
WHITE PAPER

BEST PRACTICES FOR
BUILDING RESTFUL
WEB SERVICES

Introduction

Representational State Transfer (REST) is

an architectural style for designing loosely

coupled web services. It is mainly used to

develop lightweight, fast, scalable, and

easy to maintain, web services that often

use HTTP as the means of communication.

In many ways, the World Wide Web

itself, which is based on HTTP, is the best

example of REST-based architecture.

RESTful applications use HTTP requests

to post data (create / update), read data

(making queries), and delete data. Hence,

REST uses HTTP for all four CRUD (Create /

Read / Update / Delete) operations.

REST defines the Web as a distributed

hypermedia (hyperlinks within

hypertext) application, whose linked

resources communicate by exchanging

representations of the resource state. The

REST architectural style provides guiding

principles for building distributed and

loosely coupled applications.

REST is an architectural style,
which provides direction for
building distributed and loosely
coupled services

REST is not linked to any
particular platform or
technology – it’s an idea to
develop services to function
similar to the Web

The difference between a web
service and a website is about
who accesses it.

The latter is accessed by human
beings and former is accessed
by programmed clients

REST is not a standard in itself but instead

is an architectural style that uses standards

like HTTP, XML / HTML / JSON / GIF

(Representations of Resources), text / html,

text / xml, and image / jpeg (MIME Types).

This is why you will never see organizations

selling REST-based toolkits.

We should design REST web-services in a

way that results in loosely coupled web

services, which follow web standards.

It should also be development-friendly

and flexible enough to be used for a variety

of new applications.

In this paper, we will mainly focus on the

best practices in REST, and share some

quick tips, which can be used for REST web

services design.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Simple Object Access Protocol (SOAP)

depends primarily on XML to provide

messaging services. SOAP uses different

protocols for communication, such as

HTTP, SMTP, or FTP.

REST on the other hand, is an architectural

style, which uses existing HTTP actions

and methods; and does not create any

new standards. SOAP on the other hand,

is a protocol.

REST is more flexible compared to SOAP

web services. It has the following benefits

over SOAP:

•	� SOAP uses only XML for messages.

REST supports different formats

•	 REST messages are smaller in size

and consume lesser bandwidth

•	 REST is better in terms of performance

with better caching support

•	 No third party tool is required to access
�REST web services. Also with REST-
based services, learning is easier when
compared to SOAP

•	 There is less coupling between REST
�Clients (browsers) and Servers; feature-

extensions and changes can be made
easily. The SOAP client however, is
tightly coupled with the server and the
integration would break if a change is
made at either end.

REST should be chosen when you have

to develop a highly secure and complex

API, which supports different protocols.

Although SOAP may be a good choice,

REST may be better when you have to

develop lightweight APIs with great

performance and support for CRUD

operations.

REST Vs SOAP: When to choose REST?

REST API

http://service.com/emp/123

http://service.com/emp/{id}

http://service.com/emp? Id=1

Resource
(Nouns)

GET http://service.com/emp/123 HTTP/1.1

POST http://service.com/emp/123 HTTP/1.1

DELETE http://service.com/emp/123 HTTP/1.1

Verbs
(GET, PUT,

POST)

<Emp>
 <Name>ABC</Name>
 <Id>321</Id>
 <Email> abc@domain.com</Email>
 <Org>Infosys</Org>
</Emp>

{
 “Name": “ABC",
 “Id": “321",
 "Email": ”abc@domain.com",
 “Org": “Infosys"
}

Representation
(XML, JSON)

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

REST is like a three-wheeler that rests on Resources, Representation, and Verbs

Server

Url + Verb

Status Code + Response

Resources

Resources are the fundamental elements

of the web platform. While working

on REST, the first task is to identify the

resources and find out how they are linked

with each other. Every resource has a

unique identifier on the web platform,

which is known as the universal resource

identifier (URI) and the best example on

the Web is a uniform resource locator (URL).

There is no limit on the number of URIs that

can refer to a resource. For example we can

access a particular domain page (of course,

a resource) using http://yahoo.com and

http://www.yahoo.com.

In REST web services, we use nouns to

identify a type of resource. Employee

information from EmpDB can be accessed

using the below

URL:http://EmployeeService/Employee/1

Verb

Verb is an HTTP action like POST, GET PUT,

DELETE, OPTIONS, etc.

Let’s first revisit the HTTP Request.

Example of a GET Request:

GET http://www.w3schools.com/ : HTTP/1.1
Status: HTTP/1.1 200 OK
Accept text/xml,text/html;
Accept-Encoding gzip, deflate, sdch

Accept-Language en-US,en;

Using URLs, the identity of the target server

can be determined for communication,

but HTTP verbs only tell you which action

needs to performed on the host. There are

many actions that a client can trigger on

the host.

These verbs are –

•	 GET: retrieve an existing resource

•	 POST: create a new entry of resource

•	 PUT: modify an existing resource

•	 DELETE: remove an existing resource

Representation

The third and final wheel is about

determining a way to showcase these

resources to clients. REST supports all

formats without any restrictions; so you

can use any format for representing the

resources.

Based on the client’s and server’s ability

to work with the formats, you can go with

JSON, XML, or any other format.

Best Practices

Here we come up with a few

recommendations / best practices that can

be used to develop flexible, easy-to-use,

and loosely coupled REST APIs.

Use nouns for Resources
and not verbs

Verbs should not be used for resources

because doing this will give a huge list

of URLs with no pattern – which makes

maintenance very difficult. For easy

understanding, use nouns for every

resource. Additionally, do not mix up

singular and plural nouns, and always use

plural nouns for consistency:

GET parts/1
GET orders/123
GET seats?id=3

How to handle asynchronous tasks

The Hypertext Transfer Protocol (HTTP) is a

synchronous and stateless protocol.

The server and client get to know each

other during the current request. After

this, both of them forget about the

request. Because of this behavior, retaining

information between requests is not

possible at the client and server-side.

For asynchronous requests (that take too

long to complete) follow the steps detailed

below –

•	 Place a GET / Post request which takes

too long to complete

•	 Create a new task and return status

�code 202 with a representation of the

new resource so the client can track the

status of the asynchronous task

•	 On completion of the request, return

�response code 303 and a location

header containing a URI of resource that

displayed the result set

•	 On request failure, return response code

�200 (OK) with a representation of the

task resource informing that the process

has failed. Clients will look at the body

to find the reason for the failure.

Here, an example is provided for a file-

upload web service, which supports

asynchronous model.

Let’s start with the client submitting a POST

request to initiate a multi file upload task:

Request
POST /files/ HTTP/1.1

Host: www.service.com

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

How to combine resources

Composite resources can be used to

reduce the number of client / server

round-trips. These composites can be built

by combining information from other

resources. For example, to display your

personalized Yahoo page, first aggregate

news, blogs, weather, tips, meetings, and

then display them as a composite resource.

For the Amazon customer page,

you can design a “Customer View”

composite resource that aggregates all

the information and presents it to the

customer. An example of this is

provided below:

Request
GET /amazon/customer/0004532/
view HTTP/1.1
Host: www.amazon.com

Response
HTTP/1.1 200 OK
Content-Type: application/xml
<view>
 <customer>
	 <id>0004532</id>
	 <atom:link rel=”self” 	
	 href=”www.amazon.com/	
	 customer/0004532”>
	 <name>ABCD</name>
	 <dob>25th July</dob>
 </customer>
 <orders>
	 <atom:link href=
	 ”www.amazon.com/
	 customer/0004532/orders” />
	 <order>
		 <id>...</id>		
		 ...
	 </order>
	 ...
 </orders>
 <rewardpoints>
	 <atom:link href=”www.
	 amazon.com/customer
	 0004532/rewards”>
 </rewardpoints>
 <favorite >
	 <atom:link href=”www.
	 amazon.com/customer/
	 0004532/favpages”>
 </favorite>
</view>

A response is received, which reflects that

the process has started. Response code 202

indicates that the server has accepted the

request for processing:

Response
HTTP/1.1 202 Accepted
Content-Type:
application/xml;charset=UTF-8
Content-Location:
http://www.example.org/files/1
<status>
	 <state>pending</state>
	 <message xml:lang=”en”>
	 File Upload process is started
	 and to get status refresh page
	 after sometime.
	 </message>

</status>

The client can check the status by passing

a GET request, but if the server is still

processing the file upload, it will return the

same response.

