
WHITE PAPER

IMPORTANCE OF BENCHMARKING
FOR MICROSERVICES APPLICATIONS
IN FINANCIAL SERVICES

Abstract
Applications are getting migrated from monolithic systems to microservices
at a rapid rate in the Financial Services industry. However, microservices
are often not benchmarked during the process of development and
performance measurement. It may be due to lack of awareness about
benchmark frameworks, paucity of time due to tight deadlines or additional
work required to maintain these. This leads to limited predictability of
project milestones delivery during development phase and application
performance once microservices have been developed.

This whitepaper introduces the concept of benchmarking and its need. We
also explored a few open-source benchmarks and its associated use cases.
Additionally, we enumerated different scenarios where benchmarks could
help us.

Introduction
In the financial services industry, monolithic applications are being re-architected into microservices (small, manageable services implementing a
particular use case) at a rapid rate. Typically, services in financial domain have complex business rules and deal with high volumes of data. Therefore,
there needs to be more focus on benchmarking development and performance of the applications. This would lead to increased productivity
during development and improved quality of the delivered products after deployment. By following these guidelines, one should be able to meet
the planned deadlines and achieve the expected NFRs in performance.

External Document © 2021 Infosys Limited

Why Benchmarking?
Financial systems should have predictable SDLC for enhancements and be able to scale based on business demands. Having standard
guidelines for SDLC helps development. Building a synthetic load generation tool to mimic actual production loads helps fine tune
performance. To eliminate variances due to environment, all the benchmark runs should start in the same state (i.e. Caches, VMs, Databases,
Files, States, Queues etc.). In the subsequent runs, data should be collected by varying only one input at a time so that it can be measured in
isolation.

Benchmarking should be started earlier in the development phase because the cost of fixing issues at later SDLC stages is much higher. Any
change in design could cause significant impact that necessitates thorough testing. It would be better to intercept them during initial stages.

Development Benchmarks

Development of microservices in financial
domain on a predictable timetable is a
challenge due to complexity of visualizing
the system in its entirety. Troubleshooting
across services makes it a time-consuming
exercise. Hence, estimation of time and
adherence to deadlines are of critical
importance.

Community-owned standard benchmarks
help solve these problems by measuring
development against pre-defined
and recommended characteristics.
Implementing a solution in this manner
prevents known issues from occurring and
avoids rework. They can be grouped under
three categories viz. Architectural, DevOps
and General. Additional details regarding
development benchmarks are in Table 1.

Architecture

DevOps

General

Benchmark

Figure 1.

External Document © 2021 Infosys Limited

Req. Usage Table 1

Architectural

Things to be considered are:

•	 Explicit Topological View: An explicit topological view, which specifies the main service elements and the
communications between them, should be provided.

•	 Pattern Based Design: Well-known patterns like Circuit Breaker, Service Discovery, Database Per Service, Messaging
etc. should be implemented.

DevOps

Any code that is production ready should have the following practices from a development benchmark perspective.

•	 Easy Access From a Version Control Repository: Version Control Repository such as GitHub or Bitbucket is a
mandatory requirement that helps to have easy access to source code and release history.

•	 Continuous Integration: Tools such as Jenkins, TeamCity, etc. help with automatic integration of existing software
code with newly developed ones. Additionally, they help with code quality check and testing

•	 Automated Testing: Tools like Cucumber, Selenium etc. should be used for automated testing on a repeated basis.

•	 Dependency Management: For automatic download and installation of external software artifacts, one should use
management tools like Maven, Gradle, NPM etc.

•	 Reusable Container Image: Virtualized infrastructure tools like Docker are used for easy deployment independent of
underlying physical infrastructure.

•	 Automated Deployment: To alleviate the problem of variations related to application deployments across different
environments, automated deployment tools such as Chef and Ansible should be used

•	 Container Orchestration: Challenges faced due to service discovery, load balancing and rolling upgrade can be isolated
using container orchestration tools like Docker Swarm, Kubernetes and Mesos.

General

This category is not mandatory from a technical perspective but it’s a nice to have feature. It may not be always possible
due to duplication of efforts and varied skill set requirement.

•	 Independence of Automation Technology: An ideal solution would be to have support for multiple tools for
dependency management, automated testing, continuous integration, and container orchestration

•	 Alternate Version: It’s good to have multiple implementations using different programming languages or different
architectural designs. This helps to compare the design decisions and technology choices made.

•	 Community Usage and Interest: A well-documented benchmark, having good customization and ease of deployment,
is likely to be used more often. Its popularity would increase confidence in its adequacy and allows repeatability of
results.

External Document © 2021 Infosys Limited

Performance Benchmarks
Performance is a dominant factor in all financial applications. Benchmarking would help us monitor and analyze changes to workload
which ensures timely corrective actions. It also provides a comprehensive view of the parameters affecting the overall system performance
on different platforms. This allows applications to face fluctuations due to market events as well as technology and business bubbles with
confidence. Benchmarks can be considered reliable and useful based on the following points:

•	 Design of workload should be based on stress scenarios such that it can be tested against spikes seen in the real world. Additionally, in
cloud environment, it is preferred to test the system stability by enforcing random instance failures to introduce chaos.

•	 Critical services in the financial firms must be tested by benchmarks and used as a basis for SLA’s.

Benchmark Frameworks

DeathStarBench Suite
DeathStarBench is an open-source suite
which studies microservices in Cloud
and IoT. It contains few standardized
use cases (like E-Commerce, Social
Network, Video Streaming, Media
Service, Movie Reviewing, Swarm
Cloud, Swarm Edge and Banking
System) which explores the implication
of microservices on cloud stack and
application design.

With increased digitization of financial
services, we see usecases similar
to standardized benchmarks (E.g.
streaming of virtual townhalls vs video
streaming, shopping carts in financial
product transactions vs e-commerce,
etc.). Hence benchmarks could be
used to simulate the banking domain
usecases.

Following are some of the commonly
used principles:

•	 Representativeness

•	 End-to-end operations

•	 Heterogeneity

•	 Modularity

•	 Reconfigurability

One of the benchmarks in the suite
is for a Banking System. Its services
implement a secure banking system,
which users leverage to process
payments, request loans or balance
their credit card. This should be a
recommended benchmark to be used in
financial domain. This benchmark uses
RPC and has 34 unique microservices.

μSuite

Financial applications tend to have features

such as product search, search across

different integrated data categories,

comparisons of similar competitive

products, videos depicting detailed

research, product catalogs of different

funds, real time stock quotes, historical

data and predictions, financial modelling

and risk computations, etc. which are data

intensive. They may be categorized as

Online Data Intensive (OLDI) applications.

For a better user experience, it is imperative

to meet deadlines in the form of Service

Level Objectives (SLO). In a typical

monolithic application, one would have

a latency benchmark of < 100ms but in
microservices-based architecture one would
expect a latency benchmark of < 10ms.

μSuite consists of 4 microservices based
on different properties used in a real-world
scenarios which are spread across 3 tiers.

•	 High Dimensional search (HDSearch)

•	 Router.

•	 Set Algebra

•	 Recommendation Engine.

This benchmark also uses RPC. Actually, it
would make sense for financial systems to
adopt RPC as the communication protocol
as it tends to be much faster than REST.

External Document © 2021 Infosys Limited

How Benchmarks help us?

Development Benchmarks -
Integration Issues
Applications in different departments
in a financial firm may have different
technology stacks and evolutionary
paths - composed of a mix of open
source, proprietary software, and bespoke
implementations. When executing a cross-
divisional project, there is a lack of visibility
and estimations across teams. Using a
standardized benchmark thus provides
a reference for implementation and
estimation. It also helps identify potential
bottlenecks.

Development Benchmarks –
Devops
Sometimes DevOps processes (E.g.
Version Control, CI/CD, Automated
Testing, Dependency Management,
Containerization, Automated Deployment
etc.) may have been sidelined due to
various reasons. This would lead to
development logjam and extended
development lifecycle. Development
benchmarks have requirements that should
be supported for DevOps to prevent such
issues from occurring. In financial domain,
with tight regulatory deadlines, this would
help market the product on time and
within budget.

Development Benchmarks - Best
Practices
Applications which are developed as
rapid prototypes, minimum viable
products, proof of concepts and internal
applications may not have implemented
all the best practices such as Circuit
Breaker, Service Discovery, API Gateway,
Database per service, Messaging, etc. This
may inadvertently pose potential risks
to data security, stability, and scalability
of the system. In financial domain, data
security is of paramount importance as
it has a direct financial, regulatory, and
reputational impact. A topological view
that specifies the main service elements

and the communications between them
- provides a visual representation of the
architecture and design. This should help
identify the deficiencies in developmental
life cycle while moving from initial stages
into production implementation.

Performance Benchmarks -
Scalability
Financial applications are rich in
functionality and possess complex
business rules. Current workloads
normally take precedence and higher
focus. However, potential failure points
due to higher workloads get sidelined.
Having performance benchmarks gives us
insights into how systems would behave
under modelled workloads. It allows us
to predict performance especially during
peak load conditions and usage spikes.

Performance Benchmarks –
Availability
Financial systems are expected to have
fault tolerance and should be highly
available for business continuity. However,
due to market events, new products/
clients etc. the workload patterns change.
This leads to unforeseen behaviors and
faults due to hidden bugs. If outage or
failure occurs due to this, the availability
would be severely impacted. Having
performance benchmarks would allow the
design to be validated during testing and
catch such issues ahead of time.

Performance Benchmarks -
Infrastructure Updates
Infrastructure updates due to OS,
hardware, and networks - presents
a constantly changing environment.
Financial firms perform regular updates
for performance and security reasons.
This may lead to failures for a few runtime
scenarios and present risks to production
environment. Having performance
benchmarks and testing on target
environment would give a prediction of
system behavior under enclosed, low-risk
conditions.

Financial Domain Benchmarks

The use cases and patterns for data sourcing in financial domain are unique. Currently, there are limited benchmarks available to represent
them. There is a need for more benchmarks that model financial world issues such as trade sourcing, financial modelling, settlements, open
banking use cases and financial transactions to name a few. Some of the patterns we can see are:

Trade processing Requirements

Figure 2

Figure 3

Figure 4

•	 Queueing-based real time trades
which are reconciled at End-Of-Day.

•	 Real Time Queues for Intra Day
processing with region based Close
Of Business.

•	 Standard and additional attributes for
different types of trades. Details are
as in Figure 2

Model calculations
Model calculations use time series data
as input and output. These calculations
occur in different time horizons and
have a specific behaviour that is not
captured in any of the open-source
benchmarks.

Different factors that affect the
behaviour of queuing behavior in
model calculations would be:

•	 Plain vanilla instruments which may
tend to be simple and may need to
be batched together.

•	 Exotic or bespoke instruments
which are complicated and
may require splitting logic for
parallelization.

•	 Volume of trades and different
instrument types which affect the
end-end computation time.

Time horizons define the length of the
time series and this in turn decides the
time taken for modelling computations.
E.g. There are different time durations
calculations for Basel III. Details are as in
Figure 3 and Figure 4.

Database

Reconciliation

Intra Day File

End of Day File

Intra Day File

End of Day File

Trade Desk

Trade Desk

End Of Day
Trade

Settlement

POST AMEND CANCEL … … POST AMEND CANCEL

POST AMEND CANCEL … … POST AMEND CANCEL

Text

Model Calculation

Risk Factor Simulation Pricing Risk
Metrics

Derived
Risk

Metrics

Identify Risk Factors Simulate for Standard Time HorizonsSimulation

Use Simulated Risk Factors Apply Pricing Formula Upto ExpiryPricing

Use Price Time Series Calculate di�erent Risk MetricsRisk Metrics

Vanilla
Instruments

Batching

Exotic
Instruments

Splitting

Volume and
Trade Types

20May21
24May21
01Jun 21

-
-
-
-
-

29May34
05Jun34

0.978272
0.87652
0.82352

-
-
-
-
-

0.18930
0.12523

Time

Modelling Strategies

External Document © 2021 Infosys Limited

External Document © 2021 Infosys Limited

Conclusion
Financial Service industry involves
strict regulatory guidelines and
requires development on challenging
timelines with regular milestones.
Adhering to development
benchmarks guides us to achieve
complete product development on
time and within budget. Regulatory
changes, economic events, financial
market bubbles and financial crisis
apply a drastic change in workload
patterns for which the applications
might not have been designed. This
results in exposed weak links and may
either lead to catastrophic failures or
major fluctuations in performance.
Performance benchmarking allows
us to predict and remediate these
potential issues before hand.

Glossary
API – Application Programming Interface

CI/CD – Continuous Integration,
Continuous Delivery

DevOps – Development Operations

HDSearch – High Dimensional search

IoT – Internet Of Things

NFR – Non-Functional Requirement

OLDI – Online Data Intensive

OS – Operating System

REST – Representational State Transfer

RPC – Remote Procedure Call

SDLC – Software Development Life Cycle

SLA – Service Level Agreement

SLO – Service Level Objectives

VM – Virtual Machine

© 2021 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

References
a.	 Research Paper

•	 Benchmark Requirements for Microservices Architecture Research by Carlos Mendes Aderaldo, Nabor C. Mendonca, Claus Pahl, Pooyan
Jamshidi

•	 µSuite: A Benchmark Suite for Microservices by Akshitha Sriraman, Thomas F. Wenisch

•	 An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud and Edge Systems by Ankitha
Shetty, Brian Ritchken, Brett Clancy, Leon Zaruvinsky, Yu Gan, Priyal Rathi, Brendon Jackson, Chris Colen, Mateo Espinosa, Yanqi Zhang,
Nayan Katarki, Kelvin Hu, Fukang Wen, Rick Lin, Christina Delimitrou, Dailun Cheng, Ariana Bruno, Meghna Pancholi, Catherine Leung,
Zhongling Liu, Justin Hu, Yuan He, Siyuan Wang, Jake Padilla

•	 Performance Modeling and Benchmarking of Event-Based System By Kai Sachs

b.	 Online Research

•	 Thoughtworks: Podcast-techniques-implementing-microservices-and-cloud

•	 Google-Cloud: Microservice-performance

About the Authors

Prashanth Kumar M S
Senior Technical Architect, Banking and Financial Services, Infosys Ltd

Prashanth Kumar M S has worked in the domain areas of Financial Services and Investment Banks, particularly Credit Risk. He is an
Open Source enthusiast, involved in application design with global clients in areas of Finance and Investment Banking in Cloud and
Microservices. He is exploring Azure Cloud and has interests in No SQL databases such as MongoDB, Node4J.

Balakarthikeyan Ananthapadmanaban
Technical Architect, Banking and Financial Services, Infosys Ltd

Balakarthikeyan Ananthapadmanaban has worked on Open-Source technologies based on Java EE platform and cloud native
technologies. His areas of interests include exploring latest technologies like Microservices, Google Cloud Platform, Kubernetes, ELK Stack,
Apache Kafka, GraphQL.

Biresh Choudhury
Product Technical Lead, Banking and Financial Services, Infosys Ltd

Biresh Choudhury has worked in the domain area of Retail Banking and Insurance. He is involved in technical architecture and
development of software for large global clients in Investment Banking. His technology focus areas are Amazon Web Services, GraphQL,
NoSQL Databases.

Acknowledgements
We are grateful to Murali Sethuraman, Senior Principal Technology Architect, for his support and guidance.

https://www.researchgate.net/publication/314114327_Benchmark_Requirements_for_Microservices_Architecture_Research
https://akshithasriraman.eecs.umich.edu/pubs/IISWC2018-%CE%BCSuite-preprint.pdf
https://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf
http://www.dvs.informatik.tu-darmstadt.de/publications/pdf/PerMod_Benchmarking_EBS.pdf
https://www.thoughtworks.com/insights/blog/podcast-techniques-implementing-microservices-and-cloud
https://cloud.google.com/appengine/docs/standard/java/microservice-performance
https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys

