
WHITE PAPER

DEALING WITH TECHNICAL DEBT IN
THE DIGITAL AGE

Abstract

Keeping technical debt under control is the most unrecognized and ignored
aspect within the development of custom enterprise software applications.
The COVID pandemic has made many enterprises realize about the higher
magnitude of effects caused by the prolonged negligence of technical debt.

Outsystems report finds that technical debt is estimated to cost business $5
trillion in the next 10 years. Stripe research finds that 33% of developer time is
going towards addressing technical debt.

This paper takes a pragmatic view of technical debt, its crippling effect on
enterprises, and provides best practices to deal with it in the digital age

https://www.outsystems.com/stop-tech-debt/
https://stripe.com/files/reports/the-developer-coefficient.pdf

External Document © 2022 Infosys Limited

What is technical debt?
Technical debt (also known as design
debt or code debt) is a concept in
software development that reflects
the implied cost of additional rework
caused by choosing an easy solution
now instead of using a better
approach that would take longer.

The interest for the additional rework/
cost is paid in the form of extra effort
during the build and maintenance,
and the loss of sales for not releasing
software within time.

Technical debt is broadly classified
under

Prudent technical debt

The debt accumulated due to the
decisions that were deliberately
made to differ the necessary work for
the sake of releasing new business
features on time. E.g., Design
(maintainability, extensibility),
software upgrades, UI guidelines,
compliance, and documentation.

Inadvertent technical debt

This kind of debt is unavoidable and
accumulated where a product team
continuously improves the product
as they start discovering it through
experimentation and feedback loops.

This form of debt mostly continues till
the product-market fit and then slowly
evolves into prudent debt.

Why is it more relevant now?
The traditional enterprise applications used
to take 12-18 months release cycle, with
a life span of over 15 years. These release
cycles are very long and become irrelevant
to address the contemporary needs of
markets, and changes in technology.
Enterprises started addressing this by
adopting agile development methodology
and doing more frequent software releases.
But the frequent release of new features or
changes require quality software. Suddenly
quality of a software has become more
important than before for the existence and
success of enterprises.

Releasing new features
at speed, enhancing
existing features at speed,
and changing software
at speed requires quality
software

How does it impact the business?

The impact of technical debt has many forms, both visible and invisible

The internal and invisible
aspects of software
quality – architecture
and technical debt – are
foundations for the
visible aspects such as
quick release of features,
low volume of bugs,
competitiveness and the
customer satisfaction

For a medium to large enterprise (link)

• ~ $38M cost for unnecessary reworks
per year

• ~$4M opportunity cost lost due to
unnecessary reworks per year

• ~$25M cost of downtime per year

Visible impact

Quick math about the impact

• Increased maintenance costs

• Schedule overruns and additional
developer time

• Remediation and penalties for
compliance and security breaches

• Lost sales and customer service
opportunities due to system
downtime

• Low customer satisfaction, low NPS

• Less business agility

• No single source of truth, delayed
decisions

• Less competitive advantage

• Less developer moral, less
productivity staff resulting spiral
down in developer performance

• More noise to manage for senior
management, so is more time on it

Invisible impact

https://services.google.com/fh/files/misc/dora_devops_roi_whitepaper.pdf

External Document © 2022 Infosys Limited

Measuring technical debt and
tools
The agile world considers source code
as major deliverable so the code quality
should be identified and measured. SQALE
(Software Quality Assessment Based on
Lifecycle Expectations) is one such method
that has gained popularity. (link)

SQALE is an open source and tool
independent method developed for
assessing the quality of source code
(source code analysis). This interprets the
source code in terms of what is needed
in the specific client environment and
transforms the measurement data into
technical debt and actionable insights,
which are meaningful at various levels of
an organization.

Technical debt ratio (for an artifact) =
(Remediation cost / Development cost) x
100

SonarQube

SonarQube is one such prominent open-
source tool that uses SQALE to define the
technical debt and provide actionable
insights for reducing the debt. The tool can
be easily pluggable into CI/CD pipelines for
automating the code analysis and gating
against the allowed levels of the debt.