Once the server successfully completes

the file upload process, it redirects the

client to the new page. The response code

303 states that the result exists at the URI

available in the location header:

Request
GET /file/1 HTTP/1.1
Host: www.service.com

Response
HTTP/1.1 303
Location:
www.service.com/file/1
content-Location:
www.service.com/file/ process/1
<status
	 <state>completed</state>
	 <message> File Upload is
	 completed</message>
</status>

How to choose the right
Representation Format and
Media Type

Determine the format and media type,

which best matches your requirements and

the client’s needs. No single format may be

right for all kinds of requirements.

In case of the unavailability of requirements,

extensively used formats such as XML

(application/xml), or JSON (application/json)

can be used. To get the right media type,

check IANA website. Designing resource

representations is also very important as

it defines the relationships between the

resources.

XML is the most commonly used format

across the applications. On the other hand,

JSON (JavaScript Object Notation) is very

popular across browsers as it is easier to

consume, because it is based on JavaScript

Be flexible while choosing the variety

of media types and formats, because

we need multiple formats for some

representations. For instance, managing

parts of automobiles need the following

representations:

•	 HTML pages to describe the parts

•	 XML-formatted representation

for each part

•	 Parts specification in PDF format

•	 An Atom feed of all the new parts

Error Handling

When a server shows some error

because of problems within the server,

or due to a client request, always return a

representation that describes the error in

detail. This includes the response status

code, response headers, and a body

containing the description of the error.

To present more information to the user

about the error, include a link to that page;

if you are logging errors somewhere,

include an identifier of the same.

HTTP 1.1 defines two classes of error codes:

1.	 4xx: Client Error

4xx codes are used when there is an

error / exception at the client’s side.

This happens because of requesting an

unavailable resource or placing a bad

request.

2.	 5xx: Server Error

5xx codes are used when there is an

error / exception at the server-side while

interpreting the request

While working with the responses for errors

/ exceptions, it is better to include the error

identifier, error description, optional link to

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Select all five rated cameras http://www.service.com/Cameras?review=5

Select all cameras from Nikon brand http://www.service.com/Cameras?brand=Nikon

Select cameras which were released in the year 2015, in ascending order http://www.service.com/Cameras?year=2015& sortbyASC=release date

Select cameras which have 20X zoom http://www.service.com/Cameras?zoom=20X

the error’s details, or information to resolve

it. Here, an example is provided to return

XML when some invalid key is passed

to the service:

Response
HTTP/1.1
<?xml version=”1.0” encoding=”UTF-8” ?>
<error>
 <error_code>2002</error_code>
 <error_msg>Invalid key
 supplied</error_msg>
 <more_info>http://www.service.
 com/docs/error-2002</more_
 info>
</error>

URIs Design for Queries

URIs should be meaningful and well

structured. When designing URIs, use

path variables to separate the elements

of a hierarchy. We should also use query

parameters to apply filters, sort, and select

specific resources.

Here, are some examples for getting

camera from an e-commerce site:

When to use URI Templates

When server does not have all the
information to generate a valid URI,
we should consider URL Template. URI
Templates are designed to return semi-
opaque URIs to clients, which allow clients
to fill in the missing pieces to generate
valid URIs:

Query Parameters
http://www.service.com/
part ?queryParam1={qp1}&
queryParam2={qp2}

Matrix parameters
http://www.service.com/
part;queryParam1={qp1};
queryParam2={qp2}

URL Path parameters
http://www.service.com/part{t1}/subpart

How to Copy, Merge, or
Move a Resource

Consider copying a resource when the
client would like to duplicate the resource

and make some changes to the newly
created copy. To implement this, we
should design a controller to make a copy
of the resource and include a link to it for
representation.

