
WHITE PAPER

SECURITY BASICS FOR FINANCIAL
APPLICATIONS

Abstract

Security is the principal requirement for online financial applications.
Data privacy, customer trust, and long-term growth all depend
on how secure a financial application is. As these applications are
accessed from various devices and through numerous channels,
financial organizations strive hard to implement a foolproof
security system. In this white paper, we will discuss the core
security measures that can be considered while building financial
applications. We will start with core design concepts for financial
applications, move on to the different security techniques and best
practices, and finally, provide a basic security design for financial
applications. The financial applications referred in this white paper
include web applications, financial portals, and other finance
domain-related online applications.

Financial applications

Finance applications include applications

performing financial transactions such as

online banking portals, online insurance

applications and such for which security is

a prime concern. Most of the e-commerce

and retail applications invariably deal

with payment transactions and hence

security would be an important feature of

these applications as well. Online finance

applications face a host of threats such as

identity theft, session hijacking, password

hacking etc. which has long term impact

on revenue and user trust.

Online financial applications provide a

variety of features, such as dashboard

views, reports, personalized customer

pages, and for particular financial domains,

the required information aggregation as

well. They are integrated with core banking

systems or finance enterprise applications,

to provide domain-specific features.

Additionally, they also offer a wide range of

personalization and customization features

that enable finance organizations to launch

personalized campaigns and features for

targeted segments.

Core security concerns of financial applications

Key security vulnerabilities and ways to tackle them

The key security aspects in financial

applications include secure authentication,

Based on our experience in financial

applications, we have created a list of the

common security challenges, the details of

security vulnerabilities, and the effective

measures to address them:

Multiple sessions

Financial applications usually do not allow
multiple sessions due to security and data-
integrity concerns. Using a combination of
the following approaches should restrict
these multiple sessions:

• Create session filters to intercept every
user request, and use a database-
driven table to check the multiple
session information, in order to restrict
the user sessions based on the session
data

• Restricting the user sessions at the
server side: Server modules (such as
core banking modules) keep track of
user

Combining these two approaches allows a
truly single session-based implementation.

authorization, data encryption, transport-

level security, role-based access and robust

Man-in-the-middle attacks and
session hijacking

In this kind of attack, the hacker may
intercept traffic between the requestor
and the finance portal. The first step in
preventing such an attack is to use a
secure transport layer, such as HTTPS, for
all secure interactions. The rule applies for
finance services as well. In addition to this,
we must encrypt secured data (such as user
information, finance information) during
transit, and decrypt before rendering to
the client.

Request spoofing and cross-site
request forgery (CSRF)

In such a vulnerability, the attacker may
send a forged request to the server.
The attacker can gain access to request
parameters using techniques such as
snooping, and can then construct an
attack-script to make the portal believe
that the request is coming from a genuine
source. For instance, if the attacker obtains
the session ID or is able to intercept the
request, he / she can use the session

permission models, data privacy and

integrity, and security extensions.

details to initiate a financial transaction.
An effective way to prevent this attack is
to use a security token with each request
that is validated on the server-side. We will
learn more about this technique and its
implementation in the following pages.

Injection attacks

The attacker can use SQL injection
techniques to gain information access. The
vulnerability can be exploited by appending
SQL keywords and comments (such as
appending ‘1=1’ to the query string).

In order to effectively mitigate this, we
need to:

• Validate all user input on the client as
well as the server-side and maintain a
blacklist of characters for this validation

• Encode or remove HTML and SQL-
reserved characters

• Use prepared statements instead
of direct SQL commands in the
application. Use object-relational
mapping (ORM) tools, such as
Hibernate,for database interactions

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Key security features of online finance applications

Financial application key design considerations

Besides core security features such as

authentication, authorization, single-

sign-on, session management, account

management, financial application should

also deal with other security such as follows:

Federated identity and access
management

The identity and access management
can be federated across the domain, and
share the same identity store and access
manager for all user groups. This strategy
works best in subsidiaries and acquired
entities.

Strong nonrepudiation using DS

Nonrepudiation means that a party cannot
deny the authenticity of their signature
upon the sending of a message.

In the digital world, nonrepudiation can
be achieved through digital signatures.

Listed below are some of the key design

aspects that need to be kept in mind while

developing finance applications. These

are additional design factors along with

security.

• Open standards-based technology
and integrations – This includes using
standards related to HTML, CSS, and
accessibility to name a few

• Layered architecture using MVC
pattern – This provides a clear layer-
wise separation of components
with each layer handling a distinct
responsibility. MVC enables loose
coupling, separation of concerns, and
flexibility to change the components in
each layer independently

• Modular and extensible component
design –Each of the solution
components will be designed such that
it can be reused for future needs

Nonrepudiation occurs based on the
following two criteria– The user is the
legitimate identity that sent the content/
performed the transaction;the content/
transaction details are not modified in
the middle, as data integrity is ensured
through a hashing algorithm.

