
WHITE PAPER

ADVANCED SECURITY DESIGN FOR
FINANCIAL APPLICATIONS

Abstract
Providing foolproof security for financial applications is a rigorous
activity. Security architect needs to consider various design
considerations to make the applications bullet proof. The white
paper provides comprehensives coverage of various security
aspects of financial applications. We provide various security design
considerations, best practices, techniques and discuss a case study.
Financial applications referred in this white paper include web
applications, financial portals and other finance domain related
online applications.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

 Two factor authentication

Two factor authentication is needed

to step up the primary authentication

with a supplementary authentication

for financially critical operations. In

some cases regulatory body make it

mandatory for two factor authentication

for few transactions like fund transfer.

The two factor authentication can be

implemented with any mechanism which

is fool-proof. Some of the two factor

authentication mechanism include.

• One Time Password (OTP) – When the

transaction is initiated, the application

calls the OTP server through service

call of ESB, and OTP server connects

with the SMS gateway to generate the

OTP to the customer’sdevice. Once

the customer enters the OTP, then it is

again validated by application through

service call to OTP server via ESB.

Once authentication is successful, the

transaction is allowed to proceed.

• Security questions – When the

transaction is initiated, the application

prompts few security questions, which

the user has already set up. Once the

security answers are validated, the

transaction is allowed to proceed.

Advanced security design considerationsfor financial applications

Let us look at some of the advanced security design considerations while designing financial applications.

The below data can be prompted to the user,

Content to be signed:

From: XYZ; To: ABC; Amount: Rs. 20000 ;Mode: NEFT;Date:09-Oct-2015;Transaction Effective Date: 09-Oct-2015

Select the certificate below and sign the transaction.

Name: XYZ Issuer: ABC Authority Serial No.: 23455

When the user signs the transaction with the certificate, the application need to prompt for the password to access the private key, using
which the data above will be encrypted.

• Hard tokens – When the transaction is

initiated, the application prompts for

token number generated, on the hard

token which the user holds. The token

is authenticated, and then the user is

allowed to proceed the transaction.

 Digital Certificate based
security
Certificate based security is a security
mechanism wherein we leverage the
digital signature certificate(DSC) held
by the user for authenticating the
user for secure transaction. Ideally
the user will have to hold the digital
signature certificate issued by Certifying
Authorities in the form of hard token
like pen drive. When the user wants to
do the transaction, he would plugin
the hard token into the physical
device like desktop/laptop, and the
web applicationshould get the digital
signature certificate from the hard token,
and prompt the user to sign the digital
certificate for the transaction.

Let us take an example of a user who
wants to do fund transfer transaction
with DSC.

As a foremost step, the user would need

to get the DSC from one of the Certifying
Authorities, approved by the Office of
Controller of Certifying Authorities (CCA).
Then the user needs to register the
certificate with the finance application by
inserting the hard token into the device.
The application would get the private
key of the certificate from the hard
token, and gather the customer details
of the logged-in user from its internal
application, and prompt the user to
register the certificate. Once the user the
confirms the registration, the customer
details can be encrypted with public key
provided by the user, and sent to another
server application (DSC Manager)
through service calls, which can manage
the binding of customer and digital
certificates, and authenticating whether
the user has provided a valid certificate.
After the DSC registration is successful,
the user can do transactions based on
digital signature certificates. The user
logs into the portal, and assume he
wants to do a fund transfer transaction.
He would insert the hard token, and then
fills all the details for the fund transfer
on the portal. When he submits the
transaction, the application would read
the DSC from the hard token, and prompt
him to sign the transaction details.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Feature Benefits

DSC Enrollment

The user enrolls the digital signature certificate in banking system, which will be mapped with his

unique customer id. The user is confident of the security system that the transaction can happen

only on providing the DSC which he holds.

Authentication mechanism

Gains the confidence of both bank and customer from authentication perspective, and the bank

can also be confident that the transaction happened only within the knowledge of customer, as no

one else is supposed to have his own digital signature certificate.

