
VIEW POINT

Abstract
Enterprises need to ensure that the technology stack which caters to the
business critical applications to be operated in a fault tolerant manner. This
becomes even critical in the analytics domain within the Big data landscape.
The technology stack components needs to be deployed in distributed
fashion which can deliver a dependable and steadfast level of service
availability with huge and unpredictable data traffic. In the Spark world, the
most common problem that we face is the load balancing of the spark thrift
services for enterprises to consume it in various layers including reporting
and visualization tier.

Keeping the above in mind, we wanted to integrate the capability of NGNIX
as a load balancer to spawn multiple thrift services to satisfy the growth
demand. In this implementation, we use NGINX open source web server
software to balance the load across multiple spark-thrift instances running
across the cluster. This technique is common for optimizing the resource
utilization, maximizing throughput, reducing latency, and ensuring fault-
tolerant configurations.

LOAD BALANCING SPARK THRIFT:
SCALABLE APPROACH ON HA
SERVICES AND LOAD BALANCING ON
SPARK THRIFT SERVICE USING NGNIX

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Introduction
In order to achieve load balancing among
multiple spark thrift services, we deploy
NGINX as a standalone load balancer with
round-robin as default model in routing
the data traffic. This document covers the
architecture and configuration steps that
needs to be taken care to achieve this
requirement.

NGNIX
In a typical web architecture world, NGINX
can be deployed in a variety of scenarios
as a very efficient HTTP load balancer. To
proceed with the configuration steps, we
will require multiple spark thrift service
instances to be up and running in the
cluster. Within NGINX configuration,
this will be defined as a group with the
upstream directive. This directive comes
under the ‘http’ context within NGINX.

Available Load Balancing Models in NGINX

1. Round-robin – Requests are distributed
evenly across the servers with server
weights taken into consideration. This
method is used by default (there is no
directive for enabling it)

2. least_conn – A request is sent to the
server with the least number of active
connections with server weights taken
into consideration

3. ip_hash – The server to which a
request is sent is determined from the
client IP address. In this case, either
the first three octets of IPv4 address
or the whole IPv6 address are used to
calculate the hash value. The method
guarantees that requests from the
same address get to the same server
unless it is not available

4. Generic hash – The server to which a
request is sent is determined from a
user-defined key which may be a text,
variable, or their combination. For
example, the key may be a source IP
and port, or URI

5. least_time (NGINX Plus) – For each
request, NGINX Plus selects the
server with the lowest average
latency and the least number of
active connections, where the lowest
average latency is calculated based on
which of the following parameters is
included on the least_time directive

Spark Thrift
Spark thrift is a variant of HiveServer2
implementation which allows JDBC and
ODBC clients to run Spark SQL queries on
Spark cluster.

Spark thrift server is very much similar
to hiveserver2 thrift implementation.
HiveServer2 will interpret and submit
the SQL query constructs as Hive MR job
whereas Spark thrift service will use Spark
SQL context which utilizes the complete
spark capabilities to get and manipulate
the data-frame. The consumption tier like
Tableau, PowerBI or R can get connected
to spark thrift server using an ODBC/
JDBC driver just like how we do with a
hiveserver2 and access the hive or spark
temporary tables registered within the hive
context.

Spark Thrift Server features
and configuration details
By enabling user impersonation to run SQL
queries under the identity of the user who
originated the query. By default, queries
will run under the user associated with the
Spark Thrift server.

Challenges in Integrating
Spark Thrift and NGNIX Server
Reporting / BI Tools use the Spark Thrift
Server to convert ODBC/JDBC calls with
spark layer for achieving distributed and
highly-parallel data processing capabilities
in an efficient manner. This is commonly
done using tables registered inside the
spark context either in HDFS or S3 etc. that
are common populated for short periods
of time.

Apache Spark Thrift Server is based on the
Apache HiveServer2 which was created
to allow JDBC/ODBC clients to execute
SQL queries using a Spark Cluster. Load
balancer in front of Spark Thrift Service
- STS when the cluster with or without
kerberized and not available directly from
the spark. It appears this functionality is
currently being added to the Apache-Spark
(so we will have to wait a bit longer for it
be included in distributions such as HDP or
Cloudera). Refer the below JIRA tickets,

https://issues.apache.org/jira/browse/
SPARK-11100

https://github.com/apache/spark/
pull/9113

For now, there is no load balancing for STS
for kerberized environment is available, So
for now we have two options in front of us
either to go with Apache based - haproxy,
httpd +mod_jk or NGNIX based load
balancer for non kerberized environment.
To achieve this, there are couple of
configuration changes to be done at
various service environment tiers. Let’s
understand the deployment architecture.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Multi STS – NGNIX Deployment architecture

Client 1 Client 2

NGNIX (port 10017)

Hive Server2 (port 10000)

Hive Metastore

STS Node 1 (port 10015) STS Node 2 (port 10015) STS Node 3 (port 10015)

Prerequisite and
Configuration for NGNIX for
Load balancing
NGNIX requires a set of prerequisite and
configuration changes, the following
description will detail on each of these.
It is expected that the following lib are
available before the NGNIX installation.

• gzip module requires zlib library

• rewrite module requires pcre library

• ssl support requires openssl library

• Configure Spark Thrift Server (STS)
transport mode to listen in HTTP mode.
Propagate the configuration changes
across all the nodes in the cluster.

• Start STS in multiple nodes within the
cluster nodes

It as work with TCP module of NGNIX, you
get further information git://github.com/
yaoweibin/nginx_tcp_proxy_module.

Once we build the TCP module based
NGNIX, next step is to configure the NGNIX.
The configuration changes to be applied at
the ngnix.conf file.

Make sure that Port number “10015” is
the port on which spark-thrift is running
on different nodes and port “10017” is
the port on which NGNIX listen to client
request . After the configuration a restart of
the service required and under /usr/local/
nginx/logs/tcp_access.log to view which
spark thrift connection logs

Example with Down Stream
Systems
Downstream applications such as Tableau,
PowerBI or R code can access the data from
STS using ODBC/JDBC connection with
SASL to NGINX server port.

References
https://www.nginx.com/resources/admin-

guide/load-balancer/

https://community.hortonworks.com/

questions/33715/why-do-we-need-to-setup-

spark-thrift-server.html

https://community.hortonworks.com/

questions/116074/run-spark-thrift-server-on-

multiple-nodes.html

worker_processes 1;

events {

 worker_connections 1024;

}

tcp {

 upstream cluster {

 server 12.122.23.107:10015;

 server 12.189.53.100:10015;

 check interval=3000 rise=2 fall=5 timeout=1000;

 }

 server {

 listen 10017;

 proxy_pass cluster;

 }

}

© 2018 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

Vishnu Sankar
Architect

Big Data Architect at Infosys with experience in research and development in Big Data & Analytics space with product designing,
development & integration. Also a subject matter expert to all teams involved in the POC ,Projects including business and
architectural analysis, technical design and development and architecture using big data solutions.

Santhosh Devarajan
Big data consultant

Santhosh Devarajan is a big data consultant and developer with more than 8 years of experience in IT.He started his career with
Cognizant Technology Solutions in 2009 with data warehousing and business Intelligence as his core domain. He now works with
Infosys Limited in the big data and analytics domain with specialization on Apache Spark, Hive, workflow tools such as Azkaban and
Airflow. He is a member of the BigData Center of Excellence within Infosys and regularly works on enterprise related problems in the
big data and analytics space.

Parav Kumar Sanjeev Kumar Patel
Senior Systems Engineer

Senior Systems Engineer in Infosys Big Data COE with passion about learning and exploring various technologies and having
working experience in Big data technologies like Hadoop, Spark, Hive, Java etc. Being a part of Big Data COE I have worked on many
solutions and POC.As a part of learning and exploring new technologies in the world of Big Data I do believe that if you want to keep
succeeding in this field you have to continuously keep learning and exploring daily under all odd and even circumstances.

About the authors

www.infosys.com
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
http://www.slideshare.net/infosys

