
DATABASE RESILIENCE AND
SCALABILITY – A BY DESIGN
PERSPECTIVE FOR FINANCIAL SERVICES

WHITE PAPER

Abstract
The pandemic has taught us the importance of being resilient. During pandemic we
all realized the importance of resilient Financial Systems as they are the backbone of
the economy and can’t afford downtimes. Recently US Federal Banking Regulators1
and the Financial Conduct Authority2 in the UK has come up with the operational
resiliency requirements which mandates Financial System’s compliance. Over the
years financial institutes are using databases as a mechanism to persist the data. But
due to new regulatory requirements it is necessary to think beyond persistence and
to make the databases resilient to improve resiliency of the financial systems.

External Document © 2021 Infosys Limited

Introduction
Data is the heart of financial systems
and helps businesses to take informed
decisions. Data is also helpful to feed in
financial echo systems like peer banks,
merchants, government departments,
regulatory systems. Data is consumed
as reports, dashboards, by downstream
systems such as anti-money laundering,
risk calculation engines, threat monitoring

systems, financial budgeting systems, to
list a few.

Digitization of Financial Systems is driving
the need to get real time insights from
the data. The insight could be related
to customer behavior, cross selling
opportunities, identifying malicious
transactions and more. Digitization is
helping financial institutes to go beyond
their organization boundaries to tap data

from various channels like social media,
personal messaging platforms etc., leaving
us with an enormous amount of data for
consumption. It is important to act on the
data as and when it is available. Failure
to access data or respond faster can put
businesses at a huge risk to be continuing
business as usual, leading to financial
losses, customer attrition and even
regulatory penalties.

Data Management current
scenario and challenges
Currently, data is mostly stored into relational
databases which makes databases an integral
part of architecture design. Relational
databases are used for storing structured
data. When it comes to unstructured or
semi structured data, NoSQL databases are
preferred choices. Databases are primarily
used to persist and query data.

Databases are major contributors to
resiliency and scalability issues. Below
are some of the issues encountered with
respect to the databases,

• User Screens taking unusually higher
time to retrieve data

• Data retrieval time is not consistent and
varies drastically

• During peak workload user transactions
ends abruptly throwing errors

• Applications faces issues due to
technical glitches like database failover

• Higher resource utilizations like CPU
and Memory impacting application
availability during peak workloads

Most of these scenarios has impact on
the user experience. Sometimes the users
lose the data they entered and need to

reenter the data again resulting in anxious
customers.

The database designs have been the
least focused so far. As a result of this,
most of the applications exhibit resiliency
and scalability issues post few years into
production. Some of the contributing
factors which makes databases non-
performant are listed below

• Adoption of Agile development has led
to faster releases, but it has shortened
the development time

• The development teams are mostly
focused on implementing the functionality

External Document © 2021 Infosys Limited

• More attention is given to application
design

• Non-production environments lack
sufficient data volumes necessary for
performance testing. Hence most of the
applications pass the performance tests
in lower environments but fail in the
production

• Non-functional requirements like
Throughput, High Availability, Recovery
Point Objective (RPO), Recovery Time
Objective (RTO) are often not thought

through or neglected during the design
phase

• New Database features, database
design best practices are not considered
during design phase

• Inadequate database monitoring
from data growth and SQL monitoring
perspective lead to frequent database
issues

• Insufficient and inadequate database
housekeeping jobs impacting database
health

• Database sizes grows over a period of
time impacting the database scalability
and increase in storage footprint

• Database licensing and infrastructure
costs plays an important role for taking
decisions related to scalability and
resiliency. Most of the databases are
licensed per CPU Core. Which means
more the no. of CPUs, the cost of
licensing will be more.

• Overreliance on autoscaling feature of
cloud

Best practices to make the database Resilient and
Scalable
I - Archival and Purging – A secret weapon:

Archival and Purging helps in keeping the databases lean. This reduces the
storage footprint of the database and the backup. Lean databases help in
improving overall database performance. Due to reduction in amount of data,
the strategy also helps in cloud or database migration journey. We have often
observed that transactional databases are designed in a way that very few tables
occupy more than 80% of total database size. Data retrieval from these tables is
always a challenge and results in heavy resource utilization. Archival and purging
policy is often a neglected but more powerful weapon to keep check on growing
tables. It is a very simple concept and the most effective one while dealing with
oversized tables. Effective implementation of Archival and Purging process
results in lean database tables.

Below diagram depicts archival and purging process,

Figure 1: Archival and Purging Process

• Move data older than 2 years from
Transaction table to
TransactionHistory Table

• Purge (physically delete) data older
than 2 years from Transaction table

• Archive data older than 10 years into
enterprise archival

• Purge (physically delete) data older
than 10 years from TransactionHistory
table

Retention period 2 years Retention period 10 years

Transaction TransactionHistory

Purging Archival

Enterprise Archival

Cloud first strategy:
Financial Services clients have already started
adopting cloud technologies and migrating
their applications and databases to cloud.
In order to curb the database licensing cost,
clients have started evaluating the cloud
native database solutions like AWS Aurora,
DynamoDB, RDS or Open Source database
solutions like MySQL, PostgreSQL etc.

Gartner expects that 75 percent of all
databases will be deployed or migrated to
cloud platforms by next year3

Adopting new technologies often fail to
deliver the expected outcome. This white
paper outlines the best practices to deal with
database resilience and scalability issues. The
paper also attempts to answer whether should
the aforementioned database challenges
be addressed first or migrate AS IS to cloud
native database solutions.

Building Scalable and Resilient database – by
Design Perspective

The database specific issues our financial
clients are facing are common in the industry.
These issues can be tackled by implementing
best practices which are technology agnostic
and provide predictable outcomes if
implemented properly. A by Design approach
rather than a reactive way of solving resilience
and scalability issues helps arrest most of the
issues during design phase itself. These best
practices would also help clients not only in
improving resilience and scalability of their on-
premise databases but also facilitate the cloud
adoption journey.

External Document © 2021 Infosys Limited

External Document © 2021 Infosys Limited

II - Adopt Shift Left strategy – to gain
more insights into resilience and
scalability issues right from design phase

For many financial services clients,
scalability issues are often visible only in
production and never detected in lower
environments. One of the reasons is,
lower environment databases lacks data
volume of production databases. Due to
less data volumes most of the applications

satisfy Service Level Agreement (SLA)
requirements during performance test.
Hence it is recommended

• To refresh the lower environment
databases with production data for
each release cycle.

• To avoid data security issues, it is
necessary to mask sensitive data in
lower environments.

III : Monitor SQL queries on frequent basis

Generally financial services clients prefer
monitoring end-to-end business flows
for any financial impacts. Whereas at the
infrastructure level, most of the time the
database CPU and Memory utilizations
are monitored. SQL monitoring is not
implemented in case of most of the
databases. As part of SQL monitoring, DBAs
should monitor production databases on
daily basis to identify,

• SQLs changing execution plans,
resulting in phenomena called SQL
Regression

• SQLs suddenly consuming more CPUs

• SQLs having sudden increase in elapsed
time

• SQLs with high no. of execution count in
a day or in an hour

This monitoring could help in identifying
change in behavior of SQL performance.
Along with monitoring, the SMART
alerting mechanism would help in taking
necessary actions before the problem
aggravate. Below diagram depicts scenario
for monitoring and alerting of SQL
performance.

• Along with this, performance testing should be integrated as part of build process in DevOps pipeline. The build should get deployed in
upper environments only when the SLAs are met during performance testing. Below diagram showcases indicative build process with
control gates to restrict deployment to upper environment in case SLAs are not met.

This way the development/ testing teams could arrest performance issues during development phase itself. This best practice is part of a
Shift Left strategy, which enables development teams to identify resiliency and scalability related issues at lower environments.

Development Production

Data Replication

1

Mask sensitive
data

2

Source Code
Management Code Quality Unit Test

Build
Packaging

Deploy in local
environment

Performance
Test

Deploy in
upper

environment

Do not deploy
Send noti�cation

SLA
Validation
Successful

?

No

Yes

Production

Monitor and
Correlate Alert

• Correlates the previous days run with
current days run

• For TOP SQLs identi�es anomalies based
on SQLs consuming more elapsed time,
CPU time

• For SQL Regression, identi�es change in
execution plan

Monitor and Correlate

• Alerting component integrates with
existing alerting framework

• In case of anomalies detected it sends
alert

Alert

Figure 2: Data Refresh and Masking activity

Figure 3 Shift - Left Approach

Figure 4: SQL monitoring and alerting

External Document © 2021 Infosys Limited

IV : Avoid overreliance on a particular database

It is highly likely that one database could become an integral part of
the entire echo system for any data requirements. A typical example
could be a legacy mainframe system. These systems hold crucial data
needed for day-to-day business operations, for example, customer
information, accounts information etc. Hence most of the applications
within the financial system source data from these systems. But
overreliance on one database could result in catastrophe. Recently one
of the US banks faced major outages for their mainframe systems which
resulted in collapse of their dependent software systems and caused
outages for IT applications.

To avoid such dependency, it is recommended to create a redundant
database. This database should be synched up with mainframe
database on Realtime or Near-Realtime basis. The IT applications which
were dependent on mainframe system could be pointed to redundant
database to read data. Only when the redundant database is not
available the application should read data from mainframe database.

V : Blue Green Deployments

Database clustering helps in taking care of
single point of failure at primary site. But
what if the entire primary site is down due
to a natural disaster like earth quake, fire,
flooding? How can the business continuity
is maintained in such situations?

The answer is, by provisioning disaster
recovery site or standby site. This will add
up to the IT cost, but make sure that, even

though the primary site is not available,
the business could continue from Standby
site. There are regulatory requirements that
define the distance between the Standby
site and the Primary site. This ensures that
the standby site is intact even though the
primary is impacted, thus maintaining
business continuity.

Another important benefit of this design
is that it helps minimize the application

downtime due to maintenance activities
like OS upgrades, database patch upgrades,
network switch upgrades etc. These
upgrades are carried out at the Standby site
first. Hence any impact due to upgrades is
isolated only to the Standby site. Only when
the upgrades are successful at Standby, they
are performed at Primary site. This setup
helps in Blue-Green deployments to ensure
application availability.

VI : Application Testing post OS/ Database
patch or version upgrades in production

Often, database version upgrades,
patching or even OS upgrades are classified
as non-disruptive changes. Hence no
proper application testing is carried out
in production post such upgrades. This
could lead to application downtime in

case of impact due to upgrades. Hence it is
recommended to perform testing of critical
workflows in production to make sure that
they are working fine.

Such testing becomes easy if a Standby
site is available. The upgrades could be
first done on Standby site and tested
thoroughly by executing some critical end-

to-end workflows. Only when the testing is
successful at standby, the upgrades could
be carried at Primary site and tested again at
primary site for critical workflows.

In the past many banks faced outages
due to software upgrades. Hence it is
recommended to follow this best practice
for incident free upgrades.

Figure 5: Data replication solution to avoid database dependency

Figure 6: Blue Green deployment setup

External Document © 2021 Infosys Limited

VII : Implement Chaos Engineering to
simulate failures and analyze their impact
on application

Often during development and coding
phase, the developers assume availability of
certain things and overlook unlikely events
while coding. But when such events happen,
the application availability gets impacted and
sometimes the situation results in IT outages.

For example, developers always assume that
databases are available 100% of the time. It is
claimed that database failover is transparent
to application and don’t have an impact on
application processing. But that’s not true.

We simulated a database failover for one
of the application in lower environment
and assess the impact on application
and batches. Post failover, most of the

applications started throwing database
errors and crashed. We have discovered that
the applications were never designed to
take care of database failover situation and
hence failed the test. It is necessary to build
resilience in the application to deal with
database failover.

Production Production

Primary Secondary

Data Replication

ClusterProcess I
SELECT

Process II
INSERT + UPDATE

Process III
DELETE

Before failover

Production Production

Secondary Primary

Data Replication

ClusterProcess I
SELECT

Process II
INSERT + UPDATE

Process III
DELETE

After failover

in-�ight trans.

in-�ight trans.

VIII : Setup Site Reliability Engineering
teams to take care of application
resilience and scalability for long term

Site Reliability Engineering4 is pioneered
at Google in 2003. It’s a discipline which
helps improving and maintaining the
systems resiliency and scalability over
the period. It treats operational problems
as software problems. As per Google’s
recommendations4, the SRE engineers
should spend 50% of their time on
development and rest 50% of the time in
operations, supporting the applications.
The team which develops the software
is best suited to maintain it too, that’s
the simple thought behind this. The SRE
Engineers helps in building capabilities
around various areas like,

• Application Monitoring capabilities

• Automated End to End correlation of data
gathered through monitoring

• SMART alerting based on the AI-ML
algorithms to avoid any false positives

• Automating manual operational works to
reduce the TOILs in production

• Blameless retrospection of production
issues to identify Root Cause

• Chaos Engineering to simulate
failures and assess their impact on the
applications

• Build self-healing capabilities within
application to sustain failures

There is a wide adoption of SRE discipline
across financial services. In order to
comply with regulatory mandates financial
institutions have started building SRE teams
to improve system resiliency and scalability.

Figure 7 Database Failover - Application Impact

External Document © 2021 Infosys Limited

Conclusion:
The implementation of the various best
practices outlined in the paper help
in improving the database resiliency.
The awareness towards the criticality
of improving software system resiliency
is increasing across the globe. Financial
institutions have realized the importance
of being resilient and the benefits
of resilient systems . Many financial
institutions have embarked on a legacy
modernization journey as part of monolith
to microservices migration. Hence this
is the right time to adopt Resilience by
Design methodology to take care of the
resiliency requirements right from the
design phase and deliver reliable and
robust systems.

© 2021 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

About the author

Shailendra Shantaram Hirlekar, Senior Technology Architect, Financial Services, Infosys Limited

Passionate about learning new technologies. Performance Engineering and Resilience practitioner. Helping FS client to

achieve Resilience and Scalability of software systems.

References

1 US Federal Banking Regulators, October 30, 2020, federalreserve.gov

2 Financial Conduct Authority in the UK, March 29, 2021, fca.org.uk

3 Gartner Says the Future of the Database Market Is the Cloud, July 1, 2019, gartner.com

4 Google’s Approach to Service Management: Site Reliability Engineering, Benjamin Treynor Sloss, Betsy Beyer, sre.google

https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
https://www.federalreserve.gov/newsevents/pressreleases/bcreg20201030a.htm
https://www.fca.org.uk/publications/policy-statements/ps21-3-building-operational-resilience
https://www.gartner.com/en/newsroom/press-releases/2019-07-01-gartner-says-the-future-of-the-database-market-is-the
https://sre.google/sre-book/introduction/

