
WHITE PAPER

CRASH DUMP ANALYSIS ON
WINDOWS AND SOLARIS
- Ramanpreet Singh, Technology Architect Eng

Introduction

This document is targeted for developers

working on assignments / bugs which

require crash / core dump analysis on

Windows / Solaris.

The core dump file is created whenever

there is abnormal termination of a process

which could be due to unexpected

behavior of application etc. For example:

process trying to write to an invalid

address can result in termination of the

process thereby generating the core

dump. The core dump file contains the

snapshot of memory, register contents

and other debugging information which

can provide valuable information to

developers to find out the root cause of

the issue which caused the program to

terminate unexpectedly. The core file can

provide information like the last function

which was being executed when program

got terminated, contents of memory

address associated with the process,

register contents, stack trace (containing

complete sequence of calls / functions

being executed), parameter validation

(values of arguments passed to functions),

disassembly of the code etc. with which

one can find the condition under which

program terminated and accordingly fix

the issue.

Crash Dump Analysis on
Windows

As mentioned in the introduction section,

dump captures the vital information of

the program state for later use. It contains

the information of the process which is

no more in active state and additionally

this dump can be opened on the different

machine and not necessarily on the

machine on which process was running.

This enables the developers to analyze the

dump in their own environment without

the need to obtain the access to customer’s

production environment where crash has

occurred.

Types of exceptions

The exceptions can be categorized as –

1. First Chance exception

2. Second Chance exception

The first chance exceptions do not

generally correspond to problem in

code and second chance exceptions

are responsible for causing crash in the

program.

Actually, when debugger is attached to

an application, the debugger gets the

first chance to see an exception (before

the application could see exception). The

first pass is called first chance exception

wherein debugger maybe configured to

pass on the exception to the application.

If the application here gracefully handles

the exception – then program would

continue as normal. Otherwise the

unhandled exception would again be sent

to the debugger and this pass is called

second chance exception. Therefore, first

chance exception or handled exceptions

are most likely not the cause of worry

whereas second chance exceptions or

unhandled exceptions can crash the

program.

Typically, the crash dump file is created

on windows platform with the extension

“.dmp”. Various tools are available to

analyze the dump on windows. As part of

this paper, we will focus on WinDbg and

Debug Diag.

Loading symbols

The initial step is to resolve the symbols of

the dependent libraries. For this, we need

to specify the path containing the PDB files

corresponding to windows and application

libraries.

Online Microsoft symbols server can be

used for resolving the symbols of windows

libraries – to do so specify the below path

in the symbol path:

SRV*<Local-Path>*http://msdl.

microsoft.com/download/symbols

This will resolve the symbols of Windows

libraries at runtime (when analyzing the

dump) and also download the required

symbols to the <Local-Path> location. At

a later stage – when reopening the same

dump file – we can also directly specify

the <Local-Path> in symbol path – thereby

resolving the Windows symbols in offline

mode.

And for dependent application libraries,

we can store all the required PDBs at some

location and append the path of that

location in symbol path.

In case of WinDbg, symbol path can be

added using .sympath command or from

the Menu File -> Symbol File Path. And in

case of Debug Diag symbol path can be

added using Menu option Tools ->Options

and Settings.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Resolving issues pertaining to
loading Symbols

You may experience issues in loading the

symbols even if the PDBs correspond to the

same version of the product.

We can enable the verbose mode in

WinDbg to see why symbols cannot be

loaded.

Use the following command to enable the

verbose mode:

‘!sym noisy’

Then reload the symbols using below

command and watch the error displayed:

.reload /f

In case you get the mismatched PDBs error

and you are sure that PDBs are correct and

correspond to the same version of the

product that generated the crash dump

– then you may opt to forcefully load the

symbols from PDBs.

Use the following command to forcefully

load the symbols from mismatched PDBs:

.reload /i

Now, the reason for mismatch PDBs might

be the difference in timestamp between

the PDBs and the executable that caused

the crash.

The forceful loading of symbols can

prove useful if PDBs actually correspond

to the executable and the debugger

has somehow considered them to be

mismatched. Otherwise, forceful loading

can lead to wrong code lines in the stack

trace / debugger output.

Analyzing the crash dump

The developers need to analyze the crash

dump to find the root cause of the crash

and identify the fix accordingly. The stack

trace (the call stack at the time of crash),

disassembly and registers values can be

useful in analyzing the crash dump.

In case of windbg, use the following

command to display the stack trace/call

stack of the thread that crashed:

!analyze –v

The following steps can be
helpful in debugging the core:

a) Parameter Validation

b) Viewing Memory contents

c) Viewing Register Contents

d) Viewing Disassembly

This will display the stack trace i.e.

sequence of the calls / functions

corresponding to the thread that crashed.

To view stack of all the threads, following

command can be used.

