
WHITE PAPER

DEVOPS FOR
DIGITAL ENTERPRISES

Abstract
DevOps is fast assuming greater importance in deciding the agility
of an enterprise. A robust DevOps setup is crucial for successful agile
delivery and minimal risks. It greatly optimizes release management
costs and team productivity, resulting in reduced time to market.
At the same time, DevOps enables organizations to make rapid
product releases with increased quality and manage customers’
expectations.

In this paper we explore various aspects of DevOps. We look at key
success attributes, main processes, tools, and frameworks that play
an elementary role in DevOps.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Brief Introduction
to DevOps

Scope
DevOps is a practice of
optimizing development
and operations activities
through structured processes,
automation, and collaboration.
It aims to synergize processes
between development and
operations teams to make
them more efficient.

External Document © 2018 Infosys Limited

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Challenges for
successful DevOps

The main factors that enable the development of effective DevOps are listed below:

Key challenges that come in the way of successful DevOps are listed below:

• Inconsistent release management
processes: If various development
teams have distinct release
management processes, then we
would not be able to fully realize
the potential of DevOps. We need to
establish a standard set of processes
across the board

• Lack of team collaboration: Culture
differences, lack of collaborative
ecosystem would come in the way of
a DevOps success. Each team having
different metrics, policies would come
in the way of successful DevOps

interfaces should be done iteratively
to reduce integration risks.

• Robust source control processes:
Processes related to source control
management (such as check in, check
out, locking, etc.) should enable
geographically distributed teams to
collaborate successfully.

• Governance: Standard set of
well-defined processes should be
established for release management
and deployment.

• Metrics: Suitable metrics and KPIs
to track the impact and success of
DevOps processes should be defined.
These metrics could include overall
release time, time per release, etc.

• Consistent and standard processes:
Common goals, SLAs, tools, uniform
policies, and well-defined
processes for DevOps activities
should be established.

• Agility: All processes related to
development, integration, testing,
and release and deployment should
be agile so that it is easy to absorb,
test, and deploy changes.

• Technology ecosystem: In some
scenarios the tools, frameworks,
technology, and infrastructure
components used may not be
mutually compatible. This poses
challenges during integration and
comes in the way of setting up a
standard infrastructure.

• Non-standard tracking metrics:
If various teams involved adopt
different goals and SLAs, or if the
processes are not agile in nature, it
would not be possible to establish a
standard DevOps governance.

• Continuous and iterative delivery:
Processes should enable iterative
delivery such that business capabilities
are delivered in iterations and each
iteration is thoroughly tested.

• Strong collaboration: All teams
should successfuly collaborate during
development, testing, and release
managment activities.

• Automation: A majority of release
managment activities such as
development, static code analysis,
testing (unit, functional, integration,
load, performance), and deployment
should be automated using tools and
scripts. This would greatly enhance
team productivity and improve the
quality of the deliverable.

• Early and iterative testing: Each
release should be tested iteratively
in early stages. This would reduce
the defect rate and risk involved in
regression testing.

• Continous integration (CI): Carrying
out frequent, integrated builds from
a centralized source control system
is key. Integrations with enterprise

Key factors that
drive efficiencies

External Document © 2018 Infosys Limited

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Implementing a successful DevOps setup

Essentially the transformation journey to a successful DevOps consists of three phases:

During this phase we assess the
current state of the organization,
its capabilities, processes, and
technologies with respect to
development and operations.
We focus on identifying existing
challenges and gaps, and identifying
opportunities for automation to
create standardization. Therefore,
we lay out the DevOps roadmap for
future phases by identifying all the
tools, technologies, and frameworks
needed for automation and for
implementing various processes.

Assessment

We begin this phase with feasibility
and effectiveness checks through
proof-of-concepts (PoCs) and pilot
runs to understand the impact of
implementation. Once these checks
give us the green signal, we roll out
process improvements and automate
processes that have been identified
in the assessment phase. Both
development and operations teams
work in collaboration using newly
defined processes and best practices
such as agile delivery model (to deliver
in iterations), continuous integration,
and more. At the end of this phase,
we set up a comprehensive DevOps
dashboard to monitor various activities
and overall condition of the project.

Implementation

Let us look at the various steps in implementing successful DevOps for an organization. In the process, we will also understand various

phases in the DevOps transformation journey. The diagram below depicts the key phases of a DevOps implementation program.

• Review current processes

• Gap analysis

• Analysis of current challenges and pain
points in release management, build, and
deployment processes

• Identification of opportunities for continuous
improvement and agile delivery

• Identification of automation opportunities and
process improvement opportunities

• Identification of tools and scripts for automation

• Definition of common metrics, processes, goals,
and SLAs

• Defining continuous improvement plans

• Defining DevOps roadmap

• Execution of PoCs and pilot setups to assess
feasibility and improvements

• Automated build, release, and deployment
setup

• Reports related to build, code quality, release,
and deployment

• Establishment of DevOps dashboard

• Standardize processes, metrics, and SLAs

• Automate the build, release, and deployment
processes using tools, frameworks, and
scripts

• Adopt agile delivery model

• Adopt DevOps best practices such as
continuous integration

Monitoring and
maintenance

• Metrics-based monitoring

• Adoption of continuous improvement
framework

• Adoption of DevOps across enterprise-wide
programs

• Establishment of centralized knowledge
repository

• Continuously monitor and measure the
metrics and SLAs

• Implement continuous improvement
framework

Monitoring and maintenance

This is an ongoing phase

wherein we regularly monitor

the defined SLAs and KPIs

of DevOps processes using

continuous improvement plans

and governance models.

