
PERSPECTIVE

UNRAVELING MICROSERVICES:
HIGHER AGILITY OR HYPE?

Abstract
We live in an ever-changing world with E-commerce starting to look up, and every
business starting to embrace digital in their game plan. Businesses, in their need for
creating a digital drapery have triggered the need to break down business functions
to even smaller, manageable micro functions. Architects, from time to time, do
look at innovative ways to simplify the architecture; but at times, they knowingly
or unknowingly end up complicating it, trying to cater to different requirements. A
long-running project will have its own set of production rollouts from time to time
and hence, the architecture needs to remain receptive and nimble-footed for abrupt
changes.

Even though the idea is not entirely new, and might seem like an offshoot of
distributed architecture, the microservices architecture is still worthy of deliberation
as it talks about simplifying the way we look at enterprise architecture. In this
paper, we look at why microservices architecture might be a better fit in a complex,
enterprise architecture scenario that needs more customer orientation. We will
also delve into the impact of microservices on service-oriented architecture (SOA),
and subsequently the use of enterprise service bus (ESB). We will also look at a few
examples of microservices adoption, and how they are being implemented.

By the end of it, you will be able to decide on whether the microservice architecture
style suits all projects, or if it should be restricted to a certain genre of projects while
resorting to SOA for the rest.

According to the National Retail Federation

(NRF), there were 133.7 million unique

holiday shoppers in 2014. Total shopping

– including multiple trips by the same

shopper – was down during

the weekends (233.3 million in 2014,

down from 248.6 million in 2013). The

average person spend was $380.95, down

from $407.02 and comScore reported that

E-commerce spending increased by 32%

for Thanksgiving Day, and 26% for Black

Friday. Both days surpassed the billion-

dollar mark for the first time in history.

Cyber Monday broke $2 billion in desktop

sales. IBM reported that the number

of consumers using their mobile devices

increased by two-thirds from the previous

year. In 2013 itself, Black Friday overtook

Cyber Monday in the growth of online

E-commerce transactions (74%, compared

to 44%). The distinction is expected to

cease in the coming years. Overall,

a survey claimed that 42% of holiday

shoppers’ budget was spent online.

Specifically, 18–32 year olds were driving

the shopping traffic.

Further, the 2014 Black Friday shoppers

crashed the websites of many leading

retailers (like BestBuy and HP) within the

first few hours of operations.

To prepare for 2015, all retailers need to

answer certain questions to be competitive

and make the best of the biggest shopping

event of the year –

• Can their site handle the biggest

shopping day of the year?

• Can they attract more shoppers to the

doorsteps of their store?

• Can they shorten the time required for

customers to enter, fill their cart, and

complete their purchase?

• How can they roll out deals over the

hours, throughout the weekend, and

make the inventory available in-store,

for faster delivery?

Microservices architecture tries to address

this issue, prepares clients for massive

increases in customer traffic, and helps

intelligently evolve the commerce catalog.

It also seeks to reduce the points of failure

and efficiently utilizes digital marketing

and mobile apps for big box retailers, as

well as for leading brands to get the best

out of the shopping season.

Microservices Architecture: What drives it?

Vendors will not miss the
opportunity to ‘microservices-
wash’ their tools and platforms,
to get your attention. Some will
be better suited to microservices
than others. While not a panacea,
I can see the potential for
microservices to change the way
we build, maintain, and operate
applications. When delivered with
discipline they help applications
become more evolvable, more
portable, and more adaptive,
particularly as organizations
look to migrate application
workloads to private or public
cloud platforms

- Gartner Research

Economic potential
in 2015
2–3 billion more people will have
access to the Internet

$5–7 trillion potential economic
impact of automation of
knowledge work

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

A customer-focused industry

The architecture world is ever-changing

with new styles, and is trying to innovate at

each step. The need for faster, secure data

has led architects to innovate and be more

forward-thinking in their approach.

With time, the industry has become more

customer-focused. Service-oriented

architecture has matured as an architecture

style and has grown to web-oriented

architecture, and subsequently customer-

oriented architecture. The retail key phrase

of `customer is king’ can be now related

to architecture because the face of every

underlying business process is customer

experience. A customer or a prospect can

drive the architecture in today’s enterprise.

Enterprises now resort to gamification to

plot the customer journey or scenarios

and map the experience. This can then

be molded into an architecture, exposing

specific functions needed as services,

primarily in the REST protocol. Netflix is

the best example of how the customer

journey and business has spearheaded the

modeling of the underlying architecture.

Adrian Cockcroft was the mastermind

in the company’s evolution from a

traditional development model, which

used to produce a monolithic DVD-rental

application, to a microservices architecture.

Many smaller groups are now responsible

for the end-to-end development of

hundreds of microservices that work

together to stream digital entertainment to

millions of Netflix customers daily.

World is moving to digital

The new digital world looks at `IT’ to be

responsive to changes. As we have tried

to explain in the above sections, the need

of the hour is to change according to

what the customer asks for. This, aided

with mobiles, tablets, and wearables,

brings the customer or prospect very near

to the provider. A customer expecting

extended hours of business and the

provider ensuring that it is available via

mobile / web applications insists on 24X7

availability of the underlying function, and

thus becomes key to service delivery.

“A microservice is a loosely coupled
service-oriented architecture with
bounded contexts”3

– Adrian Cockcroft
 Director of Web Engineering, and

 Cloud Architect, pioneer in

 engineering microservices.

Microservices can be considered as an

architectural style where services are built,

keeping smaller functions in mind. Each

microservice is a miniature model of the

whole architecture itself. These services

can then be logically grouped, depending

on business functions, and then deployed

into the containers. There are multiple

thoughts on how a microservice should

be structured. Ideally, microservices

architecture should aid multiple streams

of development with different languages

and platforms.

Even though the architecture definition

and structure is not clearly defined, in

principle, microservices architecture

(MSA) points to breaking down monolithic

or composite architecture into smaller

manageable pieces of code, addressing

business functions, and easily deployable

in containers.

Quoting Forbes: “One of the timeless

principles is ‘know your customers,’

meaning you’d best stay on your toes or

you’ll be watching the ever-changing

whims of your customers leave you

behind”. So true, is it not? Look at

ourselves as customers and see how

we change our stance with respect to

response, speed, and timeline. This is

when the need of a flexible architecture,

which provides accurate data kicks

in. End story of all the development

methods stress the need for a faster

time-to-market catering to a changing

customer journey.

What traditional SOA
offers vs. MSA

Let us now see what a typical

service-oriented architecture offers.

It essentially exposes the business

functions in an organization via logical

grouping of services. Martin Fowler sees

microservices architecture as being a

subset of SOA and calls it “SOA done

right.”1 SOA focuses more on reuse of

services. It is less flexible to change, as

the emphasis is more on the service

rather than the functionality itself. A

single service providing common data

might look to be the ideal solution in

the SOA world. A multitude of services

might listen to this conduit, thus aiding

the reusability of the service. A change

needed in the schema however, would

mean bringing down all the services

listening to this conduit.

Microservices, on the other hand, would

group the business capability and hence

the single data service will be split into

multiple services, each catering to a

specific need. This would mean that the

services talk to each other via APIs and

a change required in any one of these

services would not affect other services.

Data replication

Micro-
service

Micro-
service

API

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

JVM/
OSGI

Container

Deployment

WAR / EAR

Front end

Middle �er /
Business �er

Data layer

Database

Microservices Architecture:
Why is it gaining prominence?
Conway’s Law: “Organizations that design
systems are constrained to produce designs
that are copies of the communication
structures of these organizations. “

One of the basic reasons behind an
enterprise testing the microservices
waters might be the law stated above.
Organizations now tend to move away from
creating designs that are tightly coupled
functionally, to those that are loosely
coupled in nature, providing autonomy to
independent teams who manage them.

Need of manageable domain-driven
services in an enterprise

The business need of embracing the digital
world, led to re-thinking of the meaning of
`loose coupling’. Any service that cannot
be updated independently and without
affecting other services is not loosely
coupled. We saw in the architecture section
above that, microservices emphasis is
domain-driven (refer Domain Driven Design
by Eric Evans; In search of certainty by Mark
Burgess). If writing a service requires too
much knowledge of other functions /
surroundings or services then it also means
that the service is not exactly domain-driven.

Need of service scalability – web scale

The square and rectangular boxes that we
normally draw while designing applications
generally follow the same concept of having
a front end or a presentation tier, a middle
tier of services that follow a logical grouping
of the end functions, and at last the entities
that throw data, wrapped in a different set
of services. Even though this does follow
a decent modular design, the deployment
deposits a singular WAR or an EAR file into
a single container (either JVM or OSGI).
We can call this a monolithic application.
A change in the flow requires the engine
to be brought down and the services to
be redeployed which definitely means you
have a service-down window.

While these types of monoliths definitely

have benefits, both in development and

deployment, they work best for simple

to medium architectures. Now consider a

larger scope and complex scenario where

you deal with a multitude of platforms,

varying versions of software, and different

languages. Here, the single-pipe structure

that we build will be a big obstacle,

Microservice architecture

and support and development teams

would struggle to maintain it. It hinders

services scalability if it needs to cater

to varying nonfunctional requirements

including huge TPS (transactions per

second). An infrastructure upgrade can

be cumbersome and might result in the

rebuilding of the entire application.

Consider the same case if we start

decomposing the architecture into

multiple microservices, which can then

interconnect to achieve the desired

functionality. Refer to the diagram above.

We will have multiple front-end services

talking to multiple micro middle services

and back-end services. What we achieve is

an independently deployable stand-alone

service. Furthermore, each service can be

scaled and designated to use a level of

hardware sizing needed only for that service.

Docker Docker Docker

Container 1 Container 2 Container 3

UI Microservice 1 UI Microservice 2 UI Microservice 3

Data service 1 Data service 2 Data service 3 Data service 4

Database Database Database Database

Deployment Deployment

API calls API calls

Monolithic

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Need of continuous deployment

Speeding up the deployment is

as important as speeding up the

development. The world has moved from

a continuous virtual cloud deployment,

to multiple releases and multiple

deployments in containers. MSA suits

this, whereas in an SOA environment, we

might find difficulties in implementing

hot deployment of services. A build

pipeline with a complex infrastructure,

a huge schema, along with third party

integration will be very difficult to deploy,

ending up in a multitude of other issues.

On the contrary, brief services wrapping a

manageable set of business features can

be deployed more easily into a container,

in continuous delivery. A big tick mark

against this for MSA.

Database

Zero service separation Business function service separation
(API calls between di�erent functions)

Container
IIS / Tomcat Monolithic Micro-

services

AS-IS TO-BE

GUJ

Order service

Inventory service

Customer service

Catalogue service

Order data service

Inventory data service

Catalogue data service

Customer data service

CO
N

TA
IN

ER

D
atabase Cluster

D
atabase Cluster

CO
N

TA
IN

ER
CO

N
TA

IN
ER

CO
N

TA
IN

ER

Show
catalog UI

GUI Layer

Order
UI

Payment
UI

Shopping
cart UI

Catalogue
Service

Inventory
Service

Payment
Service

Customer
Service

Order
Service

A
PI

M

an
ag

em
en

t

D
atabase

 Cluster

Need for high performance

We envision a resilient and high-

performance architecture for enterprises.

MSA with multiple smaller building units

easily soaks this in. A production failure of

one of the microservices will affect only that

service, while the rest of the services will

keep running. This means that even though

deployment failures are feature-influential,

they are limited only to a small area.

Microservice: As Is – To Be

The diagram below shows the eventual shift

from a monolithic- to a microservices-based

model. Here, a simple E-commerce web

portal with multiple service calls is depicted.

You can see that the erstwhile architecture

had a monolithic model with services

packed together in a single EAR / WAR file

and placed in a container. Even though the

services were defined and deployed, they

were not scalable and had a severe impact

on production scenarios, when one service

needed to undergo changes.

Now, the same architecture is structured

as individual services catering to multiple

business functions and deployed

separately in the transitioned diagram.

A change in inventory service affects only

the ‘shopping cart’ section of the UI, and

not the other experiences like the catalog

and orders section. Similarly, a user can

continue seamless shopping even if the

payment service is down for some time.

This clearly underlines the advantages

of service-split architecture based on

microservices.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Greenfield project in MSA

This is probably the easiest of adoptions.

There is no baggage of the old architecture

and one can focus on the task ahead. In any

case, initial assessment and design remain

the same. You need to underline the

boundaries and the functions that need to

expose APIs. While defining microservices,

it is not necessary that the service itself be

very small. Some can be larger, to address

GUI Layer / API Layer

OSGI container Mircroservice ESB
Mircroservice ESB

Entity service
layer

Business function
Microservice bundle 1

Business function
MS bundle 2

Business function
MS bundle 3

OSGI container

Customer journey service 1

Database Database Database Database

Customer journey
service 2

Customer journey
service 3

Business
service 3

Business
service 4

Data service 3 Data service 4

Business
service 1

Business
service 1

Data service 1 Data service 2

a particular functionality. The diagram

above for microservices holds good here.

ESB aggregation adoption pattern

Another interesting adoption pattern

is to use an ESB as an aggregator. The

underlying microservices are tagged

together in a bus and then exposed to the

outer world via REST services. This layer can

be extended to include validation and

enrichment based on functional needs.

The diagram shows the typical use

of a bus in MSA. A customer journey,

a business service or a set of them,

and a data service would comprise a

microservice. This is then hosted on an

ESB. These services can be called by the

GUI or the API management layer

Microservices architecture: paradigm with multiple patterns, not one-way

Here, we discuss a few adoption patterns

for MSA

• Greenfield adoption

• ESB aggregation where an ESB

aggregates the business functions

• Shared data design where data is

shared across multiple microservices

• Legacy modernization programs

that are aimed at replacing large and

complex monolithic applications

running on legacy platforms, with agile

and scalable solutions

• Omni-channel initiatives that are aimed

at providing a seamless experience

to the customer across channels, by

aggregating data and services from

across the enterprise

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Shared data adoption pattern

If you look at the ESB diagram above, you can see that the data services are shared between multiple microservices. This can be one of

the commonly used patterns across the industry. Here, there exists a dependency between the service and the underlying data services.

The ultimate goal of achieving the customer functionality is carted by multiple data service calls.

Legacy modernization: ESB as an
event bus

In legacy modernization programs that

follow an MSA, the next generation

application is going to be built as a set

of collaborating services that are self-

contained, in terms of the modular

functionality they are expected to expose.

Nevertheless, large complex monoliths

have evolved because of the complex

nature of the businesses they help run.

This will necessitate the orchestration of

microservices based on each business

scenario. This brings about the need

for an ESB in the role of a microservices

orchestrator.

The above diagram explains how an order

service generates order events, which are

aggregated in an event bus and are routed

to a shipping service or inventory, based

on the need.

The guiding principle of microservices

architecture, as discussed above, is that

it should be independently scalable; and

this is possible only when the service

has its share of persistence. This brings

about the need for data level integration

between collaborating microservices.

The recommended approach is to have

application level event publish-subscribe

mechanism between the microservices.

This brings about the need for an ESB as

the event bus.

Order
events

Order

Events
delivery bus

Shipping

Inventory

Query order

Order
events

Order events

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Omni-channel initiatives

Enterprises are adopting the MSA for

omni-channel initiatives by building the

enterprise-level microservices over their

existing technology solutions across

channels. In an SOA-based approach,

this would mean the creation of service

composites that could impede scalability.

In a microservices approach, the data

from across channel-specific applications

is fed into an enterprise-level data cache

that belongs to each microservice.

For example, a retailer could build an

enterprise-level product inventory cache

to provide inventory visibility across the

enterprise, with the inventory-check

service deployed as a microservice.

Here ESB is required as the message

bus for fetching / routing the inventory

information from the inventory silos

across the enterprise, like the store

inventory system and the warehouse

management systems.

All of the above instances show that

microservices are not tied to a unique

technology. Hence, we can leverage ESB

platforms to build microservices, leveraging

its core capabilities of transport protocol

conversion, data transformation, and

database integration. A bus / gateway helps

you to correlate between microservices,

in-memory tracking of events, and real-

time visualization. Thus, ESB platforms

have evolved to support microservice

development and deployment.

“Why not microservices?” “What will you miss?”

A lot of people talk about MSA and we

begin to wonder whether we need to

change our approach towards enterprise

architecture. Not really. MSA definitely

has its advantages, but it is not necessary

that all projects can easily adopt it. If the

adopting organization’s services are not

well defined and lack a proper service

contract, then it is more pain than gain,

going the MSA way.

The adoption patterns we discussed

above can be extended to several other

ones, like a proxy pattern, and a simple

mediation pattern, depending on the

need of the hour.

Greenfield implementations are where an

MSA shines most, not forgetting that the

container in which it runs, should be open

to hot deployment. For example – an OSGI

container like Karaf, Equinox, etc.

A heavily GUI-centric project, like an

E-commerce portal, should move towards

MSA keeping the customer / business-

driven dynamic changes in mind.

Organizations that need flexible runtime

deployments, automated monitoring, a

central control center, etc., will also be an

ideal candidate for MSA.

As pointed in the sections above, ESBs

are getting leaner and fitter. One such

case is the movement of TIBCO from

Business Works 5.x to Business Works

6.x. BW 6.x is the fitter, healthier OSGI-based

service bus, which can host microservices

with ease. Its Equinox-based OSGI container

aids in hot deployment

and is developer-friendly, with a more open

eclipse-based IDE. JBOSS Fuse from Red

hat which uses Karaf is another example.

What Amazon and Netflix found with

MSA was the ease of change of functions

without disturbing the experience of the

user. If you are into the E-commerce space,

and need the same flexibility, then yes, it

is time to change. A banker who needs a

channel revamp, or a manufacturer who

is at the tipping point of performance

optimization can also start scratching the

microservices space.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Microservice architecture:
Recommendations to
transform or re-engineer

Let us take a step back and see what

enterprises look like now

• Historically, applications built in stand-

alone

• Multiplication of these applications

over time

• Evolution and need for synthesis

systems

• Front-end systems implement a limited

multichannel approach, resulting in a

complex landscape (multiple interfaces,

data integration)

Well, these are quite the same across most

of the enterprises. Every organization

that is trying to elevate itself to a global

omni-channel, service-based, and API-

driven digital experience will have to go

through the pain of simplifying the current

architecture landscape.

Joining the microservice bandwagon

One can pursue the microservices journey

progressively through small projects or

through disruptive enterprise architecture

initiatives. It would seem wiser to move the

smaller projects out of the way as this gives

more space to study the impact and make

funding available. Leveraging a structured

approach to use SMAC (Social Mobile

Analytics Cloud) in enterprise architecture

can be another way of embracing

microservices. An SOA will still be the basic

need to access any touchpoint, but it will

have to be more granular with the concept

of microservices pitching in.

The steps of breaking down the enterprise

architecture should be:

• Identify the right use case – Not every

use case might fit into MSA and it is

important to identify the services that

define the end-users’ journey.

• How micro is micro – As defined in

above sections, one needs to be sure

of the size of the service. It is more

important to address the functionality

as a whole, rather than sizing the

microservice. Chopping down complex

functions into multiple smaller chunks

will be a good approach.

• Define the communication patterns

– This is a vital step in defining MSA

because it is important to interact

effectively with each microservice to

derive maximum benefit. There will be

multiple scenarios where numerous

microservices will cater to a single

functionality.

• Define the service boundary – Since

service forms a point of flexibility, it is

important to define the boundaries of

action for the services.