Other tools gaining popularity

• CAST Software

• Pluralsight

• Outsystems

• Kiuwan

• ESLint

• Pylint,

• Embold

• Roslyn

• Coverity

• Checkstyle

• Squore

• Amazon CodeGuru

• Walkmod

http://www.sqale.org/wp-content/uploads/2016/08/SQALE-Method-EN-V1-1.pdf

External Document © 2022 Infosys Limited

Taming technical debt is like
keeping up your health with
good routine, food, relations,
and a healthy lifestyle. This is a
continuous process. Individuals
who prioritize and balance the
wellbeing despite their busy
work schedule are the ones
with a better probability of
having long rewarding life and
career

Emerging ways
Couple of innovations that are worth of
our attention

• Low code no code platforms are
minimizing technical debt by relying on
standard architectures and frameworks
but not proprietary ones. E.g., Outsystems

• Using NLP (Natural Language Processing)
techniques of AI to translate developer
statements into a piece of code
that neatly fits into the scheme of
development. E.g., Open AI Codex, Git
Copilot

Best practices to control
technical debt
Traditional application development
followed a plan-driven deterministic
approach with tight timelines. This is the
main source for the mindset of “not having
enough time for quality code”, which is the
biggest influencer of high technical debt,
followed by “unavailability of resources”
and “undermining the refactoring
works”. The deterministic mindset is
slowly changing with the onset of agile
methodologies, but still a long way to go
before reaching the adaptive mindset.

Application development is not a
production process but a design process.
Source code is the most detailed design.
Generally, design process is evaluated
by the value it delivers rather than
conformance to a plan. Therefore, it makes
sense to move away from the plan-driven
projects to value-driven projects.

Organizations must follow “taming
technical debt” mantra throughout the
application lifecycle to keep the technical
debt under control. The current DevOps
and Agile cultures facilitate this better
considering the same team performing
development and operations. Maintaining
code with quality should be a deliberate
act. Prolonged ignorance of it seriously
affects the business continuity and
strategic initiatives.

Notable practices that help to keep the
debt under control

Make technical debt visible

Make technical debt visible, just like
sprint/Kanban boards, to the team and
key stakeholders who make the decisions.
Like in health care unless the problem
is visible not many are interested to act
on technical debt. Making it visible, both
qualitatively and quantitatively, helps
the decision makers to make informed
decisions by prioritizing the technical debt
works.

Make design and code reviews
a must in the development
process

Architecture along with continuous
delivery forms the basis for the
quick release of new features, quick
response to market changes, and being
responsive to customer expectations.
By making design and code reviews
an integral part of the development
process and doing it on a continuous
basis like ethos greatly lowers the
technical debt.

• Don’t neglect architecture and code
reviews

• Automate code quality checks in CI/
CD pipelines

Prioritize technical debt works

Include works related to technical debt
into backlog on a continuous basis, and
deliberately keep efforts to clear them

• Allocate 10-20% of each sprint for
technical debt

• Run optimization sprints to clear
technical debt backlog

• Clear technical debt while
enhancing or developing new
features

Evaluate refactor, migrate or
modernization opportunity

We must deal with technical debt
depending on size and gap

• Refactoring should be a continuous
activity to keep the code agile. If not
taken care of, the release of the next
set of features, enhancements, and
maintenance take a longer time and
effort than usual.

• At times we want to migrate to
a better technology choice or
transform code in the application
journey

• Re-engineer or replace the code

Adopt product mode execution

Project mode execution usually delivers
to a plan and the teams are temporary
that only last the project, though they
end up creating something that is meant
to last longer than projects. Contrary
to this, the product mindset, a core
characteristic of cross-functional teams
in agile methodology, forms cohesion
among the members and allows
them to keep the long-term vision by
empowering them with ownership for
value creation beyond projects. This will
enable the teams to keep the big picture
in mind while thinking and executing
small iterations through sprint cycles and
give them an opportunity to balance/
prioritize technical debt along with
releasing new business features.

External Document © 2022 Infosys Limited

Conclusion
High technical debt reduces code
agility which in turn reduces continuous
delivery agility and finally the business
agility. In the current digital age, code
agility is more relevant than before. Lack
of code agility is mainly attributed to
the increase in the impact channels that
creates technical debt, mainly

• The speed at which technology is
changing has increased, so the speed
at which technology is adopted must
catchup

• Customer expectations about digital
features have increased, so the speed
at which the features are released
must catchup

• Market dynamics and the
competitiveness too increased than
before, so the speed of innovation
must catchup

• Speed of delivering software has
increased with agile development, so
the agility of the code must catchup

• Life of an enterprise application
decreased to 2-3 years (from
10-15 years), so the technology
upgradations must catchup

• The context of security has
broadened throughout the
development lifecycle, so the
adoption of newer security updates/
methods must catchup

• Product mode execution has
increased the need for keeping
up with user expectations, so the
technology modernization must
catchup

• Mechanisms for measuring code
quality have matured with time, so
the speed of adopting them must
catchup

• The adoption of agile methodologies
has greatly increased the mindset
of progress over perfection, so the
mechanisms to keep up the code
quality and agility much catch up