!uniqstack

To display disassembly – following

command can be used.

uf <function-name>

The above command will display the

disassembly for the function specified and

this disassembly can be compared with

the source code. This will help in locating

the source code line that caused the crash

since WinDbg will tell assembly language

statement at which crash has occurred

and it can be compared with source code

accordingly.

And to dump the register values, ‘r’

command can be used.

In case of Debug Diag tool, the complete

analysis report can be generated in a single

go. The report depicts all the errors and

exceptions along with their Thread IDs that

caused those exceptions. In addition to

this, it displays call stack for all the threads.

This tool can be quite helpful in analyzing

the hang issues wherein it can depict

which threads are waiting and which

threads are holding onto some critical

section etc.

Crash Dump Analysis on
Solaris
Dbx can be used to extract debugging

information from core dump file on

Solaris. The developer can use a set of dbx

commands to fetch the information like

stack trace, memory contents, register

contents, disassembly etc. as explained in

above section.

The dbx instructions can also be optionally

used for specifying virtual paths. These

instructions are used for loading the

symbols as we did earlier for Windows.

In case of Windows, we simply placed all the

required symbols (PDBs) at some location

and added that path in symbol path and

in that case debugger would look directly

Parameter Validation

The stack trace displays the sequence

of functions/calls executed that led to

crash. Along with the functions, the

actual arguments passed to the calls are

also shown. The argument values can be

analyzed to see if they are different from

the expected values and in that case it

can be compared with the source code to

detect the flaw in the code.

Sometimes, some argument might be

containing NULL which could be the

culprit. So the solution for this would be to

see why it is pointing to NULL and fix the

issue accordingly.

Also good programming practice requires

adding NULL checks – this would at least

avoid crash situations.

at symbol path for resolving any symbols.

But in case of Solaris, debugger looks for

libraries at actual path i.e. same path where

libraries (system/application) were placed

on the machine where crash occurred.

Since generally core is analyzed on

different machine than where the crash

occurred – we can specify the virtual

paths on the debug machine using dbx

instructions or other option is (if possible)

create the same physical paths on the

debug machine.

To create virtual paths, pathmap instructions

can be used in dbxrc file as follows:

pathmap /lib $PWD/libs/usr/lib

In the above instruction, debugger will

virtually map /lib folder to current folder/

libs/usr/lib. Hence, this eliminates the need

to create actual physical paths.

Now, open the core file using the following

command:

dbx –s dbxrc

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Viewing Memory contents

Though sometimes crash issue can be

simply debugged by parameter validation,

but it could not be that easy all the time.

We may need to view memory contents at

particular address to see what the actual

value of the variable was.

By fetching the values of various variables,

it may help to find out if any variable’s

actual value is different from expected one

which could point to cause of the issue.

The ‘examine’ command can be used to

view the contents at a particular memory

address:

examine <memory-

address>/<format>.

 The <format> can be c (character),

s (String), X (hexadecimal) etc.

depending on the type of the

variable stored in memory.

General guidelines
1. Symbols should be loaded correctly before analyzing the core dump so that correct call stack etc. is displayed.

2. Call stack, disassembly, registers contents, memory contents can be helpful in debugging the crash issue and fixing it.

3. Core can be debugged on the different machine and need not to be the same machine where core was created.

Viewing Register contents

Viewing register contents could also help

debugging the core. To view the register

contents, first we need to set the frame

for which we need to view the register

values. It may also point to the erroneous

condition which caused the crash.

The register contents can be viewed simply

by using the command ‘regs’.

Viewing Disassembly

Viewing disassembly could help in

debugging the core by mapping the

disassembly with the source code and

finding out which source code line actually

caused the crash.

The disassembly can be viewed by using

the following command:

dis <memory address of the function>

In the above command, function name can

also be used instead of its memory address.

Now apart from analyzing the core dumps,

hang issues can be fixed in a similar way.

In case the application hangs in some

scenario, the core can be generated

forcibly. Then the core dump can be

analyzed to see what the call stack etc. is

and accordingly see which threads are in

hang state and what they were doing –

same as per the above core dump analysis.

Following dbx commands can be used for

thread related information:

threads - to view all threads and see which

crashed or threw sigsegv signal

thread t@<thead #> - will set it as current

thread

Also, the information of the thread causing

the segmentation fault is available in

pflags.

About the Author
Ramanpreet Singh Lamba

Raman is working as Technology Architect with Infosys. He has more than 8.5 years of experience in the IT industry. His areas of
specialization include Access Management and Web security. He has worked on various critical issues in well-known Access Management
product that includes crash dump issues.

Raman has wide experience in working on multiple complex projects for Software Development and Maintenance. He took his degree in
Computer Science Engineering in 2004. He can be reached at Ramanpreet_Lamba@infosys.com

© 2018 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

© 2018 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
http://www.slideshare.net/infosys
https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
http://www.slideshare.net/infosys
https://www.infosys.com/