Crypto libraries

Crypto libraries are the cryptographic
libraries used in Internet standards to
provide encryption algorithms.

The functionality includes key generation
algorithms, key exchange agreements, and
public-key cryptographic standards. For
finance applications, it is recommended to
use a salted password-hashing algorithm
as discussed below.

Endpoint security – Anti-malware /
virtual keyboards.

• Adoption of services-oriented
architecture for integration – An ESB
middleware can be used to handle
complex and multiple services and
enable service-oriented integration
between different banking systems
Leveraging open-source technologies
wherever applicable

• Continuous build and integration
approach for execution –Tools such as
Jenkins Continuous Integration can be
used to maintain build quality

• Performance, availability, and
scalability –Performance should
be thought through, right from
the component design to the
performance testing stage. In addition
to performance-based design, other
performance optimization techniques
can be adopted, including:

 The solution will also be tested

Endpoint security refers to protecting the
endpoint device to comply with anti-
malware and virus protection to prevent,
detect, and remediate any malicious
programming on the system. This helps
in restricting any malicious program that
might be tracking keystrokes to obtain
sensitive information.

Virtual keyboards help in reducing the risk
of key loggers logging keystrokes, as the
clicks happen only on the virtual keyboard
to input the data. This also makes it more
difficult for malware programs to track the
clicks and obtain the input data. However,
there is a possibility that the malware
can take screenshots upon each click and
hence, the endpoint should be secure and
updated with respect to anti-malware
programs as well.

iteratively to ensure that the
desired performance service-level
agreement (SLA) is met

 Scalability can be achieved by
using the appropriate infrastructure
and hardware

 Incorporation of a governance
model to proactively check the
heartbeat of the systems to ensure
system availability and uptime

• Reusability and automation: Reusing
the existing components and
frameworks will profoundly impact
developer productivity, faster time-
to-market, and significantly increase
the overall quality. Based on the given
business requirements, the following
components are marked for reuse,
partially/completely:

High Level architecture of finance

applications

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

A high level overview of a sample finance web application is shown below:

A typical, n-tier MVC architecture

for finance applications has various

components, with MVC architecture

providing separation of concerns for the

various layers. Service-oriented integration

is the de-facto standard for integration

here. Presentation layer consists of financial

widgets, portlet, reports, and handle

other presentation concerns. Business

layer processes business logic, rules and

business processes. Typically a message

oriented middleware such as ESB would

The different security aspects of financial applications

After having discussed core security
concerns, let us deep-dive into the other
security aspects of financial applications.

be used for service mediation and to

handle concerns such as routing, protocol

transformation, validation etc. Business

layer exposes various business services and

integration layer integrates with necessary

enterprise interfaces.

Here, we provide comprehensive coverage
of security techniques and proven
methodologies to effectively address

security issues. Let us start by looking at
core security features required in a typical
financial application:

Support,
Management
Information,
Governance,
Common &

Security

Users & Roles

Authentication

Authorization

Single Sign On

Con�guration

Logging

Caching

Exception
Handling

User Store

Server
Presentation

Services
Content
ServicesPublishing

Client
Application

Widgets
Content
WidgetsPresentation

Layer

Business Process
Layer Rules Processes Process

Orchestration

Service Mediation
(ESB) Transformation RoutingValidationAdaptors

Business Service
Layer Business Services Service Aggregation

Integration
Layer Data Access Components Service Gateways

Data
Sources

File System Services 1 Services 2 Services 3
Database

Services

REST

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Authentication

Password policy

Request identification

Authentication is all about allowing a
user to login based on a username and
credentials. However, would that be

Let us go with an encryption algorithm to
encrypt and store the password. SHA, MD5
are some of the encryption algorithms
that generate an encrypted password of
the user and store them in the database.
We all agree that it will never be possible
to decrypt the encrypted password from
these secure encryption algorithms, but
hackers will not try the obvious. Would
they? They would try to identify any
loopholes in these secure encryption
algorithms and exploit them instead. The
authentication mechanism should thus
be foolproof against brute force attacks. If
you wonder what brute force attack is, it
is a trial-and-error method used by hacker
application programs to decode encrypted
data such as passwords.

For the same password input, these
encryption algorithms generate the same

Banking applications need to go that one-
step extra – they should also authenticate
each request and authenticate the request
even after post-login. This will prevent any
session hijack. Now how is this achieved?