• Identify the tools – Applying
microservices need not rely on a
specific tool. Organizations have a
lot to choose from when it comes to
developer tools. A POJO would be
as efficient as any other product in
the market that claims to simplify
microservices development.

• Security for MSA – A layered approach
to separate critical data from non-
critical data. Zonal security can be
implemented with specific services
being a part of the secure zone.

A transformed architecture would provide

• Data in clusters, center for all processes
and systems

• Integration of different data clusters
from other IT organizations (B2B)

• Simplifies and realizes multichannel
approach

• New functionalities tap into data
clusters

• Usage of contemporary tools and
design paradigms like API and MSA

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

We have been talking about only the

happy scenarios that drive MSA. However,

it is also important to look at the

challenges we will face while getting into

MSA. Microservices is not a small piece of

code but a multitude of them. This also

means that all of them have to be carefully

grouped and placed in multiple servers.

Each of them might be on an entirely

different technology stack, thus, it is

important to be aware of the following –

• Log and monitoring: We are not

talking about a single software piece,

handling one set of deployments,

where it is easy to log and monitor.

Imagine many deployments, talking

to many services, and all of them need

to be wired together and monitored.

We need to identify software that can

visualize effectively a 1000+ services

and innumerable flows. This, if not done

carefully, can be a nightmare in itself.

• Versioning: Service versioning and

managing of hundreds of services can

lead to mismatches

Microservices adoption roadmap

A successful microservices roadmap addresses the various tenets of MSA, like adoption pain points, security concerns, service life cycle

management, and versioning. Shown below is how an adoption roadmap would be for an enterprise moving into the micro-world.

Identify Strategize Analyze Operationalize

Timelines are indicative

» Implementation of use cases
» Operation and support

» Set up change management track
» Environment readiness
» Piloting microservice
» Data cluster analysis
» Define security for services

» Identify right use cases
» Set up governance
» Service conceptualization
» Microservice discovery
» Define SLA

» Enterprise-wide microservice adoption strategy
» Security strategy
» Communication strategy
» Identify pain points

Sprint

3 months
10 months

12 months
Ongoing

• Scaling: While MSA does boast of easy

scaling up, maintaining these servers

across multiple data centers, which may

be spread across continents, will be

another challenge.

• Identification of MSA failure patterns:

Adrian says that this area needs

to mature. It would take time to

identify and communicate common

microservice failure patterns4.

Microservice architecture: not without challenges…

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Microservices: efficient
and agile

Amazon is one of the best examples

where one can see microservices

implemented successfully. Amazon

set up a highly scalable, distributed

SOA after a lot of trial and error.

Here, instead of each page calling a

single service, services were split into

many smaller functionality-based

services. This enabled Amazon to

rework / repair or scale any of the

services without the end user being

affected. Choosing the simplest

tools to develop and deliver micro-

level functions was a success that

Amazon had. With this, they have

been able to provide customers what

they want, at a faster pace than any

competitor does. This architecture

combined with cloud computing

makes the architecture economical

in the long run.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

About the Author

Manoj Oommen
Enterprise Digital Integration Services, Infosys.

Manoj is a technology evangelist and leads the Digital Integration - SOA Center of Excellence at Infosys. He has

over 15 years of experience in architecting and Implementing projects involving SOA, API, EAI, BPM, and B2B

environments, with a diverse product background. He is an avid open source learner, practitioner, and contributor,

and has successfully guided technology initiatives, and driven business-critical projects across multiple verticals.

References:
1Martin Fowler’s article: http://martinfowler.com/articles/microservices.html

2Sam Newman. Building Microservices. ISBN 978-1-4919-5035-7

3Adrian Cockroft. Slideshare Microservices and Cloud: http://www.slideshare.net/adriancockcroft/qcon-new-york-speed-and-scale

4Adrian Cockcroft. Microservices: the good, the bad, and the ugly. Red hat webinars

© 2018 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
https://www.slideshare.net/infosys
https://www.infosys.com/

