
PERSPECTIVE

BEST PRACTICES IN
AUTOMATION TESTING OF
MOBILE APPLICATIONS

Abstract
In today’s world, the mobile application landscape is growing across all business
verticals because of the excellent usability of such applications by billions of
mobile end users. To tap such mobile users and convert them into a customer base,
organizations have gone to the extent of creating their own app-store markets as per
users’ interest areas like gaming, banking, retail, etc.

However, this also poses challenges on the cost optimization due to the ability to
support various types of mobile devices, and operating systems like Android, iOS, and
Windows. QA is costlier than even development, as organizations need to

• Test-certify on too many device models, OSs, platforms, and combinations

• Do such testing more often, because of multiple OS upgrades, launch of new
device models, new releases to remain competitive on mobile features, etc.

In such a critical situation, we need a solution where we can automate testing as
much as possible.

Keeping in mind the most important aspect of industry demand, we are writing this
paper to help understand the space, prove the value of automation, and understand
its challenges and best practices.

Overview of the mobile
automation space

Automating every kind of mobile functional

test case is neither possible, nor required.

Automation percentage will vary based on

the functionality of use cases, tool selection,

the type of application, and business process

automation feasibility.

It is observed that while organizations

have clear mandates for automation, there

is an unexpected absence of a matured

automation-tool strategy. The confusion

over tool features and compatibility has

caused organizations to start their

automation journey by hunting for open-

source tools first. The base reason, however,

is the unclear understanding of RoI and

misunderstanding the tool's true features.

Today, there are many automation

tools available – like Appium, SeeTest,

MonkeyTalk, and Calabash, some of which

are open source.

Tool vendors have also created cloud-

solution options to capture opportunities

where an organization does not want to

make heavy initial investments. Tools like

Perfecto Mobile, DeviceAnywhere, and

Sauce Labs offer solutions to automate

testing and also reserve devices over cloud

for nearly all kinds of QA work.

What should companies look
for in mobile automation?

Mobile automation is no different from any

other strategic initiative in an enterprise.

If done right, it can make the enterprise

very efficient in mobility QA. If taken lightly,

it will not give any real benefits.

• Mobile automation will not remain

isolated for very long. It will gradually

integrate with multiple business

channels and technical processes, to

evolve towards a complete framework

based on automation tools.

Companies should look for –

 How one can combine web, mobile,

and desktop application testing into

a single strategy, with the best reuse

of functional knowledge, tools, and

technical innovations.

• Automation is not limited to QA

activities alone. Development teams

can also use automation tools for unit

testing. This could potentially help

prevent defects at the source, and

improve the quality of applications

in a very effective way. Companies

should check –

 How automation tools can integrate

with the development technology

landscape and improve the

overall development quality of

the application.

• How to ensure the ability to
`automate from anywhere' so that
the entire development and QA
teams have access to the tools and
devices to automate tests

• Any interdependency between
development and QA caused by the
tool itself could start becoming a
bottleneck. Companies should avoid
code-intrusive tools and any such
interdependencies.

• Mobile QA has a significant role
in ensuring content delivery and
content-rendering on device. If the
automation tool can also address
performance testing under a single

roof, it will be an added advantage.

Point of view for best
practices
Mobile QA automation has areas that are

prone to show up as challenges. You must

understand such areas in advance, and be

proactive to follow the best practices to

overcome these challenges quickly.

Automation
estimation

Right selection of tool
and software compatibility

Technical
challenges

Recording
issues

Locating
UI elements

Parameterization,
dependency

testing,and looping

Run test in parallel
or in sequence on
multiple devices

Continuous integration
and reporting

Recording user scenario
and converting to

preferred language

Client-server model
approach in designing

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Automation estimation

Challenges

• POCs (proofs of concept) taking more
effort than expected and not closing
down

• Automation is not giving effort benefits
when compared to manual testing

• Manual testing is still followed as test
automation did not complete on time

Best practice

• Before starting an automation exercise,
at the RoI stage itself, the cost needs to
be calculated based on estimation

• Do not miss any of the following
estimation efforts. All of these efforts are
required –

 Environmental setup effort, device
clients creation, and setting up the
application for automation

