EXPLORING A NEW DIMENSION OF PREDICTABILITY IN INSURANCE

Abstract

The predictability of future risk is the core idea behind insurance pricing. Predictability is a complicated activity and many identified covariates are included in the analysis. Through a set of mathematical and statistical assumptions, processes, and historical data, quantification of risk is achieved. Sometimes we also use current and parallel data findings to modify our pricing in subsequent activities.

But is this sufficient or is there scope for improvement? While our predictability includes estimation errors and confidence intervals, they are violated many times. We often call it poor modelling or raise issues regarding the quality of data. As the future is completely unpredictable, can we always blame modeling or data for such variances?

This paper focuses on a solution for such variances between predictable outputs versus actual results. Once the assumption of risk is completed for a particular duration, we always have data available for variances between the estimated output and the actual result. This variance data can be used as a covariate in subsequent pricing. It can be considered a natural risk parameter that cannot be predicted. As the data set for this natural risk parameter will go up, the law of large numbers will apply and predictability will improve. This approach can significantly improve our risk pricing mechanism, once we model it appropriately and suitably.
The insurance concept of predictability

Risk, the most interesting and complicated subject of the modern era, is the core driver of insurance. In broad terms, insurance is the mechanism of transfer of risk. But the important question here is – how much risk? From here starts the background work of risk quantification and its pricing.

An insurance company attempts to predict future risk and by using risk quantification techniques converts them into pricing formulas. It uses historical data of different risk classes and processes this using various mathematical and statistical assumptions. Different parameters are analyzed, with their related sensitivities towards pricing, and insurance quotes are generated.

This whole process is very complicated and iterative. Apart from this, insurance companies are also required to arrest the dynamism of risks due to changing lifestyles, business models, and technical complexities.

Based on all this, different risk-based events of losses are predicted with certain confidence levels. This predictability is ultimately priced and better predictability leads to better pricing. This is an ideal scenario and all of us want to achieve it for a sustainable business model.
Challenges ahead

Different types of insurance classes use different parameters in calculating the level of risk. These parameters are called covariates. Hence, a specific risk class has its own set of covariates, based on which pricing takes place. This is very natural and logical because we cannot include all risk parameters in the risk quantification technique. We have to select some of the critical risk parameters that are responsible for a specific loss. Historical data helps us in identifying these critical parameters and we can model them according to mathematical and statistical techniques and assumptions.

Once we get pricing numbers, we also specify a range of acceptable deviations. This way, we have a cushion factor for situations when the actual loss scenarios deviate from predicted loss situations. The cushion factor is also priced and final risk prices are created and used. But do we really care about those deviations? If deviations are positive, we call them underwriting profit; when they are negative, we call them underwriting losses. Is this only about underwriting or is there something else?

Can we believe that there are certain situations that cannot be predicted? It does not matter how capable we are, because we are trying to estimate things that might or might not happen in the future. Will the best underwriting skills be able to identify acceptable risks and place all risk scenarios in appropriate classes? If we keep increasing the number of risk classes, what will happen to risk modelling? The modelling exercise will fail and we will never be able to calculate the price of risk.
Let’s find a solution

In one of the statistical methods called regression analysis, we calculate error estimates that cannot be explained. In actuarial risk analysis, we can use a similar covariate to improve our predicting skills. The nature and implementation of the covariate may vary from one model to another, but it will introduce the component of risk that is not quantifiable and cannot be predicted. However, the risks do exist and impact pricing.

There can be a differing argument that our calculation of predictions are always based on a certain level of confidence. It is never claimed that a specific occurrence is going to be experienced in future for sure. For such scenarios, we set up additional reserves and risk pricing has its own cushion factor. So, why are we introducing a covariate, which will only add complexity, when its benefits are already available indirectly through existing approaches?

There are fundamental differences in the existing and proposed approaches. The existing approach claims that with $X\%$ confidence level, we have XPP pricing. So, we are setting up a reserve for $(100-X)\%$ of the scenarios. The proposed approach says that with $Y\%$ confidence level, we have YZP pricing that also includes a covariate Z, which defines natural chances of deviations, in risk quantification and pricing. Hence, the proposed approach is significantly different and is trying to bring robustness in the risk pricing formula. With the new approach, the natural inherent deviation of predictability is included as a parameter of risk quantification and pricing. The data related to relevant deviations will be based on past experiences and this will be needed to gather and analyze realized deviations by different groups of similar risk classes. The deviations can also be standardized as per requirements.
The implementation approach

For all classes and types of risk quantification, we first identify covariates based on the majority of risks that can be captured in the pricing model. At this stage, there is a proposed requirement to include an extra covariate. This new covariate will be called a natural risk parameter and will be denoted by the β symbol in this paper.

Now there are certain questions regarding β.

- From where will the value of β be collected?
- What will be the property of β?
- How will β interact with other covariates?
- What is the statistical significance of β?
- How will it impact an existing pricing model?
- What are the factors and parameters that can affect the value of β?

These questions are not exhaustive and there may be different situational interpretations and modifications.

The point here is to create a framework for the adoption of β as a covariate in the risk quantification and pricing technique. The nature, tendency, significance, and property of β may vary from one class to another class of insurance. This paper intends to answer these questions to establish the functional acceptability of this covariate. β-related information will help the reader in better understanding of its inclusion as a covariate.

How will the value of β get calculated?

The natural risk parameter denoted as β, is a measure of deviations between estimated risk and actual experienced risk. The paper focuses on the absolute value of deviation. Deviation can be positive or negative but we need to be concerned about the absolute value of deviation only as it represents the space that cannot be predicted. For example, we assume that at the time of pricing the expected morbidity will be 0.0423, but at the end of the year we understand that it was 0.0468. We can have similar experiences across different groups of similar risk classes. The absolute value of deviation from the predicted value will constitute β that will be based on a large number of past experiences.

After analysis we find that there is a β of 0.00098 with a particular risk class. This amounts to the uncertainty that cannot be modelled. The unit and mathematical applicability of β will depend upon the pricing model and its assumptions.

Property of β

Uncertainties beyond modelling boundaries are far riskier. So, the modeler will be required to make valid assumptions. The assumptions will not be stand-alone and will be based on various modeling parameters. The magnitude of β will also contribute in deciding the riskiness and will have an exponential charge.

Interaction of β with other covariates

For simplicity, let us consider that there are three covariates and β is added as the fourth covariate in one of the risk pricing models. The correlation between β and any other covariate should be in an acceptable range. The ideal scenario would be to achieve a correlation of 0 but this is not practically possible as β itself is the deviation that has been derived based on the mathematical model of similar covariates and actual experience of risk-based losses.

The acceptable range of correlation is subjective but a correlation coefficient in the range of -0.2 to 0.2 should be fair.

Statistical significance of β

As β will have its own data set and will be calculated based on past experiences, there will be a statistical distribution for it. The nature of distribution will be very important in the modeling exercise and can be a key input while building assumptions for future pricing. This will contain crucial statistical information about the space that cannot be predicted.

The shape and size of the distribution will guide towards the probability, magnitude, and frequency for unpredictability and thus will indicate the zone of danger. The following diagram illustrates its statistical significance and takeaways from the analysis. We will compare three normal distribution curves based on dummy data. Based on the shape and size of these normal distribution curves A, B, and C, we can say that characteristics of deviations are very different.

In curve A, the spread is very narrow while in curve C, the spread is comparatively broader. So the region of unpredictability is lesser in curve A, than curves B and C. Hence, we can conclude that when we have statistical distribution of β like curve ‘A’, we can be more confident about the result of our model.
New covariate’s impact on model specification
In the exercise of model fitting with the new covariate, we need to assess the effect of the new covariate alone or in combination with other existing covariates. For this analysis, a common criterion is the likelihood ratio statistic. The basic concept behind this test is to avoid overfitting. After applying the likelihood ratio test, if the new covariate is not significant, we can be sure that there is no unpredictability estimation left in the existing model. But, if we observe that the deviations are larger and should be taken care for future pricing, we will be required to recalibrate our model. Hence, we get an additional pointer to indicate when our existing model needs recalibration.

Since likelihood ratio statistic requires the user to specify confidence levels to test the significance of the new covariate, different results can be obtained with various levels of confidence. So, the modeler will be required to make suitable assumptions regarding the level of confidence. Once the new covariate is accepted as a significant parameter, the output of the model will contain the necessary component of improved predictability.

What are the factors and parameters that affect the value of \(\beta \)?
The value of \(\beta \) will be derived from historical data. So, past experiences and observations will be key factors in affecting its value. There can be other factors such as data standardization issues and methods, availability of similar data, data quality, data biases, and unusual losses. The dynamism of risk and emerging risks are two important factors that can significantly distort the value of \(\beta \). The identification of these factors are not easy and it takes a good amount of time to identify them. It depends on the skills and initial assumptions of the modeler to interpret reasons behind \(\beta \) values.

There are many parameters that can affect \(\beta \) values, but they will mainly be other covariates of the old model. The covariates identified as insignificant and dropped off from the old model based on likelihood ratio statistics may affect \(\beta \) values. This has to be analyzed in the context of the actual pricing model.
Conclusion

The inclusion of β as one of the covariates in the risk pricing model introduces the unpredictability quotient of natural aberrations that are beyond the scope of modeling exercises. The behavioral, mathematical, and statistical properties of the natural risk parameter β has to be analyzed in the context of a risk-pricing model but it has all the merits to become a significant covariate. The creation of historical database for β will improve the quality of unpredictability-related inputs in the model. This can also be a source of indications for risk dynamism and emerging risks. Industry-wide standardization techniques for β data can help all stakeholders in achieving higher efficacy from this new dimension of predictability in insurance.

The Path Ahead

What is not interesting in the world of risk? I have not found anything. The only thing I know about risk is its unquestionable existence in all walks of life with different degrees of probability. I have to live with it without any condition. So, I have decided to explore it further, to make it easier and convenient for my survival. Believe me, it is more interesting than its complexity.

Does risk fascinate you? If not, you need to change the way you are looking at it currently. I can extend my help up to my knowledge and capacity. This journey will be far more rewarding than our expectation.

About the Author

Nitin Kumar is Senior Associate Consultant with McCamish account at Infosys. He has around 4 years of experience in Domain & Process Consulting, Business Analysis and Research. His areas of interest include Insurance, Annuities, Actuarial, Risk Management & Investments. He can be reached at nitin_kumar17@infosys.com

References

1.) A Review on Reliability Models with Covariates by Nima Gorjian, Lin Ma, Murthy Mittinty, Prasad Yarlagadda, Yong Sun; Engineering Asset Lifecycle Management 2010, pp 385-397
2.) http://www.statlect.com/
3.) http://www.actuaries.org/