Immediately after validating user
credentials, a unique identifier (let us call
it a Request ID) can be generated and
mapped to the customer ID in the server
cache or persistence storage. The same
value would be returned to the portal
client, which would be appended to this
Request ID for the subsequent requests.
The request filter would then validate
the Request ID sent by client, against the
unique identifier stored in the server cache
or persistence storage. If they match the

enough for a typical banking or financial
application?
In banking applications, the primary

encrypted value. Thus, it is easy to maintain
a lookup table of all possible combination
of passwords. In some cases, if not most,
the user’s password will be one of a
dictionary word. Hackers can thus create a
lookup table for each dictionary word with
a mapping encrypted password. If they
gain access to the encrypted password,
they can easily crack the password using
this lookup table.

Although this vulnerability can be limited
to a certain extent, by introducing stronger
password policies that restrict the use of
direct dictionary words. Hackers have gone
a step further already– they have begun to
suffix, prefix, or insert the possible special
characters, numeric values, as well as the
appropriate casing around it. They are thus
able to create the lookup table regardless.

request is allowed, and another Request ID
is generated and sent to the portal client,
which also stores the new unique identifier
in server cache or persistence storage.
This process repeats for every request,
enhancing the security measures at each
step.

• Session hijacking is not possible as
every request needs to have the
Request ID,which the server expects
from the portal client

• The refresh, back, and forward
navigation within the history is not
possible on browsers as the session
is destroyed when a valid unique
identifier cannot be supplied to the
server for validating the request

authentication mechanism should not stop
at validating the user credentials. So what
else would be required?

What is the solution now?

Salted Password Hashing

Salted password hashing algorithms– these
algorithms, such as the BCrypt Password
Encoder, generate different encryption
values for the same password input. How
is it possible? For every password, the
algorithm generates a random ‘salt’ that is
inserted to the original password before
it is encrypted. Thus, different encryption
values are generated for the same
password input, and lookup tables can
never be created for such algorithms. The
salt is embedded along with the encrypted
value, and only the algorithms themselves
can gain access to the salt, and validate the
supplied password. And these can never be
decrypted.

• Sophisticated attacks like CSRF (Cross
Site Request Forgery) can also be
prevented using Request IDs

• Once again, browser refresh is not
possible, and a user cannot resubmit
the same request, as the valid unique
identifier cannot be supplied to the
server for validating the request

• Simultaneous sessions can be
prevented in the same way, as the new
session cannot provide the Request
ID the server expects – thus, no new
session can be established. If security
is highly critical, both simultaneous
session can be destroyed, prompting
users to authenticate themselves again

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

A sample secure user-registration and user-authentication flow is shown in the following diagram:

Authorization

Authorization implements fine-grained
access control by providing role-based
access to resources (such as functions,
pages, and widgets).

• Access manager acts as a centralized
control center to enforce all
authorization policies and rules

• Once the authorization policies are
defined in the access manager, the

request to access the application is
allowed only if the user has privileges

• Identity Governance Administration
can be used to govern the degree of
access each identity (user) has to each
aspect / module of the application

• The application can be integrated with
the access manager to check for user
privileges

• Access privileges to internal resources
within the application can be
maintained within the application
database itself

Password encoded with
BcryptPassword Encoder.

(provides salt on top of
hashed password)

New User
Registration

For successful
registration, user is

asked to set
up password

Store the salted hash
password in database.

The salted hash password
can never be decrypted.

Login
Store the UID in

server cache

Deny Access

Deny Access

Generate Secure
Random UUID.

(If exists, re-generate)

Validate the UID in
the request

Subsequent page
access / Initiating

transaction
. . .

Flow Repeats

No

Append uuid as request param

Append uuid as request param

Yes

Subsequent page
access / Initiating

transaction

Validate the
password against

the encoded
bcryptpassword in

database

Validate request uid
is same as server uid

for the customer.

Regenerate another
UUID and store in
the server cache.

Validation

FALSE

TRUE

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Single sign-on (SSO)

Identity and Access Management (IDAM)

• The finance application can be
integrated with the identity and access
management application to enable
single sign-on, as well as role-based
access

• Identity Management: For a newly
joined employee, the identity can be
created through IDAM, and the thus-
created user would flow to the user
store. A random password can also be
pushed through IDAM to the user store.
If security is the primary concern, then
half of the password can be sent to his
reporting manager, and the remaining
half to the HR manager. The new
employee can collect the password
fragments from both, login to the
corporate system, and then be required
to change the password

• Application Access Management: The
access provided to each user can be

configured in the IDAM using two
approaches:

 Integrating the application with the
user store authentication provider

 Where productized solutions
adopted for the finance application
depend on a user table in the
database for all their operations,
we have two additional options to
achieve the goal:

• API access: The user can be
created in the application
using the API call from the
IDAM. For this to be feasible,
the application should expose
an API, through which the user
table can be updated

• Database access: IDAM would
have to access a database view,
with write access to the users

table, and be able to create or
update the users in the table.

• All security aspects to access the user
management API or user database
should be established to ensure
identity management is secure

• Fine-grained access management: The
application has greater control on the
internal resources each user can access.

 How can an IDAM provide this
kind of fine-grained access
management?

 It can be achieved by updating the
user and role-mapping table of the
application either via API, or directly in
the database table from the IDAM. As
mentioned earlier, all security aspects
for accessing the API or the database
should be established to ensure
identity management security

Banking application can have several

internal applications that are managed by

internal users. If the user has the privilege

to access these applications, single sign-on

becomes a handy option as he/she does

not have to enter separate credentials for

accessing each application.

When the user logs into one of the

applications, the user credentials can be

sent to the access manager, which will

verify the credentials from the user identity

store. After validating the credentials, the

access manager generates the SSO token

and sends it to the client browser cookie.

The SSO token then remains in the browser

cookie and enables the user to login to

other applications seamlessly.

Additionally, a webserver security plug-in

can be installed on the webserver, which

will intercept the request and redirect the

user to the login page if the SSO token

parameter is absent in the request. If

the SSO token exists, it will be passed to

the access manager for validation. Once

the SSO token is authenticated and the

user has the right privileges, the access

manager provides access to the application

seamlessly.

The authorization policies would also

be defined in the access manager and

the request to access other application

would be allowed only if the user has the

privilege. A sample SSO flow is shown in

following diagram:

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

calls the OTP server through an ESB
service call .The OTP server then
connects with the SMS gateway
to send the generated OTP to the
customer’s device. Once the customer
enters the OTP, it is validated again by
the application through a service call
to the OTP server via the ESB. Once the
OTP is authenticated, the transaction is
allowed to proceed.

• Security questions – When the
transaction is initiated, the application
prompts few security questions

Two-factor authentication is needed to
step up the primary authentication along
with a supplementary authentication for
financially critical operations. In some
cases, the regulatory body makes two-
factor authentication mandatory for
transactions such as fund transfers.

Two-factor authentication can be
implemented with any fool-proof
mechanism, such as -

• One-Time Password (OTP) – When the
transaction is initiated, the application

that have already been setup by the
user. Once the security answers are
validated, the transaction is allowed to
proceed.

• Hard tokens – When the transaction
is initiated, the application prompts
for a token number generated on
the hard token held by the user. The
token is authenticated and then the
user is allowed to proceed with the
transaction.

Application
URL

WebGateway
Intercepts Request

Get
credentials

Generate SSO
Token and store in

browser cookie

User Identity
Store

Deny Access

Launch the
application

Login Validate
credentials

Access Manager

WebGateway

Yes

No

Is SSO Token
available?

Validate
credentials

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Alerts and notifications are also a key

part of the security measures that banks

take. In case of a fund transfer, beneficiary

addition, modification, or deletion, the

customer should be alerted through SMS

and Email. Generally, banks provide a

cooling period to perform a fund transfer,

when a beneficiary is added. The user can

perform a fund transfer only after this

cooling period.

Alerts and notification

The alert mechanism ensures that the

customer remains informed of all the

critical events that can have a financial

impact, such as beneficiary addition,

fund transfer, change password/security

questions and answers, and eDemand

draft. This can help the customer react

quickly if the account is compromised in

any way – for example, a lost ATM card or

an unauthorized swipe.

The notification mechanism keeps the

customer informed of future events that

may require some action to be taken. For

example, a password expiry notification

or renewal notification, through SMS or

Email, can keep the customer informed and

prepared to act.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

About the Authors

Shailesh Kumar Shivakumar
Infosys

Shailesh Kumar Shivakumar has over 14 years of industry experience. He currently works as a Senior Technology
Architect at Digital Practice in Infosys Technologies. His areas of expertise includeEnterprise Java technologies, portal
technologies, web technologies, and performance engineering. He has published two books related to enterprise
web architecture,enterprise portals, and UXP and has four patent applications. He has published several papers
and presented talks in IEEE conferences in the areas of web technologies and performance engineering. He has
successfully lead several large-scale enterprise engagements for Fortune 500 clients.

Babu Krishnamurthy
Infosys

Babu Krishnamurthy has over 11 years of industry experience. He currently works as a Technology Architect at
Digital Practice in Infosys Technologies. His domain expertise includesbanking, ecommerce, and networking.
His areas of expertise in technology include Enterprise Java technologies, portal technologies, eCommerce
technologies, and web technologies.

© 2018 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
https://www.slideshare.net/infosys
https://www.infosys.com/