Request to fetch a representation of the
resource and copy the link that you get:

Request
GET /parts/engine
Host: www.service.com

Response
HTTP/1.1 200 OK
Content-Type:application/xml
<parts
	 <link
	 href=” http://www.service.com/
	 parts/engine /copy;
	 t=<token>”/>
	 ...
</parts>

The URI for the controller resource carries
a token to make the request conditional.
The server may use the token to ensure
that duplicate requests are not considered.
After this, place a POST request to
copy the resource.

In this example, a request is placed to

merge one part with another part:

Request

POST /parts/merge?src=part/

XYZ&dest=part/ABCHTTP/1.1

Host: www.service.com

When to use Link Relation Types

A link relation type describes the role or

purpose of a link. Links are not useful if

correct semantics are not assigned to

them. All relation type values are case

insensitive. Multiple values for each

relation can be considered.

Request
POST /parts/engine/copy;t=<token>
HTTP/1.1
Host: D

Response
HTTP/1.1 201 Created
Content-Type:application/xml;
Location:www.service.com/parts
<parts>
	 <link rel=”self” href=”
	 www.service.com /parts/
	 engine”/>
...

</parts>

A moving operation is used when one

resource needs to be moved to some

other location on the same or a different

server. The original resource should also be

removed.

In this example, the server uses a URI

Template for the client to specify a

category for the resource to be moved to:

Request

POST /parts/engine/XYZ/move;t=<token>?

group=Jeep HTTP/1.1

Host: www.service.com

Consider merging resources when the

client would like to merge two or more

resources presented to the server.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Security

REST web services should be designed

in such a way that they can authenticate

users and authorize the resources they

are allowed to access and use. Ensure the

confidentiality and integrity of information

from the moment it is collected, until the

time it is stored, and later presented to the

authorized persons. HTTP carries some

inherited authentication mechanisms,

it allows Basic, Digest, and Custom

Authentication.

If an anonymous user tries to access the

resources, the service will return a 401

unauthorized response and refuse access.

Here is a request example from a client

attempting to access a resource that needs

authentication:

Request
GET /parts HTTP/1.1

Host: www.service.com

In the following example, relation types are

used to apply paging on the products:

<product xmlns:atom=”http://www.	
 w3.org/2005/Atom”>
 <atom:link rel=”current” href=”
 http://service.com/product/122”/>
 <atom:link rel=”prev” href=”
 href=”http://service.com/
 product/121”/>
 <atom:link rel=”next” href=”
 href=”http://service.com/product/
 123”/>
</product>

about Information about resource

alternate Replacement Identifier for
original resource

current Current resource in a row of
resources

first First resource in a row of
resources

last Last resource in a row of
resources.

prev Previous resource in a row of
resources

next Next resource in a row of
resources

original Identifier of original
resource

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Response
401 Unauthorized
Content-Type: application/
xml;charset=UTF-8
<error xmlns:atom=”http://www.
w3.org/2005/Atom”>
 <message>Unauthorized.</message>

</error>

This is an example of when the client

passes a request which contains the

Authorization header:

Request
GET /parts HTTP/1.1
Host: www.service.com
Authorization: Basic aFGHRFKLnvascdubf
2536fgsfHGFHG=^&vnbvb%%

Response

HTTP/1.1 200 OK

In Basic Authentication, passwords are

passed over the network, in a simple plain

text format, which is highly unsecured. To

overcome this issue, we may choose an

HTTPS protocol, which encrypts the

HTTP pipe carrying the passwords.

In Digest Authentication, the client

sends a digest of the credentials to the

server. By default, clients use MD5 to

compute the digest. It is better than Basic

Authentication.

Applications that demand high security,

should implement a custom authentication

scheme. This scheme uses an HMAC

(custom Hash Message Authentication

Code) approach, where the server passes

the client a user-ID and a secret key.

This secret key can then be used for all

further sign-in requests.

We should also follow an Application

Security principle, like validating all

inputs on the server. It would be good

if we validate TOP 10 OWASP security

requirements, and log all the suspicious

activities.

Currently, OAuth is widely used for

authentication. OAuth (http://oauth.net)

is a delegated authorization protocol,

which enables services and applications to

interact with resources hosted securely in

third-party services, without requiring the

owners of those resources to share their

credentials.

Resource
Servers

Authorization
Server

A
cc

es
s

RE
ST

 S
er

vi
ce

Access Resources

Grant Access

Issue Token

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Header Parameter Meaning

Last Modified
This parameter gives the Date and Time when the server last updated
the representation.

Cache-Control This is used for HTTP 1.1 header to control caching.

Date Date and time when this representation was initially generated.

Expires Date and time when representation will expire. (HTTP 1.0 clients)

Age Total time in seconds since the representation was retrieved from the server.

Versioning

Versioning should be considered when

the servers are unable to maintain

compatibility. It can also be considered

when the client needs a special behavior

with respect to other clients.

It is important to be careful while doing

versioning as it may require code changes

at the client-side. You also have to maintain

a code base at the server-side for each

version.

Versioning can be accomplished via a

version number in the URI itself, where the

client indicates the version of a resource

they need directly in the URL. Facebook

and Google use the URL versioning

technique.

A few examples of URL versioning:

http://service/v1/part/123

http://service/v2/part/123

http://service/part/123?version=v3

Some applications prefer using Accept

and Content-Type with version identifiers,

instead of using version identifiers in URIs.

Content Type header is used to define a

request and response body format (from

both client and server-side) and Accept

header is used to define supported media

type by clients:

Request

GET http://service/parts/123

Accept: application/json; version=1

Response

HTTP/1.1 200 OK

Content-Type:

application/json; version=1

{“partId”:”123”, “name”:”Engine”}

Now, to retrieve version 2 of the same

resource in JSON format:

Request

GET http://service/parts/123

Accept: application/json; version=2

Response

HTTP/1.1 200 OK

Content-Type:

application/json; version=2

{“ partId”:”123”,

“name”:”Engine”,“type”:”Diesel”}

Now the client requires an XML

representation with the Accept header

that would be set to ‘application/xml’ along

with the required version:

Request
GET http://service/parts/123
Accept: application/json; version=1,

application/xml; version=1

The above request assumes that the server

supports one or both of the requested

types. In the response below, the server

favors application/xml:

Response
HTTP/1.1 200 OK
Content-Type:
application/xml; version=1
<part>
 <partId>123</partId>
 <name> Engine </name>

</part>

Here, the same URI is being used, with the

Accept header to indicate the format of the

required response.

Caching

HTTP provides a built-in caching

framework. Therefore, as long as you are

using HTTP as defined, you should be able

to add a caching layer without making any

code changes. Caching can be established

on the client or the server-side, and a proxy

server can be placed between them.

Header parameters are defined below to

control caching:

Consider setting expiration caching

headers for responses of GET and HEAD

requests for all successful response codes.

Although POST is cacheable, caches

consider this method as non-cacheable.

Also, consider adding caching headers to

the 3xx and 4xx response codes. This will

help reduce the amount of error-triggering

traffic from clients. This is called negative

caching.

Avoid implementing caching layer at

the client-side because it will make the

client slower and client-side caching

implementation could lead to security

vulnerabilities. Instead, place a forward

proxy cache between your clients and

the servers. This does not involve any

development activity and you get the

benefits of a well-tested and robust

caching infrastructure.

There is also the possibility to reverse

proxy cache server at the server-side. The

advantage of implementing a cache proxy

server is that you can share the

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

These days, REST is used everywhere –

from desktops to mobiles and even in the

likes of Facebook, Google, and Amazon.

REST provides a lighter-weight alternative

for application integration. The REST

architecture allows working in a variety of

scenarios and it is very useful in cloud and

mobile development.

Here, a real-time example is provided for

creating RESTful web service for a complex

system. This example is about Banking

Account Application, and presents the

number of operations that are possible

while working with a banking application.

•	 createAccountHolderProfile

•	 getAccountHolderProfile

•	 updateAccountHolderProfile

•	 doLogin

•	 doLogOut

•	 getAccountSummary

•	 getLoanAccounts

Application integration using REST and a prefect use case for designing
RESTful web services in the right manner

•	 getAllAccounts

•	 billPayment

•	 cancelPayment

•	 completePayment

•	 fundTransfer

•	 addPayee

•	 updatePayee

•	 deletePayee

•	 createFixedDeposit

•	 preCloserFixedDeposit

The second step would be to design the URLs, mapped with the business operations:

cache generated by a client with any other

client on the planet performing the same

request.

To keep the cache always fresh and

updated, synchronize its expiry with the

frequency of updates. Additionally,

implement background processes to watch

for database updates and schedule

GET requests to refresh caches.

Try to keep static contents like images,

CSS, JS cacheable, with expiration date of

1–3 days, and never keep expiry date too

high. Dynamic content should only

be cached for 1–4 days.

Reverse Proxy
Cache Server

Client Web
Server

Internet

RESTful URL HTTP Action Noun Business Operation

/Accounts/Profiles/; <profileData> POST Profile createAccountHolderProfile

/Accounts/Profiles/{profile_id} GET Profile getAccountHolderProfile

/Accounts/Profiles/{profile_id};< profileData> PUT Profile updateAccountHolderProfile

/Accounts/{acc_id} GET Account getAccountSummary

/Accounts/Loans/ GET Loan getLoanAccounts

/Accounts/ GET Account getAllAccounts

/Accounts/Bills/; <BillData> POST BILL billPayment

/Accounts/Payments/{paymentId} DELETE Payment cancelPayment

/Accounts/Payees/ ;<payee data> POST Payee addPayee

/Accounts/Payees/{payee_id};<payee data> PUT Payee updatePayee

/Accounts/Payee/{payee_id} DELETE Payee deletePayee

/Accounts/fd;<FD Data> POST FD createFixedDeposit

/Accounts/fd{fd_id};<FD Data> PUT FD preCloserFixedDeposit

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

In
te

rn
et

HTTP GET Request URL1

Response/JSON

Response/JSON

Response/JSON

 Banking Application

Web Servers ResourcesSecurity Caching

Account DB

Payment DB

Pro�le DB

HTTP POST Request URL2

HTTP PUT Request URL3

As a first step towards creating RESTful

interface, identify nouns out of the

application requirements:

•	 Account

•	 Profile

•	 Bill

•	 Loan

•	 Payee

•	 Fund

•	 Fixed Deposit

•	 Payment

As all browsers support JSON, and it is very
lightweight, we are going to use it as a
representation format.

For caching, we will use a caching proxy
server to present frequently accessed
information to users. For example – interest
rates and policies.

HTTPS is going to be used for
communication, which means that our
transport layer is encrypted. In addition,
a Token Based Authentication will be used
to secure the applications.

In the case of an exception at the client-
side or server-side, include a link of the
error page, which contains the detailed
error description.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

About the Author

Deepak Kumar
 Senior Technology Architect, Infosys Digital

Deepak Kumar is the Senior Technology Architect with Infosys Digital group. He has 11+ years of IT industry

experience in Software Design and Development. He has good hands-on experience in designing SharePoint™,

Microsoft .NET based CMS, .NET, and J2EE applications. His strength lies in the ability to handle Multi-tier

Application Design, Content Management, Internet / UI based applications, Object Oriented Design, and

Component Based Design.

You can reach out to him at deepak_kumar14@infosys.com

Conclusion
By designing web services through adopting RESTful guidelines and best practices, your application can best utilize the in-built
features of a web platform and the HTTP protocol. REST provides a superb way to implement services with inherited features
such as uniform interface and caching. Developers can enhance productivity and develop loosely coupled web services by
adopting the best REST practices.

© 2018 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
https://www.slideshare.net/infosys
https://www.infosys.com/

