
Abstract

Financial institutions (FIs) are under increasing pressure to improve topline
growth in the face of intensifying competition, demanding customers, and
unforgiving regulators. In a world disrupted by the pandemic, one of their
biggest challenges is to offer a lucrative pricing structure that maximizes
revenue even as it satisfies customers. The launch of new financial products is
preceded by exhaustive research and analysis.

Today’s customer-centric business world is governed by tough competition and
price negotiation. The biggest challenge for FIs is defining pricing parameters
while making attractive offers to customers. Pricing must provide the two-
pronged advantage of profitable revenue generation as well as customer
satisfaction.

Are these the only advantages that a new platform like ORMB offers? Not at all.
This paper discusses some of the digital capabilities that can be built on top of
ORMB to give businesses an even greater edge. With this, businesses can plan
better, react quickly to the market, and disrupt traditional business practices.

BUILDING COST EFFECTIVE
DATA ARCHITECTURES FOR IOT
PLATFORMS

WHITE PAPER

External Document © 2021 Infosys Limited

Introduction
Public cloud platforms are the backbone

of many modern systems. Public cloud

providers offer a wide range of services,

from pure compute and storage to

rich platform services such as event

streams, databases, cache and container

platforms. Cloud platforms are meant to

replace private datacenters because of

the complexity and high cost of running

datacenters. Most system architectures,

simple or complex, are built using cloud

services, giving rise to the term Cloud Native

Fig 1: High-level IoT platform architecture using AWS services

Engineering or the practice of designing

systems using cloud native services.

However, if a system is not designed

carefully, cloud costs can soon spiral out of

control.

In large-scale cloud engagements, platform

cost has emerged as a chief consideration,

and rightly so. Most customers expect short

to medium term cost projections at the start

to plan their budgets. Architects need to

understand the pricing of various services

while designing systems on the cloud. In

this article, we discuss techniques that can

help control cloud costs when designing

large systems.

Cloud providers such as AWS publish

pricing for their services. Consider an IoT

set up with millions of devices connected

to the cloud and send events at frequent

intervals. The platform must be able

to ingest all events, store and process

them. As with typical data architecture,

this architecture should follow a hot

path for real-time data processing and

notifications and a cold path for later use,

such as data science and analytics.

© Infosys Limited

Transactional DB
[RDS / DynamoDB]

Micro-Services
[EC2/ECS/Lambda]

IoT G/W Kinesis
Data Stream

Kinesis
Firehose

S3

Elasticache API G/W

Redshift

SQS SNS

Devices

Business
Services

Apps / Portals

External Document © 2021 Infosys Limited

Building a platform on AWS would typically involve the following services:

Service Usage & Pricing

IoT Gateway
Ingests event data from IoT devices and supports multiple protocols. We can apply rules and
take actions on incoming messages.

Kinesis Data Streams
High throughput persistent data stream for incoming data. Couple it with Kinesis Firehose to
transfer data directly to S3 without custom code

Kinesis Data Firehose Deliver incoming data to a cold storage such as S3 or Redshift

S3 Object storage for event data, used for storing raw data from all sources.

RDS / DynamoDB
Database for processed data. It serves as a transactional database for front-facing business
services.

EC2 / ECS / EKS / Lambda Various options for hosting micro-services for business APIs

SNS / Pinpoint Sending notifications

IAM / Cognito / WAF / Shield Access and security considerations

Redshift Data warehouse for business analytics

API Gateway API management

In addition, we need other services such as networking, security, KMS and Parameter Store to design an enterprise level system.

While the pricing of cloud services is not significant, the costs can pile up quickly depending on the volume of data flowing in and processed by
the platform.

External Document © 2021 Infosys Limited

Considerations for Cloud Cost
Optimization
This section discusses a few cloud services
in detail, provides an understanding of their
pricing and explains how to optimize costs
by making informed architectural decisions.

Kinesis Data Firehose

This service can ingest an incoming stream
of data and deliver it directly to certain AWS
services such as S3 and Redshift without
custom code. It is a highly durable service
and can buffer incoming messages for a
certain duration before delivering to S3.

Pricing: Firehose Pricing

Consider a case where Kinesis Firehose will
write to S3. Here, the charges will be for
both Firehose and S3. Firehose charges are
based on data volume ingested, and there
are additional charges for format conversion
and data delivery to a different virtual
private cloud (VPC). S3 charges are based on

the data volume (storage needed), and each
read and write.

Writing each incoming message to S3 will
incur higher charges than buffering the
messages and restricting write operations
to S3.

Cost Optimization

While it is not possible to save on Firehose’s
charges, it is possible to save on S3 bills.
By default, Firehose writes each incoming
message to S3 independently, which
would count towards the number of write
operations in S3. If the business case
permits, we can configure Firehose to buffer
incoming messages and write to S3 only
periodically. This leads to reduced write
operations in S3 and saves write charges.

Firehose service provides two settings –
buffer size and buffer interval. For S3, it can
buffer up to 128MiBs and buffer interval can
be from 1 min to 15 min (AWS reference). In
an IoT scenario, the number of devices and

the number of messages are usually high,
whereas the message size is quite small.
In such a scenario, buffering messages in
Firehose can save costs significantly over a
period.

S3: Simple Storage Service

A widely used object storage service, S3 is
an extremely cheap and highly available
storage service. Within S3, AWS offers
various tiers or storage classes with different
durability levels and retrieval times, and
the prices of these tiers vary accordingly.
S3 standard tier, which is most durable and
highly available, is priced highest, whereas
Deep Archive, which has retrieval times of
up to 48 hrs, is priced lowest. Read more
about S3 storage classes here.

Pricing: S3 Pricing

Storage costs in S3 depend on multiple
factors such as data volume, storage
tier, duration of storage and number of
reads/writes. Costs can increase if these
configurations are not set up appropriately.

https://aws.amazon.com/kinesis/data-firehose/pricing/
https://aws.amazon.com/s3/storage-classes/
https://aws.amazon.com/s3/pricing/

External Document © 2021 Infosys Limited

Lambda Functions

Here is another popular service used in
serverless architectures. Enterprises cannot
control the number of requests, and hence
memory allocation and execution time can
control Lambda costs.

Pricing: Lambda Pricing

Charges for Lambda functions depend
on the number of function invocations,
memory allocated, and the time the
function takes to execute.

Cost Optimization

When creating the Lambda function, the
memory must be carefully configured.
Allocating lesser memory can increase
execution time, whereas configuring
maximum available memory may not
yield desired results. The right approach
is to go with an estimated baseline and
then fine-tune the memory after running
a few tests. This exercise will help strike a
balance between the memory needed and
the time of execution.

EC2: Elastic Compute

A pure compute service that is offered
through multiple hardware configurations.
AWS offers various instance types such as
general purpose, compute optimized and
memory optimized. These types are also
known as instance families.

Instances are offered under five major
categories: On-Demand, Spot, Reserved,
Dedicated Instance and Dedicated Host.
The charges for each are based on both the
instance family as well as the category.

On-Demand Reserved Spot Dedicated Instance Dedicated Host

These instances are
a great fit for general
workload scenarios
where the usage is
unpredictable, and
load can change
randomly.

Reserved instances are
suitable for scenarios
where the application
load is predictable,
and you know what
you need.

Spot is a good option
if an instance stops
anytime, then the
system architecture
ensures there is no data
loss when the instance
is lost.

These instances run on
hardware dedicated
to a customer. Hence,
they are isolated from
other AWS accounts at
the hardware level.

These are physical servers
dedicated to a customer and
suitable for scenarios where the
customer brings their own software
licenses to run on dedicated
servers. Customers also get more
hardware control in this category.

External Document © 2021 Infosys Limited

Cost Optimization

The basic rule is – One size does not fit all.
Data storage should differ based on the
use cases and types of data . Some of the
techniques to control storage cost are:

a. Choose the right storage class for your
objects. The decision should be based on
durability and availability requirements,
and the retrieval times that the business
can accommodate.

b. S3 provides lifecycle policies that can
automatically move data between tiers
based on predefined conditions in the
policy. By effectively using lifecycle
policies, an organization can control S3
charges by moving data to lower tiers for
long term archival. Fig 2 gives a view of
supported transitions between different
storage classes. Read about these
transitions in detail here.

c. Compression: In large enterprises,
S3 stores raw data from multiple
disparate sources and data volume

can be significantly high. Users can
save substantially by compressing data
before uploading it to S3. The user must
analyze data sources and identify good
candidates for compression. Kinesis
Data Firehose supports few compression

formats natively, which can be applied
in Firehose itself. There are other popular
formats like Parquet that offer several
advantages. AWS offers S3 Select service
for querying Parquet format data from S3
natively.

