
WHITE PAPER

RESILIENCE IN DISTRIBUTED
SYSTEMS

Abstract
With the rapid increase in the number of internet users and frequent
changes in consumer trends, traditional systems have no choice but
to scale out, distribute, and decentralize. To give you an idea of the
extend of scaling involved, Facebook and YouTube each would have
had 40,000 to 45,000 hits from desktop users alone in the 5 seconds
it took you to read this paragraph. [5].

With the peta and exa bytes of data being generated every day and
the growing adoption of IoT, this scaling is only going to become
more exponential and systems will need to scale out and depend on
each other more than ever.

Distributed systems are driven by various Architecturally Significant
Requirements (ASRs) [24] and one such ASR is resilience.

This paper is about the SPEAR (Software Performance Engineering
and ARchitecture services) team’s perspective on Application
Resilience in distributed systems – what it means in simple terms,
how to study it, the factors affecting it, and what patterns/best
practices can help us in improving the same.

External Document © 2019 Infosys Limited External Document © 2019 Infosys Limited

Who is this document for?
This is presented from the perspective of a
lead application designer or an architect,
but there are some theories and methods
for IT managers, developers, architects,
tech leads, and program managers who
are looking to understand and improve
resilience in a distributed system.

Some basic definitions first.

What is a distributed system?
A distributed system is one where multiple
components of a system are physically
or logically separated and governed
by common and component-specific
requirements.

We say common because if you are
designing a system to be 99.99%
available you cannot have a crucial
cache component in the system which
is available only 97%. If that is the case,
you need to have a trade-off in place to
make sure the service availability is met in
spite of only 97% availability of the cache
component.

We say component specific because the
design of the cache component is driven
by speed and will be leveraging much
of the primary storage disk, whereas the

design of a persistent database will be to
effectively manage secondary disk.

What is resilience?
Resilience of an application, in simple
language, is the capability of the
application to spring back to an acceptable
operational condition after it faces an
event affecting its operating conditions.

[‘capability’ - what you have inside your
systems to put them back in acceptable
operating condition),

 ‘event’ – failure of responsibility of some
module within the application or a failure
of responsibility of some dependent
system or a force majeure situation]

A ‘failure of responsibility’ or simply
a failure could be a breach of SLA or
some sort of agreement regarding an
application. It could be big, like a failure
of Amazon Route 53 services or a bug in
the implementation of the Set interface
which behaves unexpectedly under normal
operating conditions.

The flipside of resilience is all about
understanding and preparing for failures.
So resilience can also be defined as the
capability of the system to understand and
manage failures occurring in the system

effectively, with minimal disruption to
business operations.

Why is this important? – Because it affects
business, trust and lives.

A downtime of 1 minute at Amazon can
result in a potential loss of USD 234,000
through their online channels alone. [6][7]
[8] A technical glitch caused an outage on
the New York Stock Exchange, leading to a
drop in share prices and indexes.

Can you imagine an outage in a critical
hospital system, air traffic control system,
core trading platform or on a police or
emergency contact system?

Some metrics like RPO (Recovery Point
Objective), RTO (Recovery Time Objective),
MTTR (Mean Time to Recovery), Number of
failures/bugs detected in the system, SLA
variance, etc., are some ways to measure
resilience of a system. We will not be
going into detail in this paper about the
measurement and tools used but take a
look at the various failures and patterns
which can be used to improve the MTTR or
RPO or RTO of a system.

Let’s begin with a couple of modeling
techniques needed for studying resilience
– Flow and failure modeling.

Flow modeling
Traditionally we study the various flows in
the system via use case analysis, control/
data flows, sequence diagrams etc., but will
this linear and branching flow study really
help?

Let’s consider the control flow of this
example: an online food ordering website

lets the user select the food (A), check out
the same (B), check coupons (C) via an
external service, recalculate the checkout
amount (B) if there are any discounts, select
an address (D), external service for making
payment (E1) which in turn automatically
places an order (E2) via the restaurant API.

While this is more of a happy flow or ideal
flow of a business operation, for resilience

study we need to look at the alternate
flows. Alternate flows are the control
and data flows which are taken by the
application if an unexpected behavior
occurs. So to understand and design
alternate flows we need to include the list
of implicit services and dependencies at
each step.

Figure 1 Control Flow of Order Booking

External Document © 2019 Infosys Limited External Document © 2019 Infosys Limited

For example, let’s look at the context
of Step B – the check-out service. If we
examine carefully, the check-out service,
apart from coupon and address service,
inherently banks on:

1. The DNS services.

2. The infrastructure services like

a. Operating System

b. CPU

c. RAM

d. Storage – Disk, File

e. Network

f. Any other infra components like
routers, switches, firewalls, etc.,

3. The trust domain established by
the security context (authentication,
authorization, tokens etc.,)

4. Persistent Data Storage Services.

5. The state of the service (is it configured
correctly and running correctly).

6. Technology of the service (Language,
frameworks, dependent libraries, etc.)

7. Etc .

If we observe all the services some are
shared between multiple components and
some are not. Some are external and some
are internal. Some are in the same layer as
the application and some are not. Studying
these dependencies and relations quickly

takes the form of a reticulated mesh,
which requires us to study the various
events which can occur in each of these
services, and then design and architect the
application to handle the same.

 With the current linear and branching
model this is difficult and we should start
using a multi-dimensional graphical model
when trying to understand the control
and data flows. This perspective is very
important to design resilient systems.

Where to start – Cyclic and acyclic graphs,
predictive models like PGM (Probabilistic
Graph Modeling) etc., are some of the
places to start. [21]

Failure modeling
Once we have a fair understanding of the
multi-dimensional flow of control and data
in the application, we need to perform
a failure modeling exercise – where we
list down the kinds of known failures and
perform a what-if analysis and incorporate
failure handling mechanisms in the system.

[‘what-if’ – a what-if analysis is essentially
an exercise to simulate a failure from
the known list and check if there are
mechanisms present in the system to
handle it.

For example, what if there is a network
failure? Do we have an alternate network
or retry of services at regular intervals
implemented?]

Figure (2) can help in understanding the
various stages of failure handling in a
system.

FP – Fault Prevention - Capabilities present
in the system to handle known failures that
are expected to occur in the system.

FD – Fault Detection – Capabilities present
in the system to detect a fault. tfd - time gap
between the actual fault occurrence and
the detection of the same.

FI – Fault Isolation – Capability of the
system to isolate the fault and treat it
separately so that the normal functioning
of the system is not affected. If there is no
fault isolation mechanism, then the time
taken to treat the fault would affect the
normal processing of the system. tfi – It is
the time taken by the system to isolate the
fault after it has been detected.

FT – Fault Treatment – Capability present
in the system to treat a fault once it has
been detected and/or isolated. tft – It is the
time taken to categorize the type of fault
and treat it accordingly. For example, faults
like a dependent system not reachable
via network can be retried, but a fault
like ‘order message cannot be parsed’ is
something which will fail no matter how
many times it is retried. Such faults cannot
be treated and will be logged and failed
gracefully.

Figure 2 Failure Handling in a software system

External Document © 2019 Infosys Limited External Document © 2019 Infosys Limited

FR – Fault Recovery – Capability present in
the system to recover from the fault after
it has occurred and/or has been treated.
If the fault cannot be treated or if the
treatment of the fault affects the overall
system state, then recovery mechanisms
are needed to set the system back to
operational state. The only goal of the
recovery mechanism(s) is to get the system
back up and running in normal operating
mode.

In one of the architecture assessments we
found that the key orchestrating system
was running on a fault-tolerant box, but
when we did a what-if analysis on the
physical failure of the system, we found
that the time taken to achieve the RTO
and RPO was getting affected. As a result,
we recommended adding an additional
machine to handle box failure.

Where to start - FMEA (Failure Mode Effects
Analysis), Event and Fault tree analysis, etc.,
are some places to start.

A highly resilient system should
scientifically study each fault, categorize
them based on severity and risk, have
proper mechanisms in place to handle the
system in case of a failure, and decrease the
time taken to detect or treat a fault.

Key failure categories
Let us see some failure categories and
check what mechanisms can be put in
place to handle them efficiently.

I. Architecture and design Issues:

A poorly designed or architected
distributed software can lead to various
issues in the system today, tomorrow or
any time till the end of life of the software.
Remember, “Prevention is always better
than cure”.

Couple of examples are mentioned below:

1. Intelligent retries – “Intelligent Retries”
decide the strategy to retry a failed
operation. For example, retry with a
timeout, logarithmic retry, arithmetic retry,
geometric retries, priority retries, failover
retries, etc.

Retries can make an application fault-
tolerant, that is, if a module fails to connect
to a service, it silently fails-over to another
equivalent service which can fulfil the same
request. This is called “idempotent failover”
[4] and is employed in many stateless
services.

2. Actor model [14] – Actor model is an
alternate, highly concurrent and resilient
model where actors never lock on a single
resource like shared memory or shared
object, instead talking to each other via
messages. Akka is one such open source

library which is built based on Actor model.

Architecture and design is a vast topic and
to retain brevity, we recommend the below
material for further reading on this.

Where to start? - Martin Fowler, Chaos
engineering groups, EIP patterns by Gregor
Hohpe and Bobby Woolf, highscalability.
com, cloud resiliency patterns, Erlang’s
‘Let it Fail’ [17], digital twins, bulkhead, 8
fallacies of distributed computing, stand-in
processing, claim-check, throttling, sidecar,
circuit breaker, fencing, redundancy,
auto scaling, stateless architectures,
Infrastructure as Code, reconciliation
strategies, Policy centralization, Immutable
infrastructure, event/service meshes and
mesh based architectures (like MASA),
traffic mirroring, Unbreakable pipelines,
streaming patterns, Byzantine fault,
consensus algorithms like raft or Paxos, CEP
(Complex Event Processing), real-time and
near real-time replication strategies, EDA
(Event Driven Architecture), choreography
patterns, distributed transaction handling
patterns (like SAGA), data bus concepts
from LinkedIn or MySQL or MongoDB, etc .

Daunted by this list? Don’t be, and you are
not alone. Understanding the requirements
of the distributed software and making
intelligent choice of algorithms and
patterns will solve many forthcoming
issues.

External Document © 2019 Infosys Limited

External Document © 2019 Infosys Limited External Document © 2019 Infosys Limited

II. Failure risk analysis:
To build more confidence in the system it
is important that a failure categorization
is done accordingly and risk is assessed.
The following quadrant-based segregation
helps in understanding a distributed
system.

Quadrant 1 - All failures, once they occur
or are known failure scenarios, are studied
and solutions are provided to handle them
through various architectural choices and
design mechanisms. The same needs to
be built into various testing strategies
to ensure that any changes made in the
system are tested against these known
failures and are handled accordingly. For

example, a network failure is anticipated
and recovery mechanisms are in place to
handle the same.

Quadrant 2 – It is possible that some of the
failures/bugs lie unearthed in the system
and if found earlier in the system could
have been isolated and handled better by
adding the required design and processes.
An unknown failure once unearthed
becomes a known failure and after
studying it, is moved into Quadrant 1.

For example, an unearthed design bug of
infinite retry occurs only when the network
goes down. Such scenarios could be
missed in the usual testing methods. Using
failure injection techniques, it is possible to

study the failure and develop a solution for
the same.

Quadrant 3 – In this case it is not only
difficult to find the unknown failures in the
system, as setting up such testing context
can be difficult, it is possible that such
failures have no known solutions that can
be applied.

Quadrant 4 - This case is when we know
some failures may occur but truly there
is no solution which can be applied.
Force majeure situations like acts of god,
or any man-made disaster fall into this
category and such risks are to be covered
in contracts

III. Testing methods:
The application landscape has changed
and the world is getting rapidly rewritten
in code for tomorrow, even as we speak.

To keep up with this change, it is
imperative that software testing methods
have to be made more robust. One such
method is Chaos testing [15] which is the
process of testing failures in a distributed
system by injecting known failures in the
systems and observing the behavior.

For example, inject a JVM memory
exception in a remote JVM instance and
observing the response time of the system.

Some tools which can be used for chaos

testing are – Chaos Monkey, Simian Army,
gremlin etc.

Another way is to employ shift left testing
strategy where the testing methods can
start engaging very early in the cycle
and act as a gateway to promote the
code. Tool chains in the DevOps, CI/CD
pipeline should integrate testing tools and
practically all kinds of testing, from unit,
performance, security, integration etc., can
be executed and studied in a controlled
environment and it can be decided if the
software or the patch can go live. Tools
like kubernetes, JMeter, Jenkins, Docker,
Dynatrace etc., enable us to model newer
testing approaches. Robust monitoring

systems and tools today also allow us to
detect and rollback the deployments made
in case of an error found in production.

The testing tools and methods today are
sophisticated and continually evolving.
Embracing these new testing methods,
tools, and processes is imperative for
building a robust system.

IV. Deployment issues:
An intelligent deployment strategy can
prevent issues from being caused due to
software problems. Let’s look at a couple of
examples below:

1. Blue/Green deployment – The idea is
to maintain two production environments

Figure 3 Known and Unknown Failure domains

External Document © 2019 Infosys Limited

External Document © 2019 Infosys Limited External Document © 2019 Infosys Limited

- blue and green - which are identical,
with one of them being active (say blue).
A new feature is deployed into the inactive
environment (green) and tested and once
it is ‘Okay’, then the traffic is switched from
blue to green. The next feature is deployed
into blue and traffic is routed through blue
again. This ensures that at any point of
time, the system is operable and no new
features rupture the business operations
after go live.

2. Canary releases – This strategy is similar
to blue/green deployment but a release is
only made to a subset of the infrastructure
or a scalable but downsized identical
deployment. Initially some % of the users
are routed to the new deployment. Once
the new feature is stable, all users will be
routed to the new version.

For example, we all do see pop-ups in
or mobile apps and web apps asking us
if we want to try the new feature or the
new beta version of a software. When
we opt ‘Yes’, we will be routed to the new
feature while users who opted ‘No’ will be
routed to the old version. Practices like
this ensures that feature roll outs don’t
introduce failures and even if they do, it
doesn’t stop the business from servicing
the clients.

V. Alignment of builders:
It is important that builders of software
are provided a formal initial alignment or
induction process, which educates them on
the nature of distributed systems, the likely
problems they will face, and the common
set of patterns which can be used to avoid
those. It is natural that in a distributed
system with many moving parts and many
teams, people tend to fall into what I call
as the ‘farther from repercussion’ problem.
Since everyone is farther from the larger
picture in an enterprise and there are
always deployments and developments
from multiple teams happening at the
same time, it is possible that the team
‘feels’ that it is ‘someone else’s problem’ and
that ‘I have no control on the final picture’
or ‘how do I know this will happen.’ This
needs to be addressed and avoided. It is
important that programmers are evolved
to developers. A developer is the one who

sees beyond programming a specific task
and puts together the multiple facets of
what he writes.

To signify the importance of this, similar to
the Y2K bug, a software bug which couldn’t
detect the year 2010 rendered up to 30
million debit cards in Germany unusable.
[1][2]

A well aligned developer will be able to
write software which will not have such
issues.

VI. Architecturally Significant
Requirements study
It is important that the architecturally
significant requirements (ASR) derived
during the initial requirement or
‘solutioning’ phase are studied carefully
and related to logic and math. If there
are specific SLAs and metrics which the
software needs to meet, capturing them
beforehand and asking the software
builders to ‘mind them’ while developing
will help.

For example, instead of just stating the
system should be up 99.99%, it should
be written in a more clearly articulated
statement, like ‘the users should be able
to submit loans 99.99% of the time in the
system and should be able to view the
loan status response within 3 seconds of
submitting the loan in the system.’

Also, by studying the various ASRs and
performing a trade-off or a risk analysis
matters, because the more we try to
design a perfect failure-free system or
resilient system, the more the cost goes up.
Sometimes it is okay to let it fail and retry
later. Such decisions can be taken only if
there is a good study and clear articulation
of the ASRs in the system.

VII. Adoption of DevOps:
A deployment should take care of ease
of testing and provide the team a sense
of ownership and the confidence that
whatever they have developed will work
well in production. DevOps processes
ensure that the ride from development to
deployment phase is not jittery. A lot of
resources are available about the benefits

of DevOps and usage of DevOps tools.
Incorporate it as part of the software
development-to-deployment cycle.

VIII. Security issues:
Security is a significant area where failures
occur in the system. Cyber security has
always been a battle of today with the
vulnerabilities of yesterday.

Unfortunately, hackers today are more
targeted and motivated than ever before.

Example: In January 2018, three major
banks in Netherlands were victims of
a DDoS attack which resulted in slow
response times and service outages. [9]

Following are some of the preventive
mechanisms that can be incorporated from
an application and process perspective to
avoid such a scenario–

a. In case of a security threat, isolation
of application or services from the
network should be possible.

b. Security checks, OWASP (Open
Web Application Security Project)
compliance checks, app scans, and
customized security testing should be
included in your DevOps pipeline.

c. SecOps should be inculcated as
practice in the organization. As
developers and leads deal with
DevOps, Sysadmins and Security
Architects should come together to
define and practice SecOps in their
organization.

For example, it could be decided that all OS
and other software used should always be
(n-1) version in production.

d. Adoption of enterprise-ready, proven,
and a good community-backed
Open Source Software (OSS) is one
area where security has done well in
terms of publishing quick patches
for vulnerabilities as opposed to
proprietary software which are
in general influenced by product
roadmaps and differences in support
levels.

e. Block chain, AI, and ML are into the
cybersecurity space and newer models

External Document © 2019 Infosys Limited

External Document © 2019 Infosys Limited External Document © 2019 Infosys Limited

in fields like cognitive and semantic
security help to identify new patterns
which are difficult to manually detect.

For example, AI/ML algorithms detect
intrusions and anomalies which are
normally left undetected by rule
configurations done by humans.

f. Distribution of the security context
between multiple services and
solutions is a proven strategy to avoid
attacks on a singular context.

g. Last but not the least, the weakest
part of any cyber security system are
humans. Design systems which prevent
this vulnerability. Example of a poor
design is having a software storing
a password in a format readable by
humans or having a single-factor
authentication for key use cases.

h. Multi-factor authentication, maker-
checker process for critical business
services, encryption, OTP mechanisms
etc., are some of the methods which
can avoid human vulnerabilities.

A Robust system should also handle
existing and newer vulnerabilities (sites
like https://oval.cisecurity.org/, https://cve.
mitre.org/cve/ and https://nvd.nist.gov/
) are some of the open public sites which
publish vulnerabilities.

Ceteris paribus, a less secure system is
more likely to fail. We’ve only scratched
the surface and this is a topic and study
on its own. We recommend cyber-security
practices that address both human and
non-human vulnerabilities and how all
systems, processes, and humans can be
patched at regular intervals.

IX. Currency issues:
As a general practice, all software and
products used in production should be
at the most be (n-2) versions or within
two years of a major release. This should
be a part of product upgrade strategy to
avoid foreseen and unforeseen issues. All
patches should be taken into a security and
operations group -- here is where the role
of the SecOps team is vital -- and should be
patched accordingly.

Why this is important - After the discovery
of critical Spectre-NG vulnerability, the
following statement was issued by Intel
– “Protecting our customers’ data and
ensuring the security of our products are
critical priorities for us. We routinely work
closely with customers, partners, other
chipmakers and researchers to understand
and mitigate any issues that are identified,
and part of this process involves reserving
blocks of CVE numbers. We believe strongly
in the value of coordinated disclosure
and will share additional details on any
potential issues as we finalize mitigations.
As a best practice, we continue to
encourage everyone to keep their systems
up-to-date.” [11]

It is also to be mandated that all
maintenance scripts and contingency
scripts written for the software are
kept updated and any release made to
production is inclusive of updates made
to the contingency scripts and SOP
documents

X. Transition state issues:
Many of the failures occur during an
inconsistent or transient state of systems.
A failure occurring during an environment
startup and shutdown, can cause more
damage to the data and the state of the
application than a failure occurring during
normal business operating conditions.
Extra care should be taken to add testing
methods and detailed designs to handle
such scenarios.

Transition scenarios are special cases and
the variables governing the system during
transition states are sometimes different
than normal operational conditions.

Some examples of transition states
are – During DR processes, replication
backups, reverse DR times, while writing
point-in-time disk snapshots to storage, a
false positive event in the system triggers
a contingency process and needs to be
reversed, etc.

XI. Dependency SLA issues:
When the application we build has
dependencies, it is imperative that we read
the fine print of the documents governing
their availability or durability or backup
mechanisms.

 For example, a customer was using AWS
EBS for storing core application data
without storing snapshots of the same in
a more durable and available S3 storage.
If the fine print of AWS can be read (as
of March 2019) it reads, “Amazon EBS
volumes are designed for an annual failure
rate (AFR) of between 0.1% - 0.2%, where
failure refers to a complete or partial loss
of the volume, depending on the size and
performance of the volume. This makes
EBS volumes 20 times more reliable than
typical commodity disk drives, which fail
with an AFR of around 4%. For example, if
you have 1,000 EBS volumes running for
1 year, you should expect 1 to 2 will have
a failure. EBS also supports a snapshot
feature, which is a good way to take point-
in-time backups of your data” [10]

 A dependency system having 97%
availability should not be used for use
cases requiring 99.99% availability. If used,
then care has to be taken to incorporate
additional replicas and other mechanisms
to achieve the intended availability.

External Document © 2019 Infosys Limited

External Document © 2019 Infosys Limited External Document © 2019 Infosys LimitedExternal Document © 2019 Infosys Limited

External Document © 2019 Infosys Limited External Document © 2019 Infosys Limited

XII. Lack of robust monitoring:
One of the key areas of failure handling is
the ability of the system to monitor itself
and detect a failure or a pattern which can
cause potential disruption of services.

A good monitoring system today should
incorporate event correlation, detect
and provide graphical information of
the data flows, trace processes across
distributed systems, predict event streams
for failure, alert users and systems, trigger
contingency scripts for automatic recovery,
collect logs, search through them, detect
anomalies in traffic and network, have
configurable rule addition capabilities
to identify newer patterns in the logs,
trace flows (this is very important as the
tracing gets very graphical with multiple
dimensions of dependencies), and to
top it all, have AI and ML capabilities to
sort, cluster, learn, and identify patterns
from the vast amount of monitoring data
collected. To have a single monitoring tool
with all these features is very tough and we
may need to have a mix of tools.

Example: A rare component failure in
a backup switch at a VISA data center
caused an outage in June 2018, resulting
in the failure of 5.2 million card payments.
Visa admitted that the software to
automatically detect failure was not in
place and the same was corrected. [13]

The key to resilience is in case of a failure
event, the system should quickly detect
and deploy counter measures aided by a
good monitoring system.

XIII. Mechanical sympathy:
Mechanical sympathy [22] can be
understood as the state of mind
a developer is in, when he tries to
understand the environment where his
code or tool runs and tries to design and
optimize the code or tool based on that
information. This can be static or dynamic.
For example, if a developer writes code
to observe the RAM usage dynamically
and performs garbage collection, then
he is said to have designed his code with
‘mechanical sympathy’.

On one side, it tends to couple with the

dependencies and introduce failures when
the operating environment changes (say a
version of the Linux kernel or package of
Linux). On the other end, asking questions
like, “Is my program going to run in a
memory-constrained environment like
PoS terminal?” brings out good design and
algorithms which are frugal and efficient.

In short, Mechanical sympathy is to be
exercised wisely.

XIV. DR switchover processes:
Software should participate in the DR
and reverse DR switch over processes as
failure recovery is never an Ops team-only
issue. Recovering from failures involves
understanding of the data storage, data
replication strategy, what is needed to
recover the state of the system when
it went down, having enough logs to
investigate the issues, and software plays a
major role in all of this.

For example, writing a software which
doesn’t produce enough information to
debug issues and understand the failures
is clearly a design flaw which has not
factored a DR switchover process and RPO.

XV. Automation, AI & ML:
The ability of the system to recover from
failures sometimes involves executing
manual procedures and hence is prone to
error, time consuming, and introduces key-
man dependency.

For example, in March 2016 a major outage
occurred at Telstra, associated to a human-
made error. IT operations consultant Sam
Newman of Thought Works responded
to it, “It’s about the system you create, it’s
not about individuals.” and continued “…
Looking for a single cause of failure is like
looking for a single cause of success,”. [12]

 Automation scripts and robotic processes
are some of the mechanisms which can
be employed in production to avoid
delays in running recovery mechanism in
production. Self-healing, auto-healing, and
self-stabilization mechanisms should be
adopted as much as possible.

Adoption of AI and ML is important as
with Giga/Tera bytes of logs and events

generated every day, it is humanly
impossible to peruse and correlate issues.
AI and ML pattern recognition algorithms
can identify, predict, and report failures
and anomalies from the piles of monitoring
data.

For example, ML algorithms based on
‘survival analysis’ [23] models can be used
to predict failures.

XVI. Lack of training:
It is important that Ops Team and
Application Team should train together
with mock DR drills.

By engaging in such activities, developers
realize that the software which they
have built has failed to cope up with
the resilience SLA. For example, the lead
could realize that the algorithm used to
defer database writes affects RTO. Also
most of the application maintenance and
contingency scripts are written by the
application team and any scope to reduce
manual work and automate the same can
be done.

Training also detects problems like the SOP
document not being fool-proof and while
executing steps, new scenarios or failures
could be encountered.

XVII. Infrastructure Failures:
Software depends on infrastructure
services like network, storage, OS, etc.
While choice of architectural design,
replication, and deployment strategies
takes care of the software side of issues, the
infrastructure side of things needs to be
handled separately and if the infrastructure
is down, then everything built on top of
it will go down. Redundancy, clustering,
replication, a good monitoring and alerting
system, selection of reliable infrastructure
etc., are some of the many processes and
tools which are adopted today to handle
infrastructure failures.

External Document © 2019 Infosys Limited

External Document © 2019 Infosys Limited External Document © 2019 Infosys Limited

XVIII. Processes – a closer
look:
In an enterprise, processes are the key
delivery vehicles and it is important
that we take a closer look at the various
processes governing software.

In one of our assessments we found that
a software was tested and pushed into
production and the same was also pushed
to the DR environment without testing,
as it was identical. This gap in testing
and change rollout processes introduces
an additional risk which ‘could’ve been
mitigated’ if we had done a basic sanity
testing in DR environment. We identified
this and the risk was mitigated.

In March 2019, operation ShadowHammer
attacked thousands of users by infecting
the live update server in ASUS with
malware. According to the verge, the
origin of this issue was likely a ‘supply
chain’ attack where malicious software
or components are installed on systems
before or while building the systems. [16]

The key lesson here is to pay attention
to all processes in the enterprise which
directly or indirectly affect the software.

XIX. Primacy of architecture
principles:
Like they decide on the various good
patterns and best practices, it is also
equally important that developers and
architects always have an internal compass
pointing to the common principles of
architecture to guide them at every point
of time.

It is common that developers and
architects are getting trained in many
distributed technologies today and with
the technology marketing heave, it is
common that developers are lost and make
choices in technology and design which
may look like it is paying off now or give a
‘feeling’ that it will solve their issues today,
but may eventually cause other issues.
Though architecture checks and balances
can be setup to review and approve new
designs, sometimes things pass through
many such measures due to other forces
like time constraints, delivery constraints,

cost cutting, and lack of expertise.

Some principles to look at - YAGNI – You
Ain’t Gonna Need It, KISS – Keep it Simple
and Short, Data is shared, Compliance
with Law, Always think ahead of the quick
fix, Don’t use a cannon to kill a mosquito,
Open-Closed principle, Illusion of control,
Premature optimization is evil, Never
trust anything which is coming into your
module or system, etc.

One example is on the principle of ‘always
document your design’ - All design and
documents at a high level should be
captured in some sort of document
so that it is reviewed. Agile prefers
working software over comprehensive
documentation, but never mentions ‘no
documentation’ [18]. Not knowing how a
complex distributed cache works in your
enterprise will cause an issue, if not today,
then sometime tomorrow.

Why this is important – Let’s take the
general case of attaching a node to a load
balancer when one of the servers goes
down. It is a pretty common use case, but
when we simply follow this pattern without
understanding the after effects of it, this
will lead to what is called as a ‘black hole
effect’ [19]. A black hole effect happens
when the load balancer basically finds out
that the new server added actually has no
sessions affined to it and starts routing all
requests to the new server. This new server
now ‘sucks’ all requests and hence is over
flooded with requests causing sudden
imbalance and slowness.

This anti-pattern of just attaching a node
to a load-balancer was later discovered and
was fixed by adding various weightage,
throttling, and limits to the load balancer.
What principles could have prevented this
during design? How about, always think
ahead of the quick fix?

In general, good architecture principles
guide us to develop good resilient systems
and also help weed out anti-patterns in our
systems. TOGAF framework has published
some of the key principles [20] and the
same can be read from the reference
section below.

External Document © 2019 Infosys Limited

External Document © 2019 Infosys Limited External Document © 2019 Infosys Limited

Designing and developing a distributed
software is challenging in many ways, but
the benefits far outweigh the cons and
rest assured, the ecosystem of distributed
system is growing and continues to grow
rapidly, with technology and software
fast evolving to handle the failures and
issues which are envisioned in distributed
systems. Here are some of the golden
takeaways for resilience.

1. Resilience is not related to a singular
context in distributed systems and
is not dependent on humans to be
error-free. All systems, processes,
tools, libraries, software, hardware,
infrastructure, dependent services,
etc., come together to achieve resilient
business operations.

2. There are no failure-free systems. No
system can be declared 100% resilient
or failure-free.

3. Understanding and handling failures
is key to resilience. All processes
governing software - design,
development, deployment, operations
etc., can contribute to a failure.

4. Practically all software built by
major technology companies have
experienced failures and caused
downtime in some form or another,
such as at Facebook, Apple, Boeing,
Amazon Google, Microsoft, Linux to
name a few. So rest assured, you are
not alone.

5. There is no book listing all failures in
software, however there are lists of
things which are known to occur.

6. In a distributed set-up, sometimes
failures are not in your control and
you need to carry on trusting the
dependent systems. You can never be
completely free of failures; you can only
prevent or embrace them. Embracing
them and continually building
mechanisms to handle them is the only
way to make your system more robust.

Resiliency is a process continuum
and should keep evolving from
time to time.

Summary

External Document © 2019 Infosys Limited

© 2019 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

1. German bank error - http://content.time.com/time/business/article/0,8599,1952305,00.html

2. Year 2010 problem - https://www.dw.com/en/millions-of-german-bank-cards-hit-by-software-bug/a-5088075

3. Reliability - http://www.cse.msu.edu/~stire/HomePage/Papers/wadsChapter05.pdf

4. Idempotent failover - https://www.springer.com/us/book/9783540407270

5. Traffic stats - https://www.similarweb.com/website/facebook.com#overview

6. Downtime and lag time - https://medium.com/@vikigreen/impact-of-slow-page-load-time-on-website-performance-40d5c9ce568a

7. Downtime of amazon - https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-66240-per-minute/#5eabc9b6495c

8. Amazon revenue by segment - online sales - https://www.statista.com/statistics/672747/amazons-consolidated-net-revenue-by-segment/

9. 3 Banks DDoS attacks - https://www.cshub.com/attacks/news/incident-of-the-week-ddos-attack-hits-3-banks

10. EBS - AWS - https://aws.amazon.com/ebs/features/#Amazon_EBS_Snapshots

11. Intel’s comments - https://www.theregister.co.uk/2018/10/08/intel_security_commitment/

12. Telstra human error - https://www.news.com.au/technology/gadgets/mobile-phones/telstra-explains-network-outage-as-worker-faces-the-music/
news-story/7e3f2214350094c3c2096ad14f7480ae

13.VISA outage - https://www.cbronline.com/news/visa-outage

14. Actor Model - https://doc.akka.io/docs/akka/2.5/guide/actors-intro.html

15. Chaos Engineering - https://principlesofchaos.org/

16. ASUS attack - https://techhq.com/2019/03/asus-breach-highlights-software-supply-chain-risk/

17. Let it Fail approach - http://ward.bay.wiki.org/view/let-it-fail

18. Agile Manifesto - https://agilemanifesto.org/

19. Black Hole - https://www.brianmadden.com/opinion/Dealing-with-the-Black-Hole-Effect-Throttling-Logons-to-New-Servers

20. TOGAF Architecture principles - http://pubs.opengroup.org/architecture/togaf8-doc/arch/chap29.html

21. Flow Modeling references:

a. FMEA - https://wiki.ece.cmu.edu/ddl/index.php/FMEA

b. PGM - http://pgm.stanford.edu/algorithms/

22. Mechanical Sympathy - https://dzone.com/articles/mechanical-sympathy

23. Survival analysis - https://en.wikipedia.org/wiki/Survival_analysis

24. Architecturally Significant Requirements:

a. https://www.ida.liu.se/~TDDD09/openup/core.tech.common.extend_supp/guidances/concepts/arch_significant_requirements_1EE5D757.html

b. https://www.ibm.com/developerworks/rational/library/4706.html

About SPEAR:

References

SPEAR stands for Software Performance Engineering and ARchitecture services and is an integral part of Infosys STAR (Solution Technology
and ARchitecture) group aiding primarily the banking and financial vertical in Infosys. We are a large and niche group of Technical and Senior
Technical Architects, specializing in assessing and improving performance, resilience, scalability, availability, and reliability in distributed
systems through our tailored services and offerings.

For more details contact us at: FS-STAR-SPEAR@infosys.com

https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/Infosys
http://www.slideshare.net/Infosys
https://www.infosys.com/

