
1

Should performance be an integral
part of the SDLC?

By Vaidyanatha Siva and Sridhar Sharma

Poorly performing IT apps are bleeding
corporations~$60B/year. What can

we do about it?

INTRODUCTION
Diagnosing, fine tuning and fixing poorly
performing IT applications is both a
science as well as an art. A detailed and
dispassionate analysis of our experiences
lead us to postulate that there are two
underlying principles that project teams
would be well advised to follow to build
software that “performs”.
v
UNDERLYING PRINCIPLES FOR
PERFORMANCE
We hold the following positions with regard to
delivering applications that “perform” -

 We posit that performance is a mindset,
just like quality is, and that we need to
ensure it in every stage of the SDLC,
in fact right from the time we make a
proposal for a given project. Performance
awareness, planning and execution
should be baked into each of the phases
in the SDLC

 We also believe that technology should
be used as an enabler and enforcer to
ensure performance.

We will use the above two principles as the
leitmotif for the rest of this paper by walking
through the life-cycle of a typical software project
engagement, right from the pursuit stage.

THE PROPOSAL PHASE: PLANNING FOR
PERFORMANCE
 “The creation of genuinely new software has far
more in common with developing a new theory
of physics than it does with producing cars or
watches on an assembly line.”

– Bollinger [1]
The success or failure of any software project
rests heavily on the estimation methodology
followed for that project. Any exercise to
“accurately” estimate the cost and effort required
to deliver a quality software product is only
as good as our interpretation of the program
size and the implementation complexity. What

SETLabs Briefings
VOL 4 NO 2
Oct - Dec 2006

2

makes this exercise more challenging are certain
subjective and seemingly random factors - like
the capability and productivity of the team,
developer turnover, development schedules and
social calendars etc.
 There is enormous pressure on
IT service providers to codify the software
engineering process and deliver custom software
as a packaged service. Several estimation models
and methodologies have evolved over the last
few years to cater to this need, and software
organizations are increasingly relying on these
models to quickly arrive at the cost-schedule
matrix. Most, if not all, of these models rely
heavily on past empirical data and attempt to
derive numbers based on past experience on
similar engagements within the organization.
Such is the case with performance estimation
too.
 While these estimation models are,
without doubt, quite mature and reasonably
accurate, there are quite a few factors that tend
to impair their effectiveness.

 Rapid emergence of new/parallel
technologies and frameworks coupled
with obsolescence of the old
 This rapid rate of obsolescence of

technology makes it inherently
unreliable to use past empirical
data (built on older technologies)
for estimating new projects (using
new technologies). For instance,
we cannot apply the metrics of a
J2EE project executed a year ago to
a new project that mandates the use
of transactional or UI frameworks
that are just released as part of the
normal JCP process. As the market
for distributed component-based
technologies matures (examples are

J2EE and .NET), new releases have
significant performance fixes built in.
These are easily offset by the increased
complexity of applications (e.g., new
demands placed on collaboration
and SOA) and enhanced end-user
performance expectations required
by seemingly insatiable business
needs (to enable business at the speed
of thought).

 Emergence of “pure-play” project
manager positions without sufficient
emphasis on current technology
exposure
 It is imperative that the estimation

exercise be conducted, or at least be
validated by someone who has hands-
on technology exposure, is in touch
with the latest technology trends and
can visualize and assess the program
implementation complexity based
on personal experience. In short,
someone who has “been there” and
“done that” and has the wisdom
built on the bedrock of personal
experience.

Good estimation requires experience and
judgment. We should continue to value human
experience, intuition and wisdom over and
above what our “processes” define.
 We also emphasize on the importance
of using the elaboration phase of the SDLC to
tackle potential performance issues and to nip
those in the bud.

THE ARCHITECTURE DEFINITION PHASE:
ARCHITECTURE CONSIDERATIONS
You’ve won the engagement – congratulations!
Now, how do you plan for performance and

3

ensure that you do not get caught in the classic
performance trap? Get the right people with the
right skills at the right time!
 This is the time to revisit the performance
SLA and ensure that

 They are objective and have the right
level of detail

 They are feasible and valid – e.g., a
requirement that states that each web
page should load within 5 seconds is
impractical – different pages will load
in different times and the load time is
dependent on multiple considerations –
such as the work each screen does, behind
the scenes, the amount of payload each
screen has to render, any multithreaded
considerations such as locking, etc.

 They are indeed achievable, given the
composition of the technology stack
– hardware, system software, application
software, and network.

Most lead software engineers, project managers
or beginner architects either do not realize the
impact of each of the possible performance
considerations or if they do, are overwhelmed by
the seemingly vast and diverse nature of agents
that impact performance.
 You need the experience of someone
who – (a) has the theoretical background
and framework (e.g., TOGAF, ATAM) to
comprehend and analyze all the issues that can
significantly impact performance, and (b) the
practical experience and insight to take the right
decisions and navigate through the performance
maze.
 The architect should also be “au
courant” with technology and be in a position
to make recommendations based on newer
technology – e.g., if a client is on Weblogic

8.1 and Oracle 8i and the current technology
stack cannot conform to the performance SLA
required, the architect should be able to articulate
the magnitude of performance improvements
possible by an upgrade to a later version of
Weblogic and Oracle.
 An important but often overlooked
aspect is the distinction between “latency” and
“throughput.” Latency is the time taken for
the performance of a user transaction while
throughput is the total amount of work done
over a period of time.
 A good architect is able to take a
judgmental call on both latency and throughput
of applications during the architecture definition
phase. The architect uses the workload model and
target hardware platform to define performance
capabilities.
 Assuming an unconstrained (by
processing, memory or I/O) system the architect
is able to define performance bounds (for
latency and throughput) and apply sufficient
“damping factors,” based on environment
factors (hardware, network, contention on
shared resources, pipelining of operations, etc.)
to arrive at feasible performance numbers that
need to be met. This is the input for the design
team. For example – for a screen that is expected
to take 20 seconds in production, the architect
may define that it has to complete in 12 seconds
in a single user, unconstrained mode (without
CPU, memory or I/O bottlenecks) to be able to
achieve the performance SLA.

THE CONSTRUCTION PHASE: CRYSTAL
BALL – PREDICTING PERFORMANCE
“If you have to forecast, forecast often.”
- Edgar R. Fielder (Assistant Secretary for
Economic Policy, U.S.A)
 We are able to define certain (predictive)
attributes and goals for a project even before the

4

first line of code is written. For instance, project
managers are asked to ‘predict’ the number of
delivered defects, number of defects that will
slip through to the end users, effort required to
fix them etc. Many of these predictive attributes
are derived from analyzing empirical data of
past projects.
 Unfortunately, qualitative performance
attributes have never been easy to predict.
Unlike standard program features, which
can be tested using a comprehensive set of
test cases or automated tools, the huge ∆
between the development and production
environments (hardware differences,
configuration of our software, the app-server
stack, the database, underlying network
etc.) makes it very difficult to predict the
behavior of the software product on the
target environment.
 This is where we recommend taking
from where the architect left off and designing
for performance.
 Let us take the above example where
the architect predicted that to meet the feasible
production performance SLA of 20 seconds the
single-user performance should be 12 seconds
in the development environment. The tech
lead splits the transaction into various logical
constituents, based on the computation and
data involved. For example, the 12 seconds
might be spread into 1 second for UI, 4 seconds
for application layer processing, 5 seconds
for database access and 2 seconds for display
rendering. The lead then consciously designs the
application to meet these criteria and has these
metrics to :

 Test for performance for each tier, often
and

 Refactor for performance, as necessary, in
the design phase.

The magic crystal ball for predicting and assuring
quality performance revolves around adhering
to some very basic principles:

 Automate enforcement using plug-ins
wherever possible – for e.g.,
• PMD for static code analysis
• VTune Performance analyzer.

 Mandatory use of Profiling tools–for e.g.,
• TPTP framework for Eclipse
• Radien profiler.

 Usage of tried, tested and optimized
frameworks and common components
• Radien
• SPEED .NET

  Repeated validation – once a module,
however small, is complete, it should
be packaged, deployed and tested for
performance on the target environment
(either a production mirror, or any
environment that comes closest to the
target deployment platform). Such
repeat tests provide us with a fairly
good indicator of the difference in
performance between the development
and target environments. Once we have
tested the smaller pieces, it is possible
for us to predict the performance of the
larger pieces based on empirical data
from the smaller modules. While these
plug-ins and tools serve to remove a lot
of the drudgery involved in reviewing
code and ensuring that they adhere to
an ever increasing number of standards
and guidelines, they are no substitute
for human code reviews and walk
through. The expectation from human
code reviews is to catch things that the
plug-ins cannot – for e.g., usage of sub-
optimal sort routines, using improper
data structures etc.

5

QUANTIFYING PERFORMANCE RESULTS:
PERFORMANCE REFERENCE VALUES
(PRV)
Every software release is accompanied by a
rigorous testing phase to not only validate new
functionality, but also to ensure that existing
routines are regressed properly. But what about
degradation in performance because of changes
in the code? It is very important for projects
to invest sufficient time and effort in putting
together a (re)usable framework to quantitatively
measure application performance as often as
possible, and make it a mandatory part of the
release notes that accompanies every software
release. This is where the performance reference
value framework is applied.
 Deriving the performance reference
framework for an application involves:

 Defining the load model : The load model
documents the “day-in-the-life-of” kind
of scenario from the System perspective.
How many transactions, how often, how
much think-time between transactions,
number of users, ramp-up and ramp-
down times etc.

 Automation: Automated load testing
tools like Mercury Load Runner® are
used to mimic the load model and
generate sufficient system load. In order
to make such load tests repeatable and
self-sufficient, it is essential that required
test data be set up automatically by the
test framework itself for every iteration

 Define a template that captures the
transaction timings from load tests and
compares these against the expected SLA
values. Roll-up the timings across all
transactions and we arrive at the overall
system performance metric

 In general, it is a good idea to deploy

probes to monitor the performance
parameters of the underlying operating
system stack - CPU, disk IO, paging,
memory profile and network traffic for
the duration of the performance test to
assist in diagnosis.

Figure 1 shows the PRV Summary sheet for
an assortment planning application for a
large apparel retailer in the U.S. Every release
to production is load tested and the PRV is
validated for conformance.
 The benefits of having a PRV framework
go beyond just absolute application performance.
The PRV is a statement that tells the business
users how long it takes them to complete a given
business process. If the expected PRV stands
at 11 hours and the actual application PRV is 7
hours, it directly translates to a 4 hour gain to
the business process. This can be positioned as
a tremendous value-add to the business process
from an IT standpoint.

CONCLUSION
Our experiences in addressing performance
issues in projects converge to a few basic tenets:

 Performance is a mindset, just like quality
and should be an integral part of each
phase the SDLC
• Architecture definition phase

– distinguish between “latency”
and “throughput,” define feasible
SLAs for both; translate these into
“unconstrained” limits for the design
team

• Design phase – Using the
performance limits provided by the
architect, split the module of work
into constituent tiers (separation of
concerns) and estimate for each tier,

6

based on quantum of work; adhere
to those limits (in initial design and
refactoring)

• Construction phase – test for
performance often; use tools to
automate the tests and analyze
results

 Use of frameworks, plug-ins, tools
and profilers to repeatedly measure
performance

 Define a repeatable (automated) test
framework, define and derive the
Performance Reference Value (PRV)
framework for every project.

Figure 1: PRV Summary view Source: Infosys Experience

Subclases:

Primary store set:

Users:

of items & colors:

of items:

of Colors:

Type of plan for tests is:

General requirements based on: Prod Test

200

60

20

fashion/basic

3

Yes

Climate

100

60

20

3

Yes

Climate

Test number:

Build number tested:

Standalone or combined:

Results type:

Date of test:

377

381

Standalone

80 percent

2/7/2006

Performance Results
last updated: 03/07/2006 09:13:29pm Expected performance

reference value
(hours) 11:90

Actual performance
refernce value (hours)

7.38

11.90 7.38

Extended requirement
time (frequency X

requirement) (minutes)

Extended response
time (frequency X

performance) (minutes)
Variance

Create plan subtotal

Create mock/actual items subtotal

Define calc parms subtotal

Create assortment plan subtotal

RPA4 flag subtotal

1.40

8.50

54.92

19.90

18.83

1.78

1.63

26.31

3.67

10.57

(0.38)

-

-

-

-

Test information:

7

REFERENCES
1. T. Bollinger, “The Interplay of Art and

Science in Software,” IEEE Computer,
Oct. 1997, pp. 128, 125-126.

2. J P Lewis, “Limits to software estimation”,
ACM Software Engineering Notes,
Jul 2001

3. http://www.eclipseplugincentral.com/,

http://www.eclipse-plugins.info/,
http://msdn.microsoft.com/vstudio/
teamsystem/default.aspx

4. Steve McConnell, “Code Complete”,
Microsoft Press, 2nd Edition, 2004 .

5. Joshua Bloch, “Effective Java
Programming Language Guide”, Addison
Wesley Professional, 1st Edition, 2001

For information on obtaining additional copies, reprinting or translating articles, and all other correspondence,

please contact:

Telephone : 91-80-41173878

Email: SetlabsBriefings@infosys.com

© SETLabs 2006, Infosys Technologies Limited.

Infosys acknowledges the proprietary rights of the trademarks and product names of the other

companies mentioned in this issue of SETLabs Briefings. The information provided in this document

is intended for the sole use of the recipient and for educational purposes only. Infosys makes no

express or implied warranties relating to the information contained in this document or to any

derived results obtained by the recipient from the use of the information in the document. Infosys

further does not guarantee the sequence, timeliness, accuracy or completeness of the information and

will not be liable in any way to the recipient for any delays, inaccuracies, errors in, or omissions of,

any of the information or in the transmission thereof, or for any damages arising there from. Opinions

and forecasts constitute our judgment at the time of release and are subject to change without notice.

This document does not contain information provided to us in confidence by our clients.

Authors in this issue

SRIDHAR SHARMA
Sridhar Sharma is a Senior Technical Architect in the Retail, CPG and Distribution business unit, Infosys. He
can be contacted at sridhar_sharma@infosys.com.

VAIDYANATHA SIVA
Vaidyanatha Siva is a Principal Architect and Head of CPG Technology Consulting the Retail, CPG and
Distribution business unit,Infosys. His interests are in distributed component systems and architecting mission-
critical enterprise-class applications. He can be contacted at siva_vaidyanatha@infosys.com