Benefits of DSC Security:

A sample flow for this is shown below:

Finance Application DSC Manager

User DSC
Enrollment into
Finance System

User opts out of
 DSC

Re- Register with a
di�erent DSC

Initiate
transaction

Able to
read DSC

from
device

Admin
approval

Authentic
ate the

user

Deny Transaction

User sings the
transaction details

with this DSC

API

API

API

API

APPROVED

No

YES
YES

Enroll DSC and map it
with Customer Id

Deregister the user DSC

Register the user DSC

User is enrolled into
DSC Manager

User is deregistered in
DSC Manager

User is re-registered
with a di�erent DSC

in DSC Manager

Deny Transaction

Allow Transaction

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Adaptive authentication (risk evaluation and multi factor authentication):
Adaptive authentication is a

comprehensive authentication

mechanism to analyze the risk associated

with a transaction based on the device

print, geolocation, user’s past behavior

etc. An adaptive authentication (AA)

system could be developed which would

calculate the risk score, based on the

risk parameters. Based on the risk score,

the bank can step up the authentication

if necessary. The policies can be set in

adaptive authentication framework,

which can precisely identify what kind of

authentication mechanism will best suit

based on the risk profile of the customer.

Adaptive Authentication system

wouldmeasure authentication

related risks and determines level of

authentication required based on risk,

policies, and customer segmentation. You

may ask a question, how the adaptive

authentication mechanism could know

the risk associated with a transaction.

Ideally this AA system should keep on

capturing the user behaviour and device

prints, which would enable to detect any

unusual transaction.

Assume a user has done the transaction

only from India for the past two years,

and suddenly a transaction is detected

from another country say Namibia. Then

adaptive authentication system should

consider this as a suspicious transaction.

But the customer may have indeed

travelled to Namibia also, and carrying

the transaction. So AA system, would

prompt for additional authentication

checks like One Time Password, Challenge

Questions, or any other step up

authentication system. What authenticate

an AA system would trigger depends on

the policies which we configure in the AA

system. The user would be authenticated

for step up authentication. Once

authenticated, the user can continue

the transaction.

AA system captures device finger print

like browser info, display settings, time-

zone settings, installed software, regional

language settings, IP address, cookies etc.

For a mobile device, it ccaptures mobile

finger prints like SIM ID, hardware ID, Wifi

Mac Address, Address book size etc, for

risk analysis of mobile transactions. AA

system captures the user behaviour and

tracks the transactions and its parameters,

which could help to challenge the user

for any unusual behavior or transaction,

when the user tries to initiate

the transaction.

AA system can be further enhanced

by centralizing the list of IP address,

device prints etc., from where fraudulent

transactions have been detected

consistently. If AA System should

encounter a transaction from such IP

address or device, then the transaction

can be denied straightaway, rather than

prompting to step-up the authentication.

When the customer is registered on

the finance application, the user would

also need to be registered into the AA

system simultaneously. The user can be

registered using API call of AA system,

which can be called from the

finance application.

Once the user is registered in the AA sys-

tem, it is time to capture the user’s profile

information also, and pass them to the

AA system through API calls. What kind of

profile information would be required by

an AA system – Well, it depends on what

kind of step authentication are required,

and what profile information is required

to execute it.

Consider a case, wherein the finance

institution wants to implement two

authentication mechanism as part of

adaptive authentication - challenge

questions (CQ) and One Time

Password (OTP) authentication. For CQ

authentication, what profile information

are needed? The challenge question

and answer set by the user would be the

profile information, which is required

by the AA system from the finance

application. Similarly to implement OTP

authentication, what profile information

would be required? Yes, it is obviously

the mobile number. If OTP need to be

triggered through Email also, finance

application need to send both mobile

number and email id of the user to

the AA system.

Now let us see, how to implement CQ

in a finance application for adaptive

authentication. The list of challenge

questions would be configured in the

AA system. You can separate the list of

related questions to a group, and multiple

groups can be configured in the AA

system. Ideally the AA system should

have an interface to add groups, and add

or edit the questions within the group.

The finance application can fetch all these

list of challenge questions through an API

call, and display the challenge questions

to the user. The user can be mandated to

answer at least one question in each of

the group, which can be passed to the AA

system through an API call. Now you may

ask a question what would happen if the

user forgets the challenge answers which

he had already set. Portal can provide an

option to the customer to reset the CQ

with a mandatory OTP.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

For implementation of OTP, as one of the

means of adaptive authentication, the

mobile number or email can be passed to

the AA system, either during registration

process of the user to the AA system,

or by prompting the user to set up the

mandatory profile information, which can

be passed to the AA system.After getting

all the user information, AA system

should have the following capabilities.

For each of these capabilities, the AA

system should expose a service to the

finance application.

• AA system should be capable of

calculating the risk score of the user

based on the risk parameters, and

return the corresponding adaptive

authentication best suited to customer

profile and risk. For e.g., the policies

would determine whether challenge

question, One Time Password, or

both or any other authentication

mechanism need to be triggered to

the user.

• Once the authentication mechanism

is decided, the AA system should

be capable of gathering all details

required to trigger the corresponding

authentication mechanism. For

e.g.,if the authentication mechanism

triggered by AA system is Challenge

Questions, then a service should be

exposed from AA system, so that

the finance application can invoke

the service, and fetch the challenge

questions to be answered by the user.

• Once the user inputs the data required

by the adaptive authentication system,

the AA system should be capable of

getting the data and authenticate

against the corresponding

authentication mechanism under

it purview.

• If the authentication mechanism is

outside the purview of the AA system,

then the authentication result should

be capable of capturing the notification

of authentication result from the web

application, which would help in

capturing the user behavior, and this

could again help in calculating the risk

score based on user behavior. For e.g.,

the financial institution can implement

OTP as separate entity, rather than

binding it to the AA system – the

simple reason for this principle, could

be that the OTP server could be used

by different systems for any mandatory

OTP required by the finance institution,

rather than an adaptive authentication.

In this case, if OTP verification is

successful/failed, the result need to

be notified to the AA system by the

finance application.

External Document © 2018 Infosys Limited

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

If the AA system is designed and
implemented with all the above things
in mind, the AA system is now ready to
evaluate the risk score, suggest suitable
adaptive authentication required, and
authenticate the user based on it.

We would consider two cases of adaptive
authentication – Say OTP, and
Challenge Questions.

If AA system considers the OTP would
be sufficient for adaptive authentication,
then AA system can itself trigger an OTP to
the user, if OTP implementation is bound
within the adaptive authentication. Once
the user enters the OTP on the portal, it
will be authenticated with the AA system.
If the finance institution already have

an enterprise OTP system, and would
like to go through it only, and then AA
system’s OTP mechanism can be skipped.

In that case, AA system would respond
back to portal asking to trigger the OTP,
and inform back the OTP authentication
success/failure status through notify API
call. If AA system considers that challenge
questions would be the most opt adaptive
authentication, then AA system would
inform back to portal to trigger CQ
(Challenge Questions). The portal can
get few questions, which the user has
already set through the portal. The user
would now answer the questions, and gets
authenticated from AA system.If AA system
considers that the transaction as very high
risk, then it can take a decision to prompt
for both CQ and OTP, based on the policies.
In that case, both security mechanism
need to be authenticated before allowing
the transaction.AA system can consider a
transaction as safe, and in this case it will
respond back with ‘ALLOW’ status to the

portal. Now, it is the portal’s turn to decide
whether step up authentication is required
or not. You may now ask a question that
if AA system considers a transaction as
safe, why would portal need to again
bother about step up authentication.
Regulatory body under which the bank
operates may ask for a mandatory step up
authentication for few critical transactions
like fund transfer. In that case, portal have
to prompt for a step up authentication
which it considers as most appropriate.
Most banks go with a mandatory OTP in
case of compliance requirement from the

regulatory body.

A sample AA flow is given below. Adaptive
authentication of OTP and Challenge
Questions mechanism is considered in
this workflow

Touch Point Adaptive Authentication Implementation

User
Registration

Transaction

Challenge the
transaction

User Enrollment into
AA System

Risk Analysis
Action
Status

Auth
Status

Credenital
Type

API API

API

API

API

ALLOW

DENY

CHALLENGE

OTP QUESTION

true

false

Set up Challenge Questions for
CQ authentication.

Gather mobile number/Email for
OTP authentication.

Allow Transaction

Deny Transaction

Retreive Challenge Questions
Challange A PI

Allow Transaction

Deny Transaction

Authenticate
the user

Trigger OTP to
the user

Challenge the User

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Feature Benefit

Risk Analysis
The implementation helps in analyzing the risk associated with a user or transaction based on
the risk policies configured in adaptive authentication system. Based on the risk analysis, the
transaction can be allowed, reviewed, challenged or denied.

Reusability of authentication
mechanism

The implementation helps in leveraging the authentication mechanisms built as a standalone
entity for adaptive authentication. The AA system can trigger the authentication mechanism, which
can be fulfilled by the standalone enterprise authentication system of the finance institution.

Authentication and notification
systems

AA system provides the step up authentication system, and would keep hold of the authentication
results for future risk analysis. If a separate authentication system is used, other than inbuilt
authentication mechanism of AA system, then the implementation provides an option to notify the
adaptive authentication system of the authentication results.

