pa
ck

ag
e Fe
ed

ba
ck

Fe
ed

ba
ck

Re
co

rd

Qu
ali

ty
ch

ec
k

De
pl

oy

Test

Test

SIT
TOSCA

TOSCA
UAT

PRD

FO
SS

ch
ec

k

Vu
ln

er
ab

ili
ty

ch
ec

k

At
 le

as
t o

ne
a d

ay
!

Artefact
Repository

TriggerRe
tri

ev
e

Git

RTC

Development Engineer

1

2

5 6

10

11

3

4 7 8 9

IQ ServerIQ S

15 16

13

14

In-House
tool

12 13

External Document © 2019 Infosys Limited

In the DevOps transformation, five principles were followed so that software integration, testing and delivery would be able to
support more and more processes as the IT landscape grew in size.

1. No manual
deployments

Before the transformation, if a bug or other quick fix was needed, project teams deployed their
changes into the production environment manually. In the new way of working, continuous
deployment and delivery tools like CA ALC and ARCAD (for i-series systems) are combined in
the software pipeline. This ensures that no manual deployments are allowed, reducing the risk
of human error. Access privileges are reviewed and revoked for most teams to ensure that the
system is completely foolproof.

2. Reduce technical
debt

High levels of technical debt are an unwelcome reality at large enterprises. The cost of
performing additional work in the future increases as teams struggle to deliver code and resort
to ad hoc improvements in code quality and testing.

As the bank’s transformation progressed, many issues were found in the technology estate.
These issues were addressed, and a process was set up to ensure no new software issues were
released into the estate.

To aid this process, DevOps tools like SONAR (code quality) and JUnit (unit testing) created
reports that were submitted to a change advisory board. Change approvals were then tied to a
reduction in technical debt for each application.

3. Minimum
operating
standards

A data-driven, minimum operating standard (MOS) was determined for each software release
before it was deployed into production. For example, the number of issues identified by a code
quality tool like SONAR or the number of build failures uncovered by Nexus was compared with
the MOS. If they were inferior in any way, the code was not deployed. This method allowed agile
teams to maintain a consistent level of quality before release to the end customer.

4. Manage by fact The bank initially had few measures to score project teams, and performance evaluation
was qualitative. MOS and technical debt measures introduced objective evaluation of team
performance. Talent management and rewards and recognition were then tied to these KPIs.

DevOps also enabled other sources of data to evaluate teams, including adhering to best
practices (frequent check-ins), adopting DevOps principles (expanding unit test coverage for
legacy code) and demonstrating continuous improvement (enhancing the pipeline through
continuous automation).

5. Eliminate
vulnerabilities

Manual reviews were the norm before the transformation, and a security expert reviewed
nonfunctional requirements such as resilience and security.

Adoption of tools like IBM AppScan (to check for security vulnerabilities) and Sonatype Nexus
IQ Server (to check for free and open source software usage) eliminated these manual reviews.
These tools were integrated in the continuous integration (CI) pipeline, improving delivery pace
and ensuring code quality. As a further gate to ensure code wasn’t at risk from attack, the whole
technology estate was scanned for new vulnerabilities by modifying a central configuration in
the cloud.

External Document © 2019 Infosys Limited

References
1 https://www.cognixia.com/blog/impact-devops-bottom-line
2 DevOps: The IBM approach — White Paper
3 https://www.pcmag.com/encyclopedia/term/65245/software-integration

A test automation team was set up to
reduce as much of the testing effort
as possible using a minimum set of
automated scripts.

With DevOps, automated testing
tools are capable of executing tests,
reporting outcomes and comparing
results with earlier test runs. Tests
can be run at any time of day, and
repeatedly, so all the software
infrastructure is engaged in the
process.

Test cycles run at a fast pace, avoid human
error and prevent phantom defects.

The reusable nature of DevOps ensures
scripts are used over and over again
across applications.

Delays associated with manual
handoffs were reduced as a result of
this accelerated software engineering
life cycle.

Prominent tools like HP UFT, Selenium
and TOSCA were selected to operate
within the continuous testing
platform. TOSCA had the advantage
of automating tests across all layers
of the application — including
the application programming
interface (API), web, mobile, business
intelligence and data warehouse stack.

TOSCA also integrates well with
existing scripts (automated through
other tools like Selenium or HP
UFT), is easily configurable within
the DevOps CI and CD pipeline, and
provides a central repository where
all scripts can be stored — avoiding
rework.

TOSCA was a huge success: The team
achieved near 100% automation of
regression test suites, with a 70% reduction in
regression testing effort.

TOSCA for test automation
This is a short introduction to the
DevOps engineering framework
implemented, the strategy used, and
why success was achieved early on in
the global bank’s transformation.

The next article (Article 4) describes
how operations comes into the picture.
Successful operations within the
DevOps methodology ensure that all
individuals within the agile team have
a seat at the table. With operations
working closely with developers,
code is successfully deployed with
fewer service issues. This leads to the
increased deployment frequency and
bug-free code discussed in earlier
articles, with faster time to market for
applications.

With DevOps tooling in place,
improved customer experience awaits.

External Document © 2019 Infosys LimitedExternal Document © 2019 Infosys Limited

About Infosys Knowledge Institute
The Infosys Knowledge Institute helps industry leaders develop a deeper understanding of business and technology trends
through compelling thought leadership. Our researchers and subject matter experts provide a fact base that aids decision
making on critical business and technology issues.
To view our research, visit Infosys Knowledge Institute at infosys.com/IKI

© 2019 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

Stay ConnectedInfosys.com | NYSE : INFY

For more information, contact askus@infosys.com

Authors

Alok Uniyal
Vice President and Head of IT Process Consulting
alok_uniyal@infosys.com

Harry Keir Hughes
Senior Consultant - Infosys Knowledge Institute
harrykeir.hughes@infosys.com

http://infosys.com/IKI
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
http://www.slideshare.net/infosys
http://www.slideshare.net/infosys
www.infosys.com