 Proof of concept and pre-validation
of the most critical requirement

 Script preparation effort

 Script execution effort

 Any review and rework

 Dry runs

 Integration with third party tools like
Jenkins, CVS, etc., for configuration
control and continuous integration

 Defects logging effort

 Reports and report analysis

• Analyze deviations in the estimated
versus actual effort, as it will point to
a key area not going well – such as,
incorrect tool selection, unavailability of
automation skills, etc. Re-plan project

• Estimation effort may not remain same
for all tools

• For recording user stories, each and
every tool will have its own way of
working (e.g. Appium uses location of
native / web elements by UI locators,
MonkeyTalk uses Monkey ID for
recording purpose). The tool may not
have a good recording interface or
elements-recognition capability.
Ask the tool vendor to update how
estimation effort will change based on
app type and OS

• It is always ideal to understand the

user base and target the automation-

percentage to be achieved on the

planned device / OS combination. Rely

on the mobile app analytics to arrive

at this data

The mandatory expectation should be that

automation estimates will depend on the

tool selected. Understanding of effort,

based on the selected tool, will also help in

selecting a best-fit tool and areas of higher

effort spend (tool limitations).

Adjustments to estimation parameters:

• When selecting a tool, monitor the

following features when performing

a POC and adjust the estimation

productivity. Select a tool that has a

positive impact on RoI-based on the

following parameters –

 Recording support

 Availability of tool knowledge

documents, and training / skill

development costs

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Recording
user scenario

Replay
recorded script

Modify script
and run

Integrate with
third-party tools

Export recording script into eclipse with
user-preferred programming language Analyzing report

 Extent of reusable artifacts utilization

(e.g. same script can be used for both

Android and iOS)

 Efficiencies of script executions

 Complexities of integration with

continuous integration tools

(e.g. Jenkins)

 Ability to capture logs / screens for

defect loggings

 Reporting support provided in the tool

Selecting an automation tool

Challenges

• There are multiple tools claiming to be

the best-in-industry

• Price varies from being free to very costly

• Multiple architectures (e.g. cloud-based,

emulators-based)

• Not all information is available in the tool

fact-sheet to appropriately understand

the criteria to select

• Unknown roadmap and unclear long-
term commitments from tool vendors

Best practice

Mobile automation tool selection is the most
important and most sought-after area of any
mobile automation strategy. While there are
multiple tools, the good news is that most
tools work on very similar architectures and
have similar base building blocks.

Shown below is the basic working model

diagram of automation tools:

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Tools
Android iOS

mWeb Native Hybrid mWeb Native Hybrid

Appium Y Y Y Y Y Y

SeeTest Y Y Y Y Y Y

Silk Mobile Y Y Y Y Y Y

Robotium ? Y Y NA NA NA

iOS Driver NA NA NA ? ? ?

Frank (iOS) NA NA NA NA ? NA

Android UI Automator ? Y ? NA NA NA

Seledroid (Android) ? ? ? NA NA NA

The table below provides a quick general / illustrative compatibility of current automation tools with mobile app types / OSs

NA - Not Applicable ? - Required Attention for POC Y - YES N - NO

Initially, record the user test case. This

saves time for creating manual scripts

right from scratch. After a few replays and

customizations, the script gets calibrated

for the expected outcome if it is run from

the UI panel of the automation tool. We

then export the recorded script into a user-

preferred programming language to apply

parameterization, looping, dependency

testing, and the likes.

For selecting the right tool, take the

approach / steps below –

• Create a specific task during project

planning for evaluating, selecting, and

performing a POC on the tool and pre-

verify it. Tool selection is critical.

An incorrect tool will cause investments

to go down the drain and result in

missing project timelines and more

effort / cost.

• Also collect statistics on the effort

spent, technology skills, customization

required, etc., during the tool evaluation

phase, to recheck RoI calculations.

• Do not plan isolated projects;

list all mobile application types and

OSs (including desktop app OS, not just

current app but also planned future

apps) used in RoI calculations. All tools

do not work on all mobile application

types and OSs. The tool vendor will

be explicitly detailing out all

compatibility issues.

• Avoid tools in which a programming

interface for script-modifications is not

available, as most of the times we

need to make changes in user

scenario and reporting.

• Select a tool that will enable execution

on both devices and simulators. Most

developers rely on simulators to verify

functionality, and if we were to move

validation / quality checks to earlier in

the release cycle, this will be useful.

• Community support for the tool is

another major criterion which should

influence a tool selection.

• Page object pattern is the best choice

for writing automation scripts and

has benefits in script reusability. It

will also make the test more readable,

maintainable, and robust in

an Agile environment.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Tool name Out-of-the-box integration
with test mgmt. suite

Integration with
CI tools

Improved result
reporting support

Apache JMeter Y Y N

SeeTest Y (HP QTP, Sel., JUnit,
VS, and Python) Y (HP, ALM, and a few others) Y

Selenium, Appium Y Y

MonkeyTalk N Y N

Tool name
Same script
runs on all
platforms

Remote device
testing

Parallel run
on multiple
devices

Log capture for
defect logging

Screen shot capture
for defect logging

Apache Jmeter NA NA NA Y N

Seetest Y Y Y Y Y

Selenium, Appium Y Y Y Y N

Monkey Talk Y Y Y Y Y

Tool name Web/mWeb Native iOS Native
Android Native Blackberry Native Windows

Apache JMeter Y N N N N

SeeTest Y Y Y Y Y

Selenium, Appium Y Y Y N N

MonkeyTalk Y Y Y N N

Tool name Licensing type Recording Object identification

Apache JMeter Open source Y N

SeeTest Medium price Y Y

Selenium, Appium Open source Y Y

 Open source Y Y

Quick data sheet on a few popular tools

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Handling challenges during recording

Challenges

• Replayed script not working; recording

takes more time and effort. We end up

applying test / image validation, page

load and element waits, and correct

unique element ID

• Recording not supported for RWD, native,

or hybrid mobile applications

• Application crashes during recording

• Application times out

Best practice

• Check explicitly with tool vendors

the recording features provided by

‘Application Type’ and ‘OS’

(e.g, mWeb app for iOS testing). A few

tools may not support recording for RWD

web-apps the way they do for native apps

and scripts to be written manually.

• For web-apps, check with the

development team if the application

is fine-tuned for mobility. Memory

and CPU usage not tuned for mobility

could cause applications to start crashing

while recording.

• Check tool connection options with the

device (USB / IP Address / UDID, WiFi).

Connectivity plays a role in speed, and

good infrastructure needs to be ensured.

Tools that use JSON-wired protocol use

USB connected devices.

• If the tool provides recording facility but

is not working, check element XPATH

/ ID and replace correct ID / XPATH in

recorded script.

• If the tool does not provide the recording

interface, try Selenium-provided

recorders, specifically for RWD mobile

apps. We will need to write the script

manually for each element corresponding

to its locator ID and that will take effort.

Estimate the effort accordingly.

• While exporting the recorded script check

if there is any missing library to be added

in the build path.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Location UI elements

Challenges

• Technically, for automation, one will
need to recognize the application’s
unique ID to determine whether an
object is text / image that can be located
on the page

• Huge effort required to debug and fix,
as the tool is not able to find location
UI elements or discovers too many
elements with the same ID

• The tool fails to locate specific elements
on a page.

Best practice

When searching for an element on the
page, tools behave differently with
different mobile application types.

Try avoiding a tool that does not support

both recording as well as UI elements

identification (even if it is free of cost). It is

an effort intensive task and the costs saved

from the tool will go into manual effort.

• There are alternative solutions possible

though - e.g., Appium automation for

RWD web apps can use Chrome browser

mobile emulators for locating element

of a responsive web page

• If application is hybrid / native, then

for Android application, Android SDK

in-built UIAutomator can be used for

element ID. iOS application can use

tool-provided locators like ObjectSpy

(SeeTest), component tree (MonkeyTalk),

and Appium Inspector (Appium)

• Chrome and Safari developer tool

options have locators available; there is

also an option for copying XPATH / CSS

PATH for any element locating on

the web page

• MonkeyTalk uses the Monkey ID for

locating elements on a page, or using

component tree we can locate elements

on a mobile screen

• Tools can timeout while identifying

objects. Tools using socket

programming might timeout at the

back-end when they are unable to

differentiate between native and web

elements

• It is advisable to have a Page Object

pattern approach for UI testing

(especially when there is a possibility

for UI changes) using a multi-tier

approach. It will provide very easy and

maintainable scripts in the long run, that

is, Infosys IP ZED3 and iWAF

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Handling Environment setup issues

Challenges

• Installing a tool requires library

knowledge

• Environmental setup will need

understanding of operating system

environment variables, terminal

commands, and path and classpath

setting for virtual machines

• Environmental setup varies based on

mobile application type as sometimes

we need instrumentation code, and

some vendors provide instrumented

app Browser that can be used to

connect and record

Best practice

• Plan skilled automation resource or

trainings in the project plan itself

• Note down all information like Apple

developer account license, mobile

devices UDID and server machine

required with software components

(XCODE Vx.x, Android SDK Vx.x, etc.)

• Sometimes, the latest version may not

be the right choice for all dependent

components. Do not install just the

latest versions. Explicitly check all

dependencies on components versions.

• Prepare to debug application code for

any issues like instrumentation, crashes

/ app is not getting installed on mobile

device, etc.

• Get administrator rights on machine as

you will need it

• Always have the set-up scripted out

using tools like Chef or Bundler (Ruby)

if possible; this will ease out the effort

spent on setting up a new machine

for automation

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Parameterization, dependency
testing, and looping

Challenges

• Parameterizations for consuming

dynamic values cannot be avoided.

Plain text, Excel sheet, XML, or some

random generators are obvious options

• Scripting is sometimes difficult,

as it requires API knowledge and

programming skills on specific platforms

• Dependency testing (one test depends

on other test conditions and hence

needs looping) needs recording, and

export into other languages. Tools

with low recording support will require

significantly higher effort and skills

Best practice

• Use framework supported API available

for parameterization, looping, and

dependency testing, that is, TestNG

• It is recommended to use looping

even if the tool does not provide much

support. Looping will shorten the

length of the script and make it easy

to understand. We can also change the

script data without any change in the

script for any parameterization and

dependency testing

• Use multi-tier approach with best design

pattern suited to application

Run test in parallel or in sequence on
multiple devices

Challenges

• Usually considered advanced level and

neglected

• Requires detailed understanding and

the tool’s support-limitation for multiple

devices with multiple OS, to factor in the

extent, and levels of compatibility to be

included in the script

Best practice

• Pre-understand the support provided in
the tool, at the time of tool selection

• Client and server approach: Most tools
support client and server architecture.
Do not take a corner and install
automation client and server both on
single machine. Advantage of this
architecture is –

 Devices are connected on server
machine and multiple automation
testers can work in parallel from client
machines.

 It saves RAM eaten by the
automation server that slows down
the machine automation engineers
working on it (if server is installed on
the same machine).

 Server configurations are tightly
controlled

• Please note that the client and server
machine should be on the same
network, without firewall restrictions

• It is suggested to use a MAC machine
as a server machine, as it can be used in
both Android/iOS automation

• UDID is a simple mechanism to identify
a specific device. IP address / Device
Name can also be used sometimes
without any harm

• Tools will usually support recognizing
devices connected through USB, using
ADB.XCODE for Android / iOS devices.
Additional scripting will be required for
executing tests in parallel on multiple
devices

• Some automation tools have
instrumentation limitations on specific
platforms. For example, Appium can
have only one iOS device used at a time
in automation run, but multiple Android
devices can be can be run in parallel

• Sequential running test on devices can
be controlled from the priority
given to methods

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Continuous integration
and reporting

Challenges

• Continuous Integration (CI) will require

additional setup, and talent with CI tool

configuration knowledge.

• If CI is not planned and ignored in the

planning stage, it can impact project

dates. It will take some time to get

integration working and eventually will

need fine-tuning.

• Every individual application might need

a separate continuous delivery pipeline

setup.

Best practice

• It has to be planned in the project plan

itself. CI is the most desirable feature

as one can achieve automated builds,

schedule automation run, single click

status, set the duration of automation

test run, get failure result summary and

automating email notification for each

run, etc.

• Utilize the Infosys centralized web-based

Continuous Integration Platform (ICIP)

that hosts a standard set of tools, right

from version management, to static

code analyzers, unit testing tools, CI

server, and the defect tracking and test

management tools. This platform helps

in end-to-end automation through

integration of various open source

/ licensed CI-CD tools. It also helps

to achieve automated code review,

monitor test coverage, and measure

quality metrics.

Additional tips

• Tool skills will need to be internally

developed. Select a tool that has good

support and documentation available.

Most open source tools do not provide

good documentation or support.

 This will increase overall TCO, even with

free tools.

• Some automation tool environmental

setup requirements are difficult, such

as, ‘Appium’ setup for iOS on real device.

Though the tool is excellent, initial

hiccups could cause timeline issues.

• It is really not suggested to perform

tool selection and POC in the middle

of a project as it can impact client

deliverable and cost.

• Combine functionalities which are

dependent on each other, such as the

Home and Login page.

• Differentiate between native and

web element by tool supporting; for

example, on RWB web apps you can get

native pop-ups such as “do you want to

translate this page into English?”

• Try running an independent flow for

each sequence to avoid other flows

running in the same test.

• Do not re-insert USB between an

automation run to avoid abnormal/

illegal program termination.

• Use parameterization and data provider

concept for running a script multiple

times with different URLs each time.

• Plan to have a ‘think-time’ via Selenium

wait - to avoid element wait or timeouts

• Use a good 3G / 4G data network to

avoid test failure due to network.

• Keep the device and server machine in

`unlocked' mode.

• Log each step result for better

debugging and reporting.

• Put suspicious code into try / catch block

to avoid abnormal program termination.

• It is better to use Eclipse environment

with your favorite programming

language to make scripting more

readable, effective, dynamic, etc.

• Sometimes clicking an element on

a page may not work because the

element is not present in an active area,

so we need to scroll and click on that

element. Even if the click is not working,

you can program a JavaScript click on

the element when it does not respond

to the Selenium click. When we need

to look into how the code is behaving,

this click can be the basis for finding the

unique and correct element id.

• Divide and run the script in parts if there

is an issue in reporting the complete

script at once due to network / data.

• Always having the try / catch block

might not be a good practice. It is

always good to have wrappers written

around and errors raised with custom

messages with the actual message

appended to it. Having screenshots

embedded in the reports is very helpful

while analyzing failures to determine if

they were legitimate or not.

• It is advisable to use BDD (Behavioral

Design Development) approach of

system, rather than TDD (Test Driven

Development) approach, because BDD

drives customer interest and focus,

something non-technical stakeholders

can also easily collaborate upon.

• Before executing test cases, device, and

application state and feasibility need to

be checked.

• It is good to write independent flow and

stateless test cases.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

About the Authors

Manish Kumar Chauhan
Consultant, Digital Customer Experience unit, Infosys

Manish Kumar Chauhan is a consultant with the Digital Customer Experience unit of Infosys. He has more than eight

years of total experience in software development and testing. He has extensive experience in manual, white box,

API, unit automation, and performance testing on web applications, mobile devices, set-top boxes, digital TV, security

devices, etc. Manish was involved in creating test cases, test plan, test strategy, automation framework, automation

script, and performance script. Manish has worked on many automation tools like Appium, SeeTest, SilkMobile, and

MonkeyTalk.

You can reach him at manish_chauhan01@infosys.com

Vivek Rai
Senior Project Manager, Digital Customer Experience unit, Infosys

Vivek Rai is a Senior Project Manager in Digital Customer Experience unit of Infosys. He is currently handling

multiple clients in mobile testing area, providing a range of services, including manual functional, UI compatibility,

and automation and performance testing. Vivek started handling mobile-driven projects as early as 2007 and

since then has been continuously involved in mobile development and quality assurance. Beside technical, he has

extensive experience in projects planning and roadmap creation, mobile consulting, communication management,

team management, presales, etc.

You can reach him at vivek_rai @infosys.com

Conclusion
Effective automation testing using tools as per the selection criteria and budget can be achieved by using the testing strategy
and best practices described in this paper.

Several factors like availability of tools and compatibility, network and environment setup, recording and location elements on
UI tricks, system configuration for desktop and server machines, are considered for effective and on-time automation project
delivery that earns client satisfaction and appreciation.

© 2018 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
https://www.slideshare.net/infosys
https://www.infosys.com/