One Time Password acts as a step up

authentication mechanism, and enhances

the security of the transaction. OTP is

required to be initiated and authenticated

in case of compliance perspective for step-

up authentication. It can also be prompted

when the risk profile of the transaction is

high. Only after validating the OTP, the user

can proceed with the transaction.

Benefits of AA system

OTP support:

Intiate
Transaction

Generate OTP REST
application/JSON

Response Status Response Status

Response Status

JSON to XML request Generate OTP SOAP

Validate OTP SOAPJSON to XML request

 XML to JSON

 XML to JSONResponse Status

Continue/Reject
Transaction
based on status

Validate OTP REST
application/JSON

Finance
Application

ESB
Adaptor ESB OTP Engine

For OTP to be generated and validated, it is

advisable to go with a separate enterprise

OTP server. As OTP can be generated not

only by portal, but can also be required

for various other applications including

switch in an enterprise bank operations.

So instead of directly accessing the OTP

server, it is advisable to access the OTP

server through Enterprise Service Bus

channel. If OTP server expose its services

as SOAP services, and you would want

your portal to consume it as REST services

for uniformity and consistently, then you

can build an adaptor in ESB to convert the

JSON request to SOAP request, and SOAP

response to JSON response. The sample

flow is depicted in following diagram:

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Main security best practices for finance applications are given below

• Identify and classify data: Classify the

sensitive data as per the regulatory

compliance

• Protect your data at rest:

 If the data is stored on a drive, either

the entire drive can be encrypted or

file by file encryption can be done.

 If data is stored in a database, either

the entire database can be encrypted

or value-by-value encryption can

be done

• Protect your data in motion:

 SSL/TLS encryption must be used

for any HTTP traffic with a validate

certificate from a trusted authority.

• Security events logging:It is

recommended to meet the following

Security Events Monitoring

requirements:

• Security events must be enabled for all

type of access (e.g. console, remote,

terminal, etc)

• Logging configured to provide at

minimum details of the user, date,time,

IP Address and event.

• Log entries must be sent to remote

Central log server.

• Logs must be reviewed by qualified

operations staff and reported to

business owner for abnormal activity.

• Session should be invalidated after

log out.

• SQL Injection should not happen from

the application. Application should

restrict the special characters that are

dangerous for SQL injection.

• Link injection should not happen from

the application. Special characters

should be restricted, which are prone for

HTML script injection.

Security best practices

• Click jacking should be prevented by

setting the browser response header –

X-Frame-Options to DENY, that instruct

the browser to not allow framing.

• The application should not be prone to

Cross Site scripting. It is possible to gain

access to gain access by injecting special

characters in between the URL, which

may allow a hacker to view or alter the

user records. So, application should

restrict the special characters that are

dangerous for cross site scripting.

• All cookies should be set to Secure in

order to prevent cookie being

sent unencrypted.

• When the session is idle for a prescribed

time, the session should time out

and expire.

• Always change password should be

allowed, if he gives the old

password correctly.

• The password policy should adhere to

complex password with alpha numeric,

special character and a minimum length

of eight. This way password cannot

be predicted using brute force attack/

dictionary attack.

• Use salted hash password for

authentication to avoid brute

force attack.

• Application code should never be

displayed on the browser through stack

trace when there is an application error.

• All input data should be validated both

at the client and server level.

• Always mask the sensitive information,

when displayed on portal browser

or logs.

External Document © 2018 Infosys Limited

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Case Study
In this section we will look at a case study of a retail banking case study to discuss the security aspects

External Document © 2018 Infosys Limited

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Problem Statement
XYZ bank wants to start its retail banking operations in a short timeframe, and its retail team have developed all the core features

and rolled out their portal for sign off to its internal security team. But the XYZ’s security team noticed many security flaws, though

the portal is fully operational with all its features. Few problems noticed by security team includes

Now, the retail team was quick enough to hire a security consultant, and guide the retail portal team to bridge all the flaws. Now

all onus lies with this security consultant to solve all security flaws, and make XYZ Bank Go-live. Now list down what all details the

newly hired security consultant should gather, and what recommendations should he give to the team.

• Password is hacked and compromised,

though it is encrypted.

• Able to hijack the session with

predictable session identifiers.

• Able to call backend services directly

hitting the service URLs without any

authentication.

• Simultaneous login allowed from

different browsers and devices.

• Able to go back, forward and refresh the

browser, resulting in resubmission

of forms.

• The portal can be accessed from

same login from Namibia and India

geolocation within a time frame of

15 minutes, though it is not possible

to travel between two destinations

in that timeframe. Remote desktops

are possible from India to Namibia,

but things cannot be assumed and

security be compromised.

• Browser HTML code can be edited

through developer tools, and can skip

the div which prompts for OTP and

its authentication.

External Document © 2018 Infosys Limited

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

 Solution

Rather than throwing out, what he

knows about all security measures and

best practices the industry follows, the

security consultant was interested in

understanding the current system, to come

out with the customized solution for the

bank. The consultant heard the following

things which the retail portal team had

implemented.

• The retail banking portal relies on

username and password validation for

giving access to the retail portal. There

was strong complex password policy

already in place.

• The password was encrypted with SHA

algorithm which is a strong

encryption algorithm.

• Team has implemented security

measures to restrict special characters

on all form fields, to avoid SQL and

XSS attack.

• The site is secure, and all sensitive

information flows through HTTPS

secure encryption.

• All cookies are set to secure, and cross

site frames are denied.

Though the team made its best effort

to adhere to all security measures,

the consultant felt that there are

problems on authentication mechanism

implementation, which need to be

supplemented with another security

mechanism for session maintenance.

Consultant’s suggestion goes as below.

User credential validation are not enough

for banking portal, and need to be

complemented with a Unique Identifier

(UID) authentication. He suggested to

generate the UID on successful login,

and store the UID in user’s browser

client, and server cache, holding the

mapping between customer id and UID.

For subsequent request from the client

browser, all requests should go to the

same UID need to be sent for validation to

sessionUIDFilter, and again on validation a

new UID is generated and stored in user’s

client browser and server cache for the

customer. The cycle keeps on repeating. If

UID does not match, session should expire.

When user refreshes, goes back and

forward, obviously UID expected by the

server mismatches, and session expires. To

their surprise, the same implementation

also solved multiple other issues they

faced. It prevented simultaneous login,

as UID cannot match and new session

cannot be created. It also prevented from

accessing the portal service urls directly, as

it goes to the sessionUIDFilter and with no

valid session and right UID, the service url

cannot be accessed.

Though SHA password cannot be

decrypted, it can be prone to dictionary or

brute force attack using lookup table. So

he suggested to implement salted hash

password, using BCryptPasswordEncoder.

The team implemented the same using

spring security.

He also suggested to implement adaptive

authentication mechanism, which will

track the geolocation from where the

portal is accessed, and prompt for second

factor authentication like OTP or security

questions. The team implemented this, and

helped in exceeding the expectations of

security team by triggering second factor

authentication for unusual behaviour of

the user.

The consultant suggested to put

validations and authentication checks in

the server side also, so that it cannot be

skipped by tweeking the HTML code. He

also suggested to disable right clicks and

launching developer tools from

the browser.

XYZ bank again went for sign off from it

security team. Now the security team is

happy that they were not able to guess or

lookup any of the passwords, could not

hijack the session, could not have multiple

simultaneous sessions, could not access

service URL directly or skip authentications.

It also triggered second factor

authentication for suspicious behaviors. All

browser navigations like back, forward and

refresh expired the session. Sign off was

given and XYZ bank went live without any

security problems. The consultant did his

piece of work fabulous.

© 2018 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

About the Authors

Shailesh Kumar Shivakumar

Shailesh Kumar Shivakumar has over 14 years of industry experience. He is currently working as Senior

Technology architect at Digital Practice in Infosys technologies. His areas of expertize includes Enterprise

Java technologies, Portal technologies, Web Technologies, Performance Engineering. He has published

two books related to enterprise web architecture and Enterprise Portals and UXP and has four patent

applications. He has published several papers and presented talks in IEEE conferences in the areas of

web technologies and performance engineering. He has successfully lead several large-scale enterprise

engagements for Fortune 500 clients.

Babu Krishnamurthy

Babu Krishnamurthy has over 11 years of industry experience. He is currently working as Technology

architect at Digital Practice in Infosys technologies. His domain expertise include banking, ecommerce

and networking domain. His area of expertise in technology includes Enterprise Java technologies, Portal

technologies, eCommerce technologies and Web Technologies.

www.infosys.com
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/Infosys
https://www.slideshare.net/infosys