Ke
y

O
ut

co
m

es
Ac

tiv
iti

es

Assessment
phase

Implementation
phase

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

The table below lists typical transformations that occur post successful DevOps implementation:

Category Before implementation After implementation

Infrastructure

Nonstandard, disjointed, and
fragmented

Organized and standardized technology
stack

Manual infrastructure setup and

provisioning

Automated, on-demand, infrastructure

provisioning with metrics-based

monitoring tools

Teams

Development and operations teams with
different goals and processes

Development and operations team
working as a single global team with
common set of goals, metrics, and
processes.

Each team spends considerable, manual

effort to execute, develop, test, and

release management activities.

Increased collaboration across all

teams using automated processes and

consistent goals. This leads to increased

team productivity and lowered

operations cost.

Delivery model

Big bang or waterfall model

Agile and iterative delivery model based

on user stories leading to shorter time to

market

Longer release cycles Incremental releases

Development and testing

processes

Traditional
Iterative / agile development and testing

with incremental releases

Manual
Automated testing and continuous
validation

Costly and error prone
Reduced cost and risk due to continuous
integration and testing

Integration model In advanced project phases only Continuous and frequent

Effectiveness of end user

feedback and change requests

Inability to overcome challenges

in handling change requests and

enhancements leads to longer change

implementation period

Higher effectiveness of change requests,

feedback, and enhancements due to

agile delivery

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Listed below are various tools that are mainly used for automating processes at
various phases of the software development life cycle (SDLC).

Project life cycle phase Purpose Tools that can be used

Development

Source control management
Git, SVN (Apache SubVersion), CVS

(Concurrent Versions System)

Automated static code analysis Checkstyle, PMD, FindBugs, SonarQube

Implementation of continuous

integration

Jenkins, Anthill, Hudson, Cruise Control,

Puppet

• % reduction in overall release time

• % reduction in defects detected in
UAT / preproduction testing

• % reduction in manual effort for
overall release management

• % reduction in change /
enhancement implementation time

We could use the following
metrics to monitor and track the

effectiveness of DevOps processes:

Metrics

Tools

• % increase in automation of
testing, static code analysis, and
deployment

• % increase in code coverage

• % increase in testing automation

• % increase in team productivity

• % increase in overall release quality

The key tenets and goals of successful DevOps are depicted in the following diagram:

Increased
automation

Reduced cost, e�ort,
and time to market

Standardized
processes

Increased tolerance
for change requests

Collaborated
teams

Common goals,
metrics, and SLAs

Agile delivery
models

Continuous
improvement

Automation

Increased quality

Agiliity

Reduced
time to market

Reduced
risk

Standard
processes

Continuous
improvement

Team
collaboration

Devops

DevOps goals

Metrics and tools

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

CI is a software development practice which involves building, integrating, and testing software components continuously on an

iterative basis. It detects defects early on, and also reduces the risk of low quality for the overall project. A sample of CI activities at

various phases is shown below:

Continuous Integration (CI) – A key process

Build

• Code coverage
• Static code analysis
• Continuous integration
• Frequent builds

Test

• Automated testing
• Automated reporting

Release and deploy

• Deployment scripts
 and tools
• Frequent iterative
 releases

Development

• Version control
• Automated IDEs,
 checklists

CI best practices
• Use a centralized source control system to maintain all code and project artefacts

• Build, test, and integrate early in the project life cycle

• Automate build, test, and deployment activities

• Adopt test-driven development (TDD) practices

• Adopt continous integration and deployment

Testing

Unit, performance, web, and services

testing

Junit, TestNG, JMeter, Selenium,

Cucumber, HtmlUnit, SOAPUI

Code coverage Jacaco, Cobertura

Release Build and release activities ANT (Another Neat Tool), Maven, Gradle

Deployment Automation of deployment activity

Custom deployment scripts, file copy

scripts, deployment plugins for Jenkins

/ CI tools

Monitoring and maintenance
Continuously monitor the application

and server environment post application

deployment

Web analytics scripts, Gomez, application

health-check monitoring tools, server

monitoring tools, real-time user

monitoring tools

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Manual

Automated

Optimized

Continuous improvement,
Well-de�ned governance model,

Metrics-based continuous
monitoring, robust monitoring

setup

Standardized processes,
automation using tools,
Reduced time to market,

Continuous integration setup,
Agile delivery

Manual processes,
higher release times

A sample DevOps roadmap is given below:

We initially start with an existing system

which uses manual processes, traditional

release, and deployment activities. Using

the three-step DevOps implementation

DevOps roadmap

process, we would identify tasks and

processes which can be automated.

In the ‘Automated’ phase, we create a

standard set of processes to manage

development and release activities. In the

‘Optimized’ phase, we create a truly self-

service environment with a continuous

improvement model and unified processes.

External Document © 2018 Infosys Limited

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Emerging trends
In this section we examine some of the emerging trends in the DevOps space.

Let us understand the role Docker plays in addressing some of the DevOps challenges:

Docker provides lightweight, independent,

and reusable containers which package

development units and their dependencies

to achieve self-sufficiency. Using container-

Docker

How does Docker help?

based virtualization, it builds, distributes,

and ports images to various environments.

A great advantage of Docker is that its

environment can be quickly set up and

tested rapidly. At the same time, it eases

development, testing, and various other

release management activities because of

its open source nature.

DevOps enables enterprises to

standardize development and

operational processes, automate

deployment activities, and ease the

migration of applications to cloud.

Therefore, businesses could use

DevOps as a key component in the

digital transformation journey.

DevOps as an enabler for
cloud adoption

Emerging technologies such as big

data, unstructured data processing, and

mobile-enabled application would require

the standard set of DevOps processes.

At the same time, micro-services-based

applications, API-based integration, and

agile delivery also rely on a robust DevOps

DevOps as an essential for emerging technologies

setup. Enterprises can leverage DevOps

tools and container virtualization features

to successfully implement a platform

based on emerging technologies.

Traditional challenges Docker-based DevOps

Development team and operations team need to ensure the

availability of all required libraries, system privileges, and

permissions on all environments (Dev, SIT, UAT, etc.) Besides this,

other interfaces such as database, services, middleware, etc.,

should also be installed and configured. This often takes huge

manual effort and is error prone. This approach also

entails that all configuration changes are correctly propagated

across environments

Docker containers ensure the unit can be seamlessly shifted

from one environment to another as an image. They provide

deployment flexibility with optimal deployment cost

Infrastructure team needs to ensure availability of proper

elements in all environments

Infrastructure is managed by Docker containers

In many cases, the final build is installed in the target

environment manually using release notes and deploy

instructions. This manual effort increases the overall release time

Docker image can be used to easily port application build from

one environment to another without any additional effort

Additional effort is needed to set up and configure disaster

recovery (DR) environment

Docker image can be reused for DR setup as well

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Implementation

In order to address the above challenges,

DevOps processes were set up which

fine-tuned processes as given below:

• Build and deployment processes

across all projects were made

consistent through Maven scripts. This

also led to reuse of existing scripts

• Jenkins CI was used as the continuous

integration tool to develop a robust

deployment framework. The CI tool

reduced many of the manual activities

such as manual build, manual testing,

manual packaging, etc.

Case study
Let us look at a case study on

successfully implementing DevOps.

This case study describes the improvement

in release management and deployment

activities for the IT department of a retail

organization. The IT unit developed various

• Nonuniform processes:

Various development teams used

disparate tools and modes for build

and deployment. While some teams

built project artefacts (such as .war file

and .ear file) from IDEs, some other

teams used ANT scripts and a few

others used Maven scripts. Due to this

variance the release and deployment

process varied across projects

• Manual activities:

Many of the activities such as file

upload, release labeling, and code

packaging were done manually. Even

deployment was done manually using

a release document. As a result, each

release encountered regression issues

during deployment

Background

Release management challenges:

applications, but due to the complex

landscape of IT infrastructure, the release

involved build and deployment of multiple

applications and its dependencies.

• Absence of automated validation:

Most of the testing activities were

done manually. This further impacted

release timelines

• Lengthy release times:

Due to the above factors,

production releases, even for a small

enhancement, would take, on an

average, about six hours

• Absence of health check reporting:

There was no system to automatically

report build failures, build quality,

code coverage, test case execution

status, etc.

• Build and testing was automated using

Jenkins plugins. Junit and Selenium

frameworks were used to automate

unit and web testing

• Jenkins dashboard was used as a

unified project dashboard to monitor

project status, build failures, code

coverage, etc.

• Notification plugin was used to alert

the administrator in case of build

failures

• Automation and continous integration

reduced the average production

release time by 30 minutes

External Document © 2018 Infosys Limited

External Document © 2018 Infosys Limited External Document © 2018 Infosys LimitedExternal Document © 2018 Infosys Limited

© 2018 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

About the Author

Shailesh Kumar Shivakumar
Senior Technology Architect, Digital Practice , Infosys

Shailesh Kumar Shivakumar has over 14 years of industry experience. His areas of expertise include

enterprise Java, portal technologies, web technologies, and performance engineering. He has

published two books related to enterprise web architecture, enterprise portals, and User Experience

Platform. He also has four patent applications and has published several papers and presented

talks in IEEE conferences in the areas of web technologies and performance engineering. He has

successfully lead several large-scale enterprise engagements for Fortune 500 clients.

He can be reached at shailesh_shivakumar@infosys.com

www.infosys.com
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/Infosys
https://www.slideshare.net/infosys