© Infosys Limited
Fig 2: Source: AWS

https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/kinesis/data-firehose/pricing/
https://docs.aws.amazon.com/AmazonS3/latest/dev/lifecycle-transition-general-considerations.html

External Document © 2021 Infosys Limited

Pricing: EC2 Pricing

Charges vary based on the instance family, instance categories and usage.

Cost Optimization

We can control EC2 costs in multiple ways:

a. Consider the requirements and select
the appropriate category of instances.
Depending on the use case, a suitable
candidate can be On-demand, Spot
or Reserved. It is practical to have
different instance categories for different
applications in the same AWS account as
the use cases may vary.

On-Demand Reserved Spot Dedicated Instance Dedicated Host

On-demand option
is more expensive
than others, but it
does not mandate a
commitment. You pay
for what you use.

These instances
provide up to 75%
discount compared to
on-demand instances.
However, they need to
be purchased for the
long term.

Spot instances are the
cheapest among all
compute instances. They
can offer up to 90%
discount compared to
on-demand instances,
but their prices can vary.

These instances have two
pricing components – per
region monthly fee and a
usage charge that varies
depending on whether the
usage is On-demand or
Reserved.

These servers are priced
depending on the instance
family. Prices vary between
On-demand, Spot and
Reserved.

Spot and Reserved hosts are
cheaper than On-demand.

b. Carefully choose instance family, i.e.,
hardware configuration, as each family
type offers a particular combination of CPU
and memory and directly impacts the price.

• For general workloads, use general
purpose (T series)

• For memory intensive workloads, use
memory optimized instances (R, X, Z
series)

• For CPU intensive workloads, use CPU
optimized (C series)

Start with a smaller configuration, monitor
usage and upgrade as needed. Read more
on instance types and their differences here.

c. In addition, we can employ techniques

like scheduled Start and Stop instances

using CloudWatch alarms and actions. For

available workload schedules, we can stop

them using CloudWatch when they are no

longer needed, saving unnecessary usage

and charges.

ECS: Elastic Container Service

It is a container orchestration service where
application containers are managed by an
AWS managed service for running Docker
containers. It comes with an option to
execute containers in a serverless model
known as Fargate.

Pricing: ECS Pricing

It can be used in two modes – Fargate or
EC2. The former is a serverless model that
charges on vcpu and memory selected,
whereas the latter charges on the instance
type selected. Both options have their pros

and cons, but typically, EC2 costs lesser than
Fargate for a similar configuration.

Cost Optimization

The mechanisms to control costs in ECS are
similar to EC2, as listed below:

a. Study the requirements carefully and
decide whether you need the EC2 or
Fargate model. For Fargate, calibrate the
vcpu and memory required for running
tasks. You may need to run a few tests and
check usage metrics to fine-tune vcpu
and memory.

b. Ensure you have running tasks that run for

long (24/7) only if needed - shutdown the
tasks when not required.

c. Capacity planning: Spin off only the
required tasks as each will be charged.
You need to consider the overall
architecture and use case. If the requests
are buffered and can be served near
real-time, the system can work with fewer
tasks. On the other hand, if the requests
expect real-time responses, such as UI
requests, capacity planning comes into
the picture. Always run a smaller number
of tasks and add scaling policies to scale
out based on the load.

https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ecs/pricing/

External Document © 2021 Infosys Limited

DynamoDB: NoSQL Database
Service

This is a popular NoSQL database service
as it provides extremely high throughput,
high availability and several useful features.
At the same time, its pricing is complex and
can significantly increase your AWS bills. It
is critical to understand how AWS charges
for DynamoDB and carefully design the
database, indexes and queries.

Pricing: DynamoDB Pricing

DynamoDB is charged based on multiple
factors, including but not limited to storage,
read/write requests, indexes, scans and
backups. As in EC2, DynamoDB offers
On-Demand capacity and Provisioned
capacity. The former is suitable for sporadic
workloads, and the latter is useful for
predictable workloads where performance
guarantees are needed. Provisioned
capacity offers a reserved mode that is
significantly cheaper, but the user has to pay
a one-time cost at the start along with an
hourly price.

Cost Optimization

Some of the common and important pricing
levers and the techniques that can help
bring down the costs are:

a. On-Demand vs. Provisioned: On-
demand charges are generally higher

than provisioned. In the case of
provisioned, payment must be made
for the provisioned capacity irrespective
of whether it is used or not. Therefore,
it is a balancing act between the two. A
good way is to project the workload and
provision capacity equal to the lower end
of the projected range. This approach will
generate savings for minimum traffic, and
as the workload increases, auto-scaling
can increase capacity at run-time.

b. Read & Write Requests: This is the core of
DynamoDB pricing. All Read and Write
requests consume RCUs (read capacity
units) and WCUs (write capacity units),
which are the basic units for pricing
calculations. Depending on the data size,
one read/write operation can consume
one or more RCUs/WCUs, respectively.
There are two ways to reduce read
operations on the DB:

• Optimize queries to read only the
required data rather than fetching all the
attributes for a key. RCUs depend on the
amount of data returned. Hence a lesser
number of attributes are returned, leading
to lesser charges.

• Use cache to access frequently used data.
This approach requires mechanisms to
refresh the cache, keep it consistent with
the DB and pay for the cache, but it will
soon offset the RCU charges incurred on

DynamoDB.

c. DAX: A DynamoDB cache, it is managed
and offered by AWS. DAX is charged
based on the type of node used and for
the duration used. For read-heavy use
cases, DAX can be a good fit to save RCUs.

d. Global Secondary Indexes: Indexes also
contribute to WCU and RCU. DynamoDB
creates each index as a separate table.
When creating indexes, address these
points:

• Add attribute projections to indexes to
reduce WCUs. DynamoDB maintains
separate tables for indexes, reducing the
number of attributes.

• Remove unused indexes.

This is a good reference to understand how
global secondary indexes work.

e. Table Scans: A scan operation is where the
DB engine parses all the data in a table
because it is not passed on a partition
key. It is charged based on the volume
of data scanned, and not the volume of
data returned. Scan operations can be
expensive depending on the table size
and number of operations. They must be
avoided where possible.

In addition, DynamoDB charges for Global
tables, Backups and Streams, but they are
not covered in this paper

RDS: Relational Database
Service

It is a platform managed database

service that offers a broad range of

relational database engines.

Pricing: RDS Pricing

It varies based on the engine type selected

and the instance types. In general, there

are two options to choose from: On-

demand instances and Reserved instances.

As observed in EC2, Reserved instances

always offer a better price if there is a

commitment of at least a year.

Cost Optimization

The levers that can help in cost control
include:

a. a. Right database engine: Licensed
engines such as Oracle and SQL
server are expensive, while MySQL
and PostgreSQL are cheap. AWS also
implements MySQL and PostgreSQL
engines through RDS Aurora, which is
cheaper and faster.

b. Capacity planning: Estimate the optimal
instance class for DB nodes. Getting to
a good approximation being difficult,
choose an instance class, monitor usage,
and change the instance class as needed.

c. Scaling policies: In RDS, write instance can
only scale up but read instances can scale
out. Start with one reader node and add
an auto-scaling policy to add read-replicas
when the read traffic increases. Enable
scale-in so that replicas are removed
when the request load comes down.

Cluster endpoint for writer services and
reader endpoint for read-only services:
When endpoints are used incorrectly, it
can mislead on DB capacity – for example,
it can wrongly signal that DB capacity is
insufficient during peak load. Moreover,
when a scaling event occurs, the reader
endpoint load-balances traffic between
read replicas.

https://aws.amazon.com/dynamodb/pricing/
https://aws.amazon.com/ecs/pricing/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://aws.amazon.com/rds/pricing/
https://aws.amazon.com/ecs/pricing/

External Document © 2021 Infosys LimitedExternal Document © 2021 Infosys Limited

Redshift: Data Warehouse

This is platform managed data warehouse
service, used by data scientists to cleanse
and prepare data for analysis purposes.
Redshift needs compute and storage to load
the data and run queries. Traditionally, one
needs to provision Redshift clusters and
load data from supported sources. Users
can then run complex SQL queries to filter
and analyze data. Redshift uses efficient
columnar format for data which improves
query execution efficiency since it only
scans the columns needed for the query.

Pricing: Redshift Pricing

Redshift pricing depends on the compute
nodes and disks provisioned in the cluster.
It offers pay-as-you-go pricing model where
one pays based on usage of provisioned
hardware.

Cost Optimization

There are broadly two ways to save costs
– go for long-term commitment or avoid
loading all the data in Redshift:

a. Reserved Instance: Redshift offers pay-
as-you-go and reserved instance models.
The traditional approach of loading full
data in Redshift can turn out to be quite
expensive depending on cluster size and
capacity. Like EC2, opting for reserved
instances with long-term commitment is
better than pay-as-you-go.

b. Redshift Spectrum: With this service, one
need not load the data in Redshift servers.
Spectrum allows users to run SQL queries
directly on S3 without loading the data in
Redshift, and so is a potential lever to save
money. With Spectrum, one pays for data
scanned. Thus, if the data is stored in an
efficient columnar format in S3, it would
reduce the amount of data scanned and
thus reduce the cost further.

c. Use Distribution & Sort Keys: Absence
or incorrect use of these keys can
significantly impact how the data is
stored and processed. To explain briefly,
Distribution key is like the primary
partition key. If the queries are generally
executed based on a specific column

value, eg. an identifier, then specifying
it as the distribution key will ensure
that data is partitioned on that column.
In this way, all the matching data for
a particular value of distribution key
column, will be stored together on 1
node. This increases query response
time as all the query data is co-located.
On the other hand, if the data size
for a distribution key is huge, query
performance may be better if data is
distributed across all nodes, as Redshift
will process the data on all nodes in
parallel and aggregate the results, which
will increase the efficiency.

The sort key is used to sort data on a
specific column. For eg. if the query results
are to be sorted on time, and if time
column is configured as sort key, Redshift
will store the data in a sorted fashion. If it
is used in conjunction with distribution
key, then data will be partitioned and
sorted. Both these are very powerful tools
in determining the query plan and its
efficiency.

Conclusion

Managing cloud platform costs is a
continuous process. The techniques
covered in this article have potential to
save hundreds of thousands of dollars in
cloud spend over time. These techniques
are helpful in making right architectural
decisions but once the platform is
developed and goes live, it is important to
keep an eye on the bills and monitor usage.
AWS provides services such as Cost Explorer
and Budgets to analyze service costs and to
create a budget respectively. When starting
out, one should study the costs over a

Disclaimer: This article is based on AWS based IoT platform implementations for multiple clients
and technical research.

period and create baseline budgets for one
or more services. Budgets can be created for
cost or usage and they can send alerts when
they crosses a defined threshold.

Cost efficiency is one of the core pillars of
well-architected framework and architects
must pay equal attention to it along with
other pillars while designing platforms.
Although this article is based on AWS
services, similar thought process should be
applicable to other cloud providers as well.
The idea is to think intricately about each
cloud services’ pricing and look for windows
of optimization.

https://aws.amazon.com/redshift/pricing/
https://aws.amazon.com/ecs/pricing/

© 2021 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

About the author

Ruchin Goel, Senior Architect, Engineering Services, Infosys

Ruchin Goel is a Senior Technology Architect with the IoT group of Infosys Engineering Services. He has over 20 yrs. of

experience in design and development of enterprise products & platforms in Infosec, Telematics and IoT space. He has

experience on multiple cloud platforms such as AWS and Azure.

Ruchin works on large green-field and transformation programs for IoT and telematics clients across geographies. His

primary responsibilities include designing end-to-end platform architectures with focus on data and security architectures.

https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys

