
VIEWPOINT

EXPLAINABLE AI: 
A PRACTICAL PERSPECTIVE

AI is moving beyond its infancy to a boisterous adolescence. But beyond 
the buzzwords and hype, there is a darker emerging concern about how 
these decisions are made and the implications of relying upon them. This 
paper looks at the practical realities of explainable AI, in terms business 
leaders can adopt today.
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Introduction
Not so long ago, enterprise 
leadership relied solely on 
experience and personal judgment 
in making critical business 
decisions. Once automated 
reasoning systems were introduced 
to support decision-making, these 
systems relied on rules handcrafted 
by those leaders. This made both 
interpreting and modifying their 
behavior easy tasks. The problem: 
The systems were not scalable.

Machine learning models arrived 
to address the need to make 
modifications. They did not require 
humans to spell out the rules, and 
instead could train from data — the 
more, the better. Yet these models 
were not as easy to interpret 
or modify as their rules-based 
predecessors. Finally, sometime 
around 2009, deep learning 
models arrived on the commercial 
scene, bringing greatly advanced 
modeling capabilities — at the cost 
of even greater loss of clarity and 
flexibility.
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reasoning implicitly used by the neural 
network to reach its conclusions. 
Despite early attempts to extract rules 
from neural networks2, networks have 
become too large (commonly millions 
of nodes) and diverse for today’s users 
to pursue tractable rule extraction. The 
term “black box” comes from this lack 
of visibility into the internal workings 
of such systems.

The black-box nature of neural 
networks hindered their adoption 
throughout the 1990s. Only when they 
started outperforming conventional 
classification and regression models 
by wide margins, around 2006, were 
they adopted by industry. Even today, 
a neural network model that merely 
matches its conventional counterpart 
(or even outperforms it by only a 
narrow margin) is unlikely to be 
deployed.

Notions of explainability

Although general consensus has 
industry seeking a broad context 
in understanding how an AI model 
comes to its conclusions, there are 
different flavors of explainability, 
and specific terms have come 
to be associated with particular 
interpretations. Some of the most 
prominent nuances are as follows:

• Intelligibility: An understanding 
of the working of the AI system, in 
terms that humans can interpret.

• Explainability: The kind of 
information available at the man-
machine interface that enables 
informed use of an AI system’s 
outputs.

• Transparency: Complete 
interpretability of AI model 
internals.

• Confidence: The measure of 
certainty that the model associates 
with any given decision. Generally, 

uncertainty comes in two versions: 
epistemic, where the uncertainty 
stems from the inherent variability 
of data, and aleatory, where it 
originates from the system’s 
inability to use prior learning for 
the input data — in other words, 
because the system does not know.

For our purposes here, explainability 
and confidence are the prime 
objectives for our explainable AI 
models.

Why Explanations Are 
Essential
AI models have a whole range of 
stakeholders, from model designers 
to decision-makers to society as a 
whole — after all, who isn’t affected 
by those decisions? Programs for 
explainable AI system development 
have been launched worldwide with 
these various constituencies in mind. 
One of the most notable is the DARPA 
Explainable Artificial Intelligence 
program3. As of 2019, several 
nations belonging to the European 
Commission are setting up rules for 
trustworthiness of AI systems4. To date, 
these rules are nonbinding, but there 
is a distinct possibility that such rules 
might be legally enforced in the 
near future. To ensure compliance 
with criteria imposed by regulators, 
AI solution providers must monitor 
requirements regarding explainability 
and trustworthiness as such 
requirements materialize.

AI model designers have to 
understand its scope of operation, 
underlying issues and foresee 
areas of malfunction

*Inputting text requires that every word be converted into vector form through a process called word embedding.

Today, artificial intelligence based on 
deep learning permeates every field 
of activity, touching and shaping our 
everyday lives — so much so that 
the current era is often referred to as 
the Age of AI. In 2017, a PWC survey 
estimated the potential contribution 
of AI to the global economy to be 
valued at around $15.7 trillion by 
20301. Although unsurpassed in their 
modeling capacity and scope of 
applicability, deep learning models 
are mysterious “black boxes,” for the 
most part, which raises disturbing 
questions regarding their veracity, 
trustworthiness and biases, particularly 
in the context of their widespread use.

There is an urgent need to introduce 
interpretability into the very fabric 
of AI modeling. Although the topics 
surrounding this need are related to 
a broader subject — the ethics of 
AI — the focus here is specifically on 
that of explainability. The following 
is an overview of what’s known as 
explainable AI, including the driving 
needs, approaches and technologies 
involved, as well as the approach 
we are adopting for our customer 
solutions.

Why black-box models result 
from deep learning

Deep learning (formerly known as 
neural networks) originates from the 
connectionist approach to AI, where 
models comprise layers of nodes that 
use inner products and nonlinear 
functions to perform basic operations. 
Inside a neural network, there are no 
separate or discernible logical entities 
but rather an indistinguishable mass 
of numerical values. Users feed inputs 
into the neural network in the form 
of vectors, or numbers derived from 
original data sources and listed in fixed 
sizes*; the outputs, too, are vectors. 
So there is no direct way to trace the 
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Explanations for system 
designers

their relevance is critical. One decent 
illustration is the parable5 of military 
AI software that was supposed to 
be programmed to recognize a 
camouflaged tank from photographs. 
Instead, the final version of the 
software came back with information 
about whether the photograph was 
taken on a sunny day or a cloudy one. 
Tracing contributing factors for older 
logic-driven AI systems was simpler, 
but with recent AI based on deep 
learning, the black-box nature of the 
model does not provide any direct way 
to trace decisions back through the 
process.

Another aspect of explainability many 
decision-makers are interested in 
is the impact of changing certain 
input factors for any given situation. 
This is particularly relevant where 
the decision-maker must not only 
understand the outcome under the 
current scenario but also consider the 
scope of intervention. What is the use 
of predicting whether a customer will 
churn if your business has no insight 
into how to avert the situation?

Moving into another area of 
explainability, the question of 
confidence in the output of the 
AI system is often fundamental 
to decision-makers. AI systems 
interpolate solutions based on data 
presented to them during training 

and thus might fail miserably when 
operating on unfamiliar kinds of data 
inputs. A neural network that has been 
trained only to distinguish between 
dogs and cats will try to pin these 
labels when presented with images 
of humans and chairs. In such cases, it 
would be convenient for the model to 
say “I don’t know” rather than provide a 
“solution” based on one of the known 
alternatives. An ideal AI model would 
include certainty score or degree 
of confidence associated with each 
output, from both the epistemic and 
aleatory uncertainty perspectives. 

Explanations for end users

For designers of AI models, 
understanding the models’ scope of 
operation, underlying issues and ways 
they might malfunction is crucial. AI 
systems must at no point flout the 
domain principles of the problem at 
hand or any other hard constraints 
imposed by the context, including 
safety and security. For AI incorporated 
into autonomous vehicles, for 
example, the impact of such 
malfunction directly translates into 
road accidents. Likewise, criminals can 
use imperfections in face recognition 
technologies to fool identification 
systems, resulting in confusion 
among law enforcement agencies 
and harassment of ordinary people. 
The list goes on and on, so before 
such technology can be deployed, 
system designers simply need to 
identify what AI systems internalize. In 
addition to exhaustive system testing, 
explanations are essential.

Explanations for decision-
makers

In the corporate world, the impact of 
decisions prompted by an AI system 
can be far-reaching. Unearthing the 
factors that might have contributed 
to the decision and determining 

System Designers 
Understand model’s 
information organization, 
boundaries and flaws

Decision Makers 
Understand relevant factors, 
impact of interventions and 
uncertainties

Direct End-Users 
Trustworthiness, fairness 
and impartiality

In the majority of cases where an 
AI-based solution directly interacts 
with end users, explanations focus 
on trustworthiness, fairness and 
impartiality. The first of these 
shares aspects with explanations for 
decision-makers. Users of an AI-based 
health coach, for example, want 
to know which factors the model 
takes into account and the degree 
of confidence the model has in 
prescribing the solution, because their 
personal health is at stake. Trust is an 
extremely subjective notion, however, 
and many users demand complete 
transparency before they place their 
faith in an AI system. We aren’t there 
yet, unfortunately; such transparency 
is unachievable in the short term. But 
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exhaustive and transparent testing 
is certainly a viable alternative, and 
business consulting and IT services 
operationally adopt this stance with 
reasonable success.

It is essential for AI 
implementations to be fair, 
trustworthy and impartial

 
Fairness is an aspect closely tied to 
trustworthiness and has more to do 
with whether the AI system has been 
designed with the user’s interests 
in mind than the transparency of 
the technology itself. An AI-based 
evaluation of personal loans, for 
instance, might contemplate the 
profitability of the lender rather 
than the creditworthiness of the 
applicant. What’s more, explanations 
and responses provided to this end 
might be, by design, falsified by the AI 
system6.

The requirement of fairness has 
become central to AI implementations. 
The objective study of fairness 
involves translating our subjective 
notions into statistical measures 
that can be applied to datasets on 
which AI models are trained7. These 
measures can then be used to evaluate 
datasets for fairness8, following which 
resampling and calibration methods 
can be employed as corrective 
measures9.

Some part of fairness is tied to the 
notion of impartiality, and for AI 
systems to be impartial requires that 
biases10 be removed from the datasets 
used to train them. Thus, the focus 
here turns to the data rather than 
the AI models at hand. The past few 
years have seen big strides in the 
formalization of bias identification and 
the removal of partiality from data. 
These days, various methods and tools 
systematically analyze datasets for bias 
— and employ corrective measures 
wherever required.

Why do these AI solutions aim 
for explainability and confidence 
assessment, rather than for complete 
transparency of AI models? Looking 
at the brisk pace of technology 
advancement, the unsolved problem 
of transparency might not persist 
for long. But what if complete 
transparency for AI solutions were 
not desirable after all? Protecting the 
intellectual property associated with 
such a solution will be difficult, if not 
impossible. Even more important, 
transparency will open up AI-based 
applications to endless sequences 
of adversarial attacks11, eventually 
nullifying the benefits of this 
technology.

General Methods for 
Explainability
Broadly speaking, there are two 
primary categories of technological 
methods that can address 
explainability in machine learning 

A Practical Approach to 
Explainable AI
As business and IT organizations 
devise AI solutions, the general 
principle should be to keep “humans 
in the loop” at their core. This ensures 
responsibility for decisions lies with a 
human decision-maker, but also bakes 
in scope for scrutiny of the AI system’s 
recommendations.

From our work with clients and 
at our own company Infosys, we 
recommend formal requirements for 
AI explainability — in plain language. 
The following table summarizes the 
primary explainability requirements 
for AI solutions at Infosys, as well as the 
approaches the company has adopted 
to realize them:

Effective AI solutions keep 
humans at the forefront of 
decision-making

AI explainability requirement
Approach to address the 
requirement

Explainability for model developers
Visualization of model internals and 
testing that verifies operation at the 
model boundary and beyond

Grounds for automated decision

Computation of the relative 
importance of factors, often 
portrayed through vertical charts or 
highlighting of factors in the source 
stream

Impact of modifying input factors
Combination of sensitivity analysis 
and forward model operation

Confidence associated with 
decisions

Computation of uncertainty 
associated with a given decision

Fairness and impartiality
Analysis and modification of the 
dataset used for model training 
using tools for bias evaluation
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models. Which method to use 
depends on the nature of the model. 
The first category applies to the so-
called transparent models — linear 
regression, logistic regression, decision 
trees, random forests,* etc. — where 
the model’s structure allows for ease of 
computing the relative importance of 
various factors, as well as uncertainty 
both at the model level and for 
individual pieces of data.

With black-box machine learning 
models, post hoc explainability 
is primary. In other words, the 
explanations are derived from 
the nature and properties of the 
outputs generated by the model. 
One significant explainability 
mechanism in this category is LIME 
(Local Interpretable Model-Agnostic 
Explanations)12, which explains by 
building locally linear models around 
the predictions of an opaque model 
and can be used generically across 
model types. Another is SHAP 
(SHapley Additive exPlanations)13, 
which reveals the relative contribution 
of input factors by using a mechanism 
of additive feature attributions. It 
employs reward-sharing among 
cooperative participants — a 
familiar game theory approach — to 
incorporate inputs from multiple 
explanatory mechanisms.

Explainability of Deep 
Learning Models
Deep learning models can 
implement several methodologies 
to compute feature relevance, each 
with its respective advantages and 
disadvantages in terms of applicability, 
accuracy and computational 
requirements. None has yet emerged 
as the clear winner, but the top-shelf 
alternatives are as follows:

• DeepLIFT14, an approach for 
computing importance scores in 
a multilayer neural network, by 

comparing activation of neurons to 
reference activations

• Layer-wise Relevance 
Propagation15, a technique 
that relies on a Taylor series 
approximation close to the 
prediction point for local sensitivity 
modeling as well as relevance back-
propagation

• Integrated Gradients16, a 
technique that uses axioms on 
sensitivity and implementation 
invariance to derive a robust 
mechanism for feature relevance 
computation

• RETAIN17, which interprets 
specially designed recursive 
neural networks used to model 
sequences of multifactor events, 
based on computing an “attention” 
component at both a step level and 
a factor level

The problem of computing feature 
relevance, however, is far from being 
resolved. The area is rife with activity: 
older techniques are patched to 
compensate for their shortcomings, 
and newer techniques are researched 
and reported every so often. Most 
cloud-based AI toolkits have begun to 
bundle one or more of the algorithms 

described above as an integral part of 
their offerings.

Similarly, deep learning models offer 
a host of techniques for assessing 
uncertainty associated with 
computed output, with Bayesian 
model-building as the common 
underlying thread. In Bayesian 
modeling, every model parameter is 
treated as a random variable with a 
probability distribution. This allows 
programmers to estimate the variances 
among the model’s output values 
and use these as a direct measure 
of uncertainty. Bayesian model 
training requires more parameters 
and programming modifications, as 
well as higher training complexity, 
so current techniques attempt 
indirect mechanisms to achieve the 
same end18.

Incorporating Explainable 
AI Into Solutions 
Despite the common perceptions in 
the media, AI solutions do not stand 
apart as a distinctive technology 
offering. Rather, the majority fall on 
the continuum of data science driven 
by big data, which is dominated 

*Actually, large random forests are gray in a real sense, requiring specialized techniques for explainability.

Classi�er
Output

Explanations
Certainty
89%

Model Con�dence
90%

Domain: Servers

Issue: Logging-in

Priority: High

Hi,
I have been unable to 
work on the SN3152 
server since last night. 
While logging on, I �nd 
that the password �eld 
is not allowing entries. 
Please address the issue 
immediately as this is 
vital to my current 
deliveries.

Hi,
I have been unable to 
work on the SN3152 
server since last night. 
While logging on, I �nd 
that the password �eld
is not allowing entries. 
Please address the issue 
immediately as this is 
vital to my current 
deliveries.
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by models for regression and 
classification. A traditional, transparent 
data science model based on 
structured data as a solution typically 
provides a target response as well as 
the following:

• A global assessment of feature 
importance for the overall model

• A local assessment of feature 
importance for the particular 
classification/regression instance

• An assessment on uncertainty 
derived from the output score

AI allows us to use unstructured data 
inputs in the form of text, images, 
video and so forth, whereas deep 

learning models provide inputs 
for decision support based on, for 
example, classification of reports on 
issues with a company’s particular 
product. The AI model offers, in the 
above context, the following benefits 
to a human agent:

• The recommendation based on its 
classification of the problem/report

• A certainty measure that reflects the 
system’s confidence in the particular 
classification

• Color-coded highlighting of words 
in the report that reflect textual 
evidence for various solution 
alternatives

Conclusion 
This article charts the general 
landscape of explainable AI and 
reveals the direction and scope of 
explainability that Infosys incorporates 
into our AI solutions. In our opinion, 
the focus belongs specifically on 
an assessment of explainability 
and confidence. These aspects of 
explainability are certain to be 
retained as a necessary part of 
every AI solution that business IT 
consultants provide to customers, 
becoming more refined as the 
technology advances.
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