Agility dependency hierarchy

Avoiding technical debt
in the digital age is like
participating in formula
one (F1) without a pitstop,
which surely makes the
progress impossible and
do irreparable damage
in the next set of rounds
itself

External Document © 2022 Infosys Limited

How Infosys is helping
clients?
Infosys truly understands the impact of
technical debt on business outcomes,
and the importance of keeping it under
control. We have institutionalized
technology and process practices,
frameworks and tools that help our
customers transforming their legacy
systems and modernizing applications

Legacy Transformation and
Modernization (LTM) practice

Legacy transformation and
modernization of applications is
usually on the ‘want’ list of CIOs yet
rarely goes up to ‘to-do’ list. Our LTM
practice brings structured approach to
this by identifying the opportunities,
defining the roadmap, and generating
the funding. Our homegrown
frameworks like application portfolio
analysis, digitization consulting,
software asset optimization will help in
planning the transformation, while our
services and tools can be leveraged to
expedite the execution.

Agile and DevOps Services

Infosys Agile & DevOps Services adopt
a Design Thinking-led approach to
enterprise agility that helps clients
drive Agile & DevOps adoption in an
integrated way, taking an end-to-end
view of the value chain, guided by Lean
principles. We help you systemically
make the changes through rapid
iterations, enabled by intelligent
automation.

Count on Infosys’ integrated services
to help you navigate the agile and
DevOps lifecycle – from Advisory
to Transformation and Execution.
Supplemented with the Infosys
DevSecOps platform, we amplify the
potential of our clients.

External Document © 2022 Infosys Limited

It is obvious that the best practices
highlighted in the document are not
complex whose application demands
extensive training. Instead, they are
simple, and almost all enterprises
are adept at using them. But often
avoid using them to their own
downfall. The problem lies not in
the complexity of these methods or
tools but in the will to use them. Now
industry has reached a to a tipping
point where enterprises cannot
ignore technical debt anymore.

© 2022 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

References

• The developer coefficient (link)

• Technical debt is estimated to cost business $5 trillion in the next 10 years (link)

• Technical debt quadrant by Martin Fowler (link)

• Design debt (link)

• Forecasting the value of DevOps transformations – DORA (link)

• SQALE method (link)

• SQALE method – meaningful insights into your technical debt (link)

• Managing technical debt with SQLE by Jean-Louis Letouzey (link)

• Managing technical debt by Morphies-Insights (link)

• Financial implications of technical debt by Erik Frederick (link)

• Agile IT organization design by Sriram Narayan (link)

• What is software design? by Jack W. Reeves (link)

• Agile code review process by SmartBear (link)

• Is high quality software worth the cost? by Martin Fowler (link)

• Products over projects (link)

• Survive and thrive in the digital age by Mik Kersten (link)

• SEI – Managing technical debt with data-driven analysis (link)

• SEI – consequences of technical debt: 5 stories from the field (link)

About the Author

Sudheer Polavarapu
Senior Technology Architect

https://stripe.com/files/reports/the-developer-coefficient.pdf
https://www.outsystems.com/stop-tech-debt/
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://wiki.c2.com/?DesignDebt
https://services.google.com/fh/files/misc/dora_devops_roi_whitepaper.pdf
http://www.sqale.org/wp-content/uploads/2016/08/SQALE-Method-EN-V1-1.pdf
https://www.agilealliance.org/wp-content/uploads/2016/01/SQALE-Meaningful-Insights-into-your-Technical-Debt.pdf
http://www.sqale.org/wp-content/uploads/2016/04/itj1603_JLL.pdf
https://www.morphis-insights.com/technical-debt/
https://www.toptal.com/finance/part-time-cfos/technical-debt
https://www.amazon.com/Agile-Organization-Design-Transformation-Continuous/dp/0133903354
http://www.bleading-edge.com/Publications/C++Journal/Cpjour2.htm
https://smartbear.com/learn/code-review/agile-code-review-process/
https://martinfowler.com/articles/is-quality-worth-cost.html#VisualizingTheImpactOfInternalQuality
https://martinfowler.com/articles/products-over-projects.html
https://projecttoproduct.org/
https://www.sei.cmu.edu/our-work/projects/display.cfm?customel_datapageid_4050=6520&customel_datapageid_4050=6520
https://insights.sei.cmu.edu/blog/managing-the-consequences-of-technical-debt-5-stories-from-the-field/
mailto:sudheer.polavarapu@infosys.com
https://in.linkedin.com/in/sudheerpolavarapu
https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys

