
WHITE PAPER

EVENT DRIVEN MICROSERVICES
WITH APACHE KAFKA AND OTHER
STREAMING FRAMEWORKS – A
FINANCIAL SERVICES PERSPECTIVE

Abstract
Event-driven microservices leveraging data-streaming backbone fulfills the
real promise of containerized microservices towards organizational agility &
strategic business value. Advances in data-streaming frameworks open new
avenues for microservices adoption and render event-driven microservices
as an appealing design choice for businesses.

Financial services need to embrace this revolution for improving their agility,
customer experience, risk management & scalability. This Point of View
discusses the case for event-driven microservices with focus on financial
services, relevance of data streaming, architecture blueprint, considerations,
a few significant patterns in implementation of event driven microservices
and microservices leveraging data streaming solutions.

External Document © 2021 Infosys Limited

Events First Strategy –
Revolutionizing Financial
Services

Why FS organizations need an
event-first strategy?

Events are the first-class citizens of every
Financial Services (FS) organization. Every
transaction in FS domain consists of
multiple events which represent facts. Price
fluctuations in exchange traded funds,
stock movements, or simple transactions
like account opening carry an enormous
significance if these events are captured
when they are generated and analyzed
in real time. For example, two credit card
transactions within an interval of ten
minutes, from the same credit card from two
different merchant outlets situated a few
miles apart can be potentially fraudulent.
Real-time analysis of stock movements can
provide proactive insights to traders to
safeguard customer investments.

As new services are introduced or new
regulations are enforced, organizations need
to do a tight-rope walk between the two
ends – ‘a digital-savvy experience’ on one
side and ‘increasingly stringent regulatory
reporting’ on the other. An urge to move
out of costly mainframes to become cloud
native & super-elastic further aggravates
the need for a streamlined & reactive IT
architecture. Modelling an organization
around the events allows IT architectures
to evolve without friction across business
groups. This is a critical capability for any
financial enterprise as business groups often
work in silos. Advances in streaming data
analytics amplify this benefit by supporting
real-time decision making within the
framework of regulatory compliance.

Advantages of data streaming for
FS organizations

Every financial organization now maintains
its Data Lake & Data Warehouse. But by the
time the data has been stored there, it loses
its time value. Data streaming enables real
time analytics as the events are generated.
For example, ATM cash withdrawal events
can help a bank optimize its cash recharge
operations. Data streaming architecture has

a nimble footprint and it scales in real time
allowing faster returns on investments.

For any bank, offering personalized services
based on customer profile and customer
behavior or location is always a challenge.
A data streaming platform can capture
trends of customer behavior, use machine
learning to analyze patterns & helps deliver
a personalized digital experience. Customer
behavior across digital channels, websites,
ATMs, or even legacy systems can be
aggregated as event streams & analyzed
to produce an accurate view of customer
profile, segment, risk etc.

Event streaming offers valuable insights
for regulatory reporting since complete
lineage is possible between decisions taken
at a given point of time and the underlying
data that existed at that time. It is possible

because events are persisted in fault-tolerant
& scalable data pipelines in the order in
which they occur. Such events can even be
replayed to simulate the system state. For
example, a machine learning algorithm can
scan capital market movements across data
pipelines and correlate them against a bank’s
profit & loss position to devise an optimal
data analytics model.

Real time insights into events produced
by financial or non-financial transactions
empower FS organizations to design a
future ready risk management platform.
Huge volumes of real time data can be
leveraged to tune machine learning models
for intelligent threat monitoring. Customer
clicks on payment websites, typical locations
of cash withdrawal ATMs, cash withdrawal
patterns etc. can be analyzed instantaneously
to challenge a fraudulent transaction.

External Document © 2021 Infosys Limited

Example scenarios for FS organizations leveraging event streaming

Organizations cannot survive unless they remain ahead of their customers – by delivering personalized content at the most appropriate
customer interaction touchpoints. It necessitates building real time insights into customer preferences and intelligent analytics to deliver
outcome focused customer experience. An event driven platform as shown below can gather multiple facets of customer engagement
at runtime, enrich them with segment and product-specific information and feed into predictive analytics model to drive customer
engagement.

Figure 1: Digital Engagement Hub with Customer 360° View

Event Streaming
Platform

Payments

Wealth
Management

Mortgages

Savingsyme

ealt

ving

ortg

Customer
Intelligence

Hub

LoansLoa

Customer

Ch
an

ne
ls

Se
cu

ri
ty

 L
ay

er

A
PI

G
at

ew
ay

M
ic

ro
se

rv
ic

es

Next Best O�er, Next Best Action using AI/ML Predictive
Modelling

Enterprise Data WarehouseData

With ever increasing financial vigilance all
over the world, financial institutions are
always on their toes to keep their system
of records up to date to meet regulatory
submission timelines and stringent data
integrity checks across multiple regulatory
reports. Apart from the need to have a
robust data foundation layer, financial
institutions need an agility for onboarding

Figure 2: Regulatory Reporting Platform leveraging Event Stream Processing

The list of applications in financial services, where one can leverage event streaming is ever evolving. Let us now take a quick look at
technical aspects of event streaming based microservices.

Data Sources

General
Ledger

Sub Ledger

Positions

Contracts

Reference
Data

Balances

Market
Positions

Amazon
Kinesis

Kafka

Reporting
Data Mart

Regulatory Report
Generation Engine

Regulatory Reporting Portal

Report
Onboarding

Rules Authoring Topside
Adjustments

Edit Checks

Submission
Work�ow Entitlements

Data Integrity
Checks

Enrichments Aggregations

Dynamic real-time event stream processing platform

Event driven microservices based on messaging backbone

new regulatory reports. Onboarding of
regulatory reports needs co-ordination
across various groups which are often
disconnected. The group that onboards
regulatory reports is often different from
the group that creates rules to generate
financial figures for those reports, report
generation & submission are again
handled by separate groups. This restricts

the ability to respond efficiently to changes
in reporting standards.

Event streaming based architecture acts
as a central nervous system that glues
together heterogeneous data sources,
ensures highly integrated reporting data,
and automates entire regulatory report
generation & submission process as
illustrated in the below diagram.

External Document © 2021 Infosys Limited

Event Driven Microservices

Figure 3: Overview of Event Driven Microservices leveraging Data Streaming

Advantages of event-driven
architectures

• De-coupling between event
producers & event consumers

• Resiliency

• Auditability of System State by
design of the system itself

• Online Analytics by leveraging data
streaming pipelines & machine
learning

• Accelerating Machine Learning
Models Deployment

Relational
DB

Microservice 1 Microservice 2

Time-series
DB

Microservice 3

In-memory DB

Function-As-A-
Service

f

Event-Driven Cloud Native Applications

Event Backbone
(Kafka-Zookeeper Cluster)Publish

Subscribe

Stream Processing

Pu
bl

is
h

Su
bs

cr
ib

e

Data Lake & Analytics

Event Derived
State

Materialized View

What is event-driven
microservices with data
streaming?

Recognizing the business value of
real-time streaming data processing,
technology has evolved from Big Data

at rest (HDFS – Hadoop Distributed File
System) to Distributed Streaming. Open-
source technologies such as Apache
Kafka, Apache Spark, Apache Samza and
proprietary solutions such as Amazon
Kinesis, Google Cloud Data Flow coupled
with microservices enable event-driven
microservices that provide super-elastic,
universal & persistent connectivity to

generate, process & persist streaming
data. This combination of event-driven
microservices with simple & robust
streaming backbone fulfills the real promise
of microservices architecture by greatly
enhancing the organizational agility to
build, deploy & maintain data-streaming
pipelines to support cloud-native, highly
available & performant business solutions.

External Document © 2021 Infosys Limited

High Level Architecture
Reference architecture for an Event-driven Microservices architecture-based system leveraging data streaming backbone is given below.

Figure 4: Reference Architecture - Event Driven Microservices leveraging Data Streaming

Technology Choice for Event
Backbone

Horizontal scalability of event backbone
is the first critical aspect for event driven
microservices which work with streaming
data. Peaks in event generation should
be handled by seamlessly adding more
capacity & processing power without
system downtime.

Events generated from edge devices
across geographies have different
time-zones. Unreliable networks further
complicate the issues since an event
generated earlier may be available on
event backbone much later due to

network issues. Hence strong ordering
guarantee of event backbone is the second
critical requirement for event driven
microservices.

There exists a trade-off between data
replication & data integrity. While
clustering is essential for data replication,
data read from one cluster may have
already become stale across another
cluster of event backbone. Hence
consistency & durability is the third
critical requirement that must be satisfied
by an event backbone for event driven
microservices. Availability on PaaS
(Platform as a Service) are other essential
requirements of event backbone.

Some of the most prominent technology
choices for event backbone are as below:

• Apache Kafka

• Amazon EventBridge , Amazon SNS,
Amazon Kinesis

• Google Cloud: Events for Cloud Run for
Anthos, Dataflow for Complex Event
Processing (transformation, enrichment
on streaming data), Eventarc

• Red Hat AMQ Streams

• Kafka on Kubernetes with Strimzi, Akka
Streams

• IBM Event Streams on the IBM Cloud
Pak

User Experience Layer

Micro Frontends Channels Mobile Devices Collaboration BOTS Web Analytics IVR

Security Layer – Identity Management – Authentication & Authorization

API Gateway & Management – Experience & Process APIs

Engagement Layer – Noti�cations, Digital Data Store, Document Management

Enterprise Integrations

Event Driven Cloud Native Microservices Functions As A Service

Event Backbone

Event Broker (Kafka, RabbitMQ, Amazon
EventBridge etc.)

Event Streams Serializers & De-Serializers

Event Routers – Ingestion & Filtration

Event Store
(Event Managed

State)

Streaming Analytics AI & Machine Learning Models

Automation, Business
Process Management

Elastic Cache

Operational Data
Store

ETL & Batch Processes

Data Lake

Data Warehouse & Data
Mart

Deployment Platform (Public Cloud, Private Cloud or Hybrid)

Centralized Logging

Distributed Tracing

Health Checks

Metrics

Con�guration Management

Service Registration & Discovery

Circuit Brakers

CI/CD Pipelines

Load Balancing & Routing

Service Virtualization

Cross-cutting Concerns

External Document © 2021 Infosys Limited

https://kafka.apache.org/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/sns/
https://aws.amazon.com/kinesis/
https://cloud.google.com/kuberun/docs/events/quickstart
https://cloud.google.com/kuberun/docs/events/quickstart
https://cloud.google.com/dataflow
https://www.redhat.com/en/resources/amq-streams-datasheet
https://strimzi.io/
https://strimzi.io/
https://www.ibm.com/cloud/event-streams
https://www.ibm.com/cloud/event-streams

Patterns & Practices for Implementation

Apache Kafka – Distributed Streaming Platform

Apache Kafka is the ubiquitous technology for event driven microservices.

Figure 5: Apache Kafka – Distributed and Open Source Streaming Platform

A Distributed and Open-source Streaming Platform. PUBLISH/SUBSCRIBE
Publishes (distributes) and subscribes (consumes) stream of
records.

PROCESS
Super scalable stream processing in real-time.

STORE
Persists streams of data immutably in a distributed &
replicated cluster o�ering fault tolerance.

 Topic is the principal component that Kafka provides to store a
stream of records.

 Kafka partition is like a safe vault – it is immutable. It provides
strong ordering guarantee. Messages are continuously
appended to the end of the partition.

 Kafka topic consists of one or more partitions. Each partition
must �t into the �le system of the host machine. Kafka topic is
super scalable as it can span across multiple such partitions.

 Kafka supports geo-replication - messages are replicated across
multiple datacenters.

 Kafka can process a few terabyte of persistent data as well as it
can process a few kilobyte of data.

Stream Processors

Broker 1 Broker 2 Broker 3

KAFKA
Cluster

App App Ap
p

AVRO AVRO AVRO

AVRO AVRO AVRO

App App App

PRODUCERS

CONSUMERS

Database
File System

KAFKA Connect KAFKA Connect

Kafka - Low latency distributed commit log for high
performance.

External Document © 2021 Infosys Limited

Event driven microservices using
Apache Kafka & Apache Samza

Apache Samza is an open-source
distributed stream processing framework
which is targeted towards real-time
streaming analytics with near-zero
latencies. The beauty of Samza lies in the
fact that Samza tasks can be written as
plain Java applications which support
integration with Apache Kafka, AWS
Kinesis, Azure Event Hubs, Elasticsearch
& Apache Hadoop. Samza supports
stateless as well as stateful processing.
Support for stateful processing ensures

Figure 6: Real Time Streaming Analytics – Customer Order Management using Microservices, Apache Samza & Apache Kafka

API
Gateway

Place
Order

µService

HTTP

Inventory
System

Get Item
Availability

µService

HTTP

HTTP

Process
Payment
µService

Payment Status of
orders

Inventory
Database

HTTP

KAFKA Topic to store Payment
& Order Info for each order

KAFKA
Streams API

Streaming
Analytics
(Samza)

Update
Inventory
Level for

each Order
on KAFKA

Topic

Assign
Container
To Order
µService

Streaming
Analytics
(Samza)

Read each
order on
KAFKA

topic and
allocate it

to a
container

Orders and their
assigned containers

KAFKA Topic to store each full
container with its orders

KAFKA
Streams

API

HTTP

HTTP
Load

container
on ship

µService

Streaming
Analytics
(Samza)

Read each
container
record on

KAFKA and
assign it to
a shipper

HTTP

Ships and their
assigned containers

KAFKA Topic to store shipment
details for each ship

HTTP

KAFKA
Streams

API

Streaming
Analytics (Samza)

Monitor Shipments and
Containers to detect

delivery issuesKAFKA Topic to store alerts for
delivery issues

1

2

3

4

5

6

7

8

9

10

11

12A

Kafka Cluster
on

Kubernetes

12B

µService =
Microservice

that Samza tasks can maintain integrity
of their in-process state and resume
stream processing from the point where
a failure occurred. Samza supports
both in-order & out-of-order event
processing. Samza supports fully
asynchronous API for high throughput
remote I/O & provides “at-least once
message delivery guarantee”.

Kafka Streams is a Java client library
for streams processing. Plain Java
applications can be enriched with
stream processing features by using
Kafka Streams API. Kafka Streams library

makes it a reality to design mission critical
streaming applications in plain Java but
with all advantages of Kafka. Kafka Streams
recognizes table & stream duality to allow
developers model streams as tables.

Strimzi is an open source project for
executing Apache Kafka on Red Hat
OpenShift platform & Kubernetes.

The combination of Apache Samza, Kafka
Streams & Strimzi can be used to design
powerful event driven architecture based
upon microservices & real time streaming
analytics as depicted in below diagram.

External Document © 2021 Infosys Limited

Event driven microservices using
Apache Flink

Pattern Recognition is one of the most
prominent use-cases in machine learning.
Training of machine learning models is
a data hungry affair and that is how Big
Data relates to machine learning. Pattern
recognition requirement also means
that machine learning programs should
analyze streaming data in real-time. Hence
there is a very close relationship between
Machine Learning, Big Data & Streaming

Figure 7: Real Time Stream Processing – Microservices, Kafka & Flink

Stock Exchange 1

Stock Exchange 2

Stock Exchange 3

Stock Exchange 4

Kafka
Connect

Task

Trades Feed

Trades `Feed

Trades Feed

Trades Feed

Kafka Topic – Stock Exchange 1

Kafka Topic – Stock Exchange 2

Kafka Topic – Stock Exchange 3

Kafka Topic – Stock Exchange 4

Kafka Topic – FX Trades

Kafka Topic – Bonds

Kafka Topic – Futures

Kafka Topic – Derivatives

Derivatives
Microservice

Futures
Microservice

FX Trades
Microservice

Bonds
Microservice

Kafka Streams

Kafka Streams

Kafka Streams

Kafka Streams

Analytics. Only those organizations which
keep customer behaviors before their
products can survive and that requires lot
of real time data analytics and machine
learning or complex event processing. That
is where the value of Apache Flink lies.
Flink implements both Lambda & Kappa
architectures for supporting batch analytics
& real-time analytics respectively.

First generation for Big Data processing
was based on Map Reduce & Hadoop.
Apache Spark was the second-generation

technology for Big Data. The third
generation is led by Apache Flink which
is an open source streaming analytics
framework & engine. It supports stateful
stream processing at scale over bounded
& unbounded streams. State is persisted
in RocksDB, an embedded key-value store.
Flink, unlike Samza guarantees exactly
once message-delivery semantics if event
source implements snapshots. Apart
from YARN & Mesos support, Flink can
be deployed natively on Kubernetes to
support cloud native architecture.

External Document © 2021 Infosys Limited

Event Driven Microservices with
Streaming on Amazon Web
Services

Amazon Kinesis Data Firehose is the
streaming component of Amazon
AWS toolset. It is a fully managed
service with auto-scaling support. It
supports capturing of streaming data,
transformations & delivering it to

Figure 8: Event Driven Microservices with Streaming on Amazon AWS

API Gateway

AWS
Lambda

DynamoDB

Process New
Insurance

Application event

API Gateway

AWS
Lambda

DynamoDB

Onboard
Customer

Microservice

API Gateway

AWS
Lambda

DynamoDB

Customer
Veri�cation

Microservice

API Gateway

AWS
Lambda

DynamoDB

Risk Underwriting
Microservice

Amazon Kinesis
Data Firehose

Amazon S3
Bucket

Amazon
CloudWatch

Receive Insurance
Application

Microservice

Amazon S3, Amazon Redshift or Amazon
Elasticsearch.

As depicted in the diagram below, we have
4 microservices consisting of API gateway,
AWS Lambda & AWS DynamoDB. “Receive
Insurance Application Microservice”
undergoes a state change when it
receives a new application for insurance. It
publishes an event to Amazon Kinesis Data

Streams. Kinesis Data Streams application
that runs into each of the four AWS Lambda
handles message filtration, processing &
forwarding. Amazon S3 Bucket acts as the
persistence store for all events.

Amazon CloudWatch dashboard can
monitor aspects such as data buffering
or ingestion, based on the metrics set for
Kinesis Data Firehose.

External Document © 2021 Infosys Limited

Conclusion
Combination of microservices
with event driven architecture and
streaming is going to be the DNA of
live enterprises. It is possible to design
super scalable, fault tolerant, high
performant & mission critical systems
using event driven microservices on
streaming backbone. This necessitates
architects to address design concerns
such as distributed transaction
management & exactly once message
delivery semantics. But technology
has greatly advanced to provide
sophisticated processing engines &
frameworks. We considered example
architectures based on Apache
Kafka, Apache Samza, Apache Flink &
Amazon Web Services. This can guide
architects to implement event driven
microservices by leveraging various
streaming frameworks.

Financial institutions can overcome
classic ETL (Extract – Transform – Load)
limitations & latency problems &
build highly scalable real-time data
integration flows that can stream data
to the last mile.

External Document © 2021 Infosys Limited

© 2021 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

About the Author

Niranjan Kulkarni
Senior Technology Architect, Financial Services, Infosys Limited

Niranjan enjoys working in Enterprise Architecture, Cloud Native Microservices and Java ecosystem. He has over 17 years of
experience in Technology Architecture, Solution Design & Delivery. He loves reading and talking on blockchains. He can be
reached at Niranjan_Kulkarni@Infosys.com

Author acknowledges that the image (ASLV Launch) on the title page is taken from https://upload.wikimedia.org/wikipedia/en/5/53/ASLV_Launch.jpeg
under license as per Creative Commons — Attribution-ShareAlike 3.0 Unported — CC BY-SA 3.0

Author acknowledges

mailto:Niranjan_Kulkarni@Infosys.com
https://upload.wikimedia.org/wikipedia/en/5/53/ASLV_Launch.jpeg
https://creativecommons.org/licenses/by-sa/3.0/
https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys

