
WHITE PAPER

DEVOPS FOR LEGACY SYSTEMS –
THE DEMAND OF THE CHANGING
APPLICATIONS LANDSCAPE

Abstract
The pace of business is getting faster as game-changers like
digitization, cloud computing and big data take over the business
world. Enterprises are looking to deploy new features rapidly,
resulting in frequent application releases as opposed to the earlier
one-time release scenario. To support these frequent releases,
businesses need agility and continuous delivery. The DevOps (a
blend of ‘development and ‘operations’) approach introduces a
collaborative working style in the development and operations
teams, leading to rapid and continuous delivery. However, while
implementing this methodology for legacy systems, businesses can
encounter various challenges. In this paper we outline some of the
technical issues in adopting the DevOps methodology for legacy
systems and ways to achieve continuous delivery and successfully
handle frequent releases.

DevOps methodology offers
a solution

DevOps (a blend of ‘development’ and

‘operations’) is a practice that encourages

collaboration between the development

and operations teams. Breaking the

barriers provides the teams with a holistic

view of processes and constraints involved

in the workflow of both the teams. The

approach provides an understanding that

helps design applications for rapid delivery.

The core tenet of the DevOps practice

is Continuous Delivery (CD). CD is a set

of processes that allows automated

deployment and verification of an

application across a set of environments.

Automation not only reduces manual

errors but also allows for quick, reliable

and repeatable deployment of rapidly

developed code.

When teams adopt the DevOps

methodology for a greenfield project, they

may find it easier to enable CD than for a

legacy system project. While designing and

developing a greenfield project, architects

and developers start afresh and have the

opportunity to take into consideration

the requirements of CD. For instance, the

developers can write code that is easy to

unit test, testers can incrementally build

automated test packs, and architects can

design the application in a host-agnostic

manner. On the other hand, in case of

legacy systems, which have evolved over a

period of time without any consideration

of automation, the adoption of the

DevOps approach may result in large-scale

refactoring or redesign. It may prove to be

a significant challenge to automate the

vast amount of legacy code and processes.

DevOps roadmap for
continuous delivery

A typical DevOps roadmap involves

building a CD pipeline with the supporting

capabilities (shown in Figure 1 below). Let

us discuss the challenges at each stage in

the light of a legacy system project and

look at a few suggestions to overcome

these.

With the advent of the web-scale
IT model, increasing competition
is driving businesses to introduce
differentiating features at a rapid
pace. Multivariate testing provides
the ability to quickly test different
variations of a feature with actual
end-users, and choose the one
that the customer likes the best.
Consequently, the time taken for a
feature to be implemented – from
ideation to production deployment
– is shrinking fast. This has resulted
in more frequent application releases
and the change has drastically
impacted the dynamics of the
development lifecycle.

The traditional approach where
a development team develops a
feature and then passes it on to a
separate operations team may not
address the needs of the frequent-
release scenario. The delays involved
in acknowledging, testing and
deploying the application in the
traditional manner increase the time
to market of the feature.

The adoption of the DevOps methodology and CD in a legacy system project involves three key aspects:

Fig 1: The DevOps roadmap

Build Automation and Source
Quality Management

Monitoring
Automation

Development
team

Static code
analysis

Build

System
test

Integration
test

Performance
testSCM

Unit
test

Test Automation

Production

Infrastructure Automation

Deployment Automation

Continuous Integration Continuous Testing Continuous Monitoring

Standardization Automation Shifting left

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Standardization

Standardization here refers to identifying

the small variations in processes that have

entered the legacy system over time, and

modifying the systems and/or processes

to remove these variations. For instance,

only one parameterized build script,

deployment script and test script must

be used for a particular application type

(web application, web service, etc.). This

script can be reused for any new or existing

application by modifying the parameters.

At a higher level of abstraction, the

infrastructure necessary for the systems

must also be standardized. For example,

standard scripts must be used to create a

web server, application server or database

server.

Automation

Once the processes are standardized, they

are ready to be automated. Automation

involves the use of tools to configure and

trigger various scripts. It removes errors

introduced by manual intervention and

accelerates the processes by eliminating

manual involvement and makes them

repeatable (so that a process can be

configured to activate at regular intervals

or on-demand) and reliable (with better

alerting and monitoring via the scheduling

tool). Ensuring standardization before

automation is important since the process

of standardization reduces the number

of processes to be automated and

maintained. Automating a disorganized

process can in fact increase the effort

required to maintain the various flavors of

scripts.

Shifting Left

Identifying processes that can be

performed earlier in the development

lifecycle rather than at a later point in time

is referred to as ‘shifting left’. For instance,

instead of running a regression test or

performance test after the development

and system test, a subset of the regression

suite or performance test suite can be

run during system test in order to catch

integration problems and performance

issues much earlier in the lifecycle. This can

give the development team ample time

to work on the issues and takes away the

pressure of fixing these in a hurry before

the release. This can prevent the team from

deferring such issues to the next release.

The process of ‘shifting left’ also reduces

the cost of fixing bugs since it is more cost-

effective to fix a bug in development than

in production.

The use of the same deployment scripts

across environments all the way through

production ensures that the deployment

scripts have been thoroughly tested

and bugs have been addressed in lower

environments. Enabling a standardized and

automated process for build, deployment

and testing helps shift left.

Build Automation and Source
Quality Management

Monitoring
Automation

Development
team

Static code
analysis

Build

System
test

Integration
test

Performance
test

SCM

Unit
test

Test Automation

Production

Infrastructure Automation

Deployment Automation

Continuous Integration Continuous Testing Continuous Monitoring

Shift Left

Fig 2: ‘Shifting left’ – a key aspect of DevOps for legacy systems

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Infrastructure automation

Infrastructure automation is the process of

identifying the infrastructure requirements

of the various systems, and creating an

automated way of provisioning these

infrastructure needs. While infrastructure

automation may seem like an optional

step, for a true CD pipeline, the team must

implement this step to achieve the benefits

of complete automation.

Infrastructure automation also promotes

efficient use of available hardware or

cloud-based machines. The team can spin

up a system test environment only when

it is needed, and spin it down when it is

not needed, allowing some other system

to use the infrastructure. In a cloud-based

model, this can even translate into direct

cost savings. It allows speedy recovery in

case of a disaster. The team can spin up

new machines in an alternate data center

in case of a disaster in the main data center.

Manual infrastructure provisioning takes

longer and involves the risk of affecting

day-to-day business operations by

increasing the mean time to recovery of

the failed systems.

One of the key challenges of an enterprise

with legacy systems is identifying the

current infrastructure landscape. Often,

each system has its own hardware

requirements and is provisioned manually

on a need basis. A web server, for instance,

could be a Windows 2003 Server with IIS

6.0, 4GB RAM and 4 cores for one system

and Windows 2008 Server R2 with IIS 7.5,

8GB RAM and 4 cores for another.

For legacy systems, it is always

recommended to standardize the

infrastructure requirements into categories,

such as web server, application server

and database server with small, medium

and large instances, based on capacity.

These standardized infrastructure needs

can then be scripted and automated

using tools like Chef1, Puppet2, Ansible3,

or Salt4. In addition to provisioning, these

tools also facilitate maintenance. For

example, adding a new file server role on

all application server instances is as simple

as modifying the base script for application

server and running the tool to update the

existing instances.

Continuous integration and build
automation

Continuous integration (CI) is the process

of periodically (mostly on every check-in to

the source control) checking out code from

the source control system and building

it on a clean development environment

(typically the build server). In addition to

compiling the source code, CI also runs

static code analysis tools, unit tests and

measures the code coverage. This ensures

that the changes being checked in by

various members in a team are compatible

and that the code works as a whole.

Mostly, in legacy systems CI processes are

not followed at all, and even when they

are followed, they are ad-hoc. There are

legacy systems that do not use version

control, or use ancient version control

systems not amenable to CI. Branching

is another area where legacy systems

are deficient, and the choice of a version

control system has a direct bearing on the

branching strategy adopted. Since the

system often evolves over time, there may

not be a known configuration for the build

server or a standard way of compiling the

sources. Non-standard build processes and

branching strategies hinder the adoption

of CI.

Instead of trying to introduce CI into a

legacy system in one step, it is helpful

to slowly introduce components of CI.

For example, as a first step, the source

code can be moved to a modern version

control system. SVN5 and Git6, for

instance, are FOSS central and distributed

version control systems respectively that

provide good compatibility with other

development tools. Simultaneously, the

minimum requirements for the build server

(compiler version, tools and OS version)

External Document © 2015 Infosys Limited

Successfully adopting
DevOps for legacy
systems

Let us look at some
suggestions to address
the challenges of DevOps
for legacy systems.
These are ways specific to
the various stages involved
in a typical CD pipeline.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

can be identified. Then a standardized

build management tool such as MSBuild7

for .NET or Maven8 for Java can be adopted.

Once a version control system, build server

and the necessary tools are in place, there

are many build automation tools (both

commercial and open source – Bamboo9,

Build Master10, Jenkins11 and TFS Build12)

that can be used to set up automated

builds.

Source code quality management

Project Quality Metrics (or PQMs) are

metrics that help identify the overall

quality of the source code. Some of the key

PQMs are Lines of Code, Code Coverage,

Complexity, Comments, Package Tangle

Index and Dependency Matrix. Measuring

and following these metrics helps track the

trends in source code quality. For instance,

an increasing trend in Lines of Code and

a decreasing trend in Code Coverage

indicate that the code is being checked

in without unit tests. This also allows the

team to identify potential areas of concern.

For example, a piece of code with no code

coverage is a high risk since it has a high

probability of failing in unanticipated ways.

Typically, legacy systems have little or no

unit tests, causing the code to be extremely

fragile. In such cases changes made to one

component can cause bugs in an unrelated

component. Evolving coding standards

and neglect (following the rule of the

thumb: “don’t fix it if it ain’t broke”) cause

the code to accumulate a large number of

static code rule violations. Compromises

made during the design process – either

due to lack of time or of technical maturity

– add to the overall poor quality. This

technical debt causes resistance when

PQM measurements are introduced in

legacy systems.

One way to measure and track PQMs in

legacy systems is to start with a baseline

number for the metrics and then ensure

that any new code added or legacy

code re-factored contributes to either

maintaining the baseline or improving it.

It could be mandated that all new code

written must have unit tests and whenever

a bug fix or feature is implemented in

legacy code, unit tests are written for the

legacy code.

By following the Boy Scout rule “Leave

it better than you found it”13, over time

the legacy code can be re-factored and

brought up to the current standards

providing long-term benefits in readability

and maintainability of the code.

Test automation

Test automation is the process of

automating the execution of tests,

publishing the results and measuring the

code coverage. Running test cases helps

in verifying the behavior of the code

and measuring code coverage helps in

determining the source code that needs

additional testing, which means functional

scenarios that are not being tested

currently.

Legacy systems tend to have low code

coverage due to few or no unit tests.

Testing is typically done in higher

environments and is manual. As more

features are added to a legacy system, the

manual testing effort increases drastically,

eventually slowing down feature delivery.

This problem is amplified when there are

multiple teams working on the same code

base.

Big-bang test automation for any non-

trivial business application is an extremely

difficult and time-consuming task since

such a system would entail hundreds

or thousands of use cases. Moreover,

no system is static. There are bound to

be additions of new features and bug

fixes, further increasing the scope of test

automation.

Test automation can be adopted in

a legacy system by working with the

business team to identify the core test

scenarios, prioritizing these by using

parameters such as business criticality and

risk of failure and automating the top-

priority ones first. This risk-based test suite

can serve as the regression test suite that

is always run to verify the build. This way

the existing functionality is not broken

due to the changes made in this release.

When defects are identified, test cases

should be written for these scenarios and

added to the regression test suite. When

new features are added, test cases for

these should be scripted and included in

the regression test suite based on business

criticality and risk of failure.

Over time, the addition of risk-based and

change-based test cases to the automated

regression test suite covers the most critical

business scenarios. Running such a suite

strengthens the confidence of the business

about the functional quality of the code.

Deployment automation

Deployment automation is the process of

identifying and automating the movement

of code to the environment where it is

intended to be executed. This also involves

automating the setup of the environment

itself such as website setup, Secure Sockets

Layer (SSL) configuration, etc. The ultimate

goal of deployment automation is to make

the release a non-event, as opposed to a

huge, all hands procedure that needs the

entire system to be offline for the period of

deployment.

Most legacy systems do not have a

standardized deployment process, and

practice the ‘done-coding,-now throw-

it-over-the-wall-to-another-team-for-

deployment’ approach. Often, the various

environments that the code needs to

be deployed in through its lifecycle are

inconsistently set up, due to which every

environment needs a specific deployment

procedure. Attempts to automate such

disparate processes often result in a

disorderly system that is impossible to

maintain.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

and resolution of disruptions, rather than

reactive or passive issue detection. It

involves monitoring system health (server’s

CPU, memory, disk usage, etc.) as well as

application health – for instance, ensuring

that the website is up and responding to

user requests within the specified SLA.

Automated monitoring provides a close

feedback loop with the development team,

ensuring that the team is able to address

the common cases of system failure and

reduce the mean time to recovery.

Legacy systems typically undergo very

little or no monitoring. Issues are detected

due to customer or end-user complaints.

The process of troubleshooting of the

reported issues is time-consuming as there

are insufficient logs to pinpoint the root

cause. In cases where logging is a practice,

miscalculated logging configuration causes

too many or too few logs. Too many logs

make it difficult to find the useful ones for

resolving issues.

IT teams can enable legacy systems to

adopt automated application monitoring

by working with the business team to

identify critical business exceptions which

impact end-users. Once such exceptions

are identified and automated, alerting

can be set up using tools such as Nagios15,

Truesight16, etc. The alerting mechanism

should be concise, timely and targeted

at the right group. For instance, an alert

“Order submission errors – 50 errors in the

last 30 minutes” could be sent to the order

management development team, when

such errors occur. Periodically analyzing

the application logs can help identify gaps

such as missing logs for a particular use

case or too much logging for another,

allowing the development team to address

these gaps on an ongoing basis.

System health monitoring can be

performed by using the features provided

by the underlying platform such as perf

counters on Windows and collecting and

aggregating the metrics exposed in a

dashboard. Off-the-shelf systems are also

available for monitoring system health.

These include SCOM17 for Microsoft servers

and Nagios for other platforms.

Application Performance Monitoring (APM)

is another key component of monitoring

that allows insight into the actual

performance of the system in production.

Off-the-shelf systems such as New Relic18,

dynaTrace19, and AppDynamics20 are

available to help measure and track end-

to-end performance metrics.

Deployment automation can be gradually

adopted in legacy systems by following

a step-by-step approach of consolidating

the application inventory, standardizing

the deployment process by application

type and then automating the deployment

process. It is important to reuse the same

deployment script across environments

and application types by ‘parameterizing’

the deployment script. A web application

deployment script, for instance, should be

able to deploy any web application as long

as the package source and destination web

server(s) are specified as parameters.

In order to prevent outages during

deployment, feature toggles or active-

passive deployment can be used. Feature

toggles14 allow a newly added feature to

be turned on or off using a configuration

switch. A feature could be deployed to

production using a one-server-at-a-time

approach with the toggle turned off.

The toggle is turned on only when the

deployment is complete to all servers

and the feature is verified as ‘ready for

production’. Active-passive deployment

involves segregating the servers into sets.

A load balancer can control whether traffic

is routed to a particular set of servers or to

both the sets. The feature can be deployed

during a non-peak time on one set of

servers which are not servicing requests,

and then brought into rotation. The same

process is repeated on the second set

of servers. This overlapped deployment

process prevents a complete outage during

deployment.

Infrastructure automation is a key step

that helps achieve complete deployment

automation since it enables the elimination

of environmental inconsistencies.

Monitoring automation

Monitoring is a key process that ensures

that systems are functioning correctly and

business continuity is intact. Automated

monitoring allows proactive detection

Conclusion

While we looked at technical

challenges in detail, the

successful adoption of the

DevOps methodology for

a legacy system is possible

only if the teams working on

legacy systems also change

their processes and mindset

towards Agile and CD. Often,

these teams are accustomed

to developing features for an

extended period of time without

deployment into any production-

like environment. Their detailing

of formal release notes and

handovers to operations teams

finally result in one-time difficult

and complicated deployment.

Having a CD pipeline capable

of deploying features into

production daily or hourly

is effective only if feature

development is quick and if the

operations team is capable of

accepting frequent updates from

the delivery team.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

References
1. https://www.getchef.com/chef/

2. http://puppetlabs.com/

3. http://www.ansible.com/home

4. http://www.saltstack.com/

5. https://subversion.apache.org/

6. http://git-scm.com/

7. http://msdn.microsoft.com/en-us/
library/wea2sca5(v=vs.90).aspx

8. http://maven.apache.org/what-is-
maven.html

9. https://www.atlassian.com/software/
bamboo

10. http://inedo.com/buildmaster

11. http://jenkins-ci.org/

12. http://msdn.microsoft.com/en-us/
library/ms181710(v=vs.90).aspx

13. http://programmer.97things.oreilly.
com/wiki/index.php/The_Boy_Scout_
Rule

14. http://martinfowler.com/bliki/
FeatureToggle.html

15. http://www.nagios.org/

16. http://www.bmc.com/it-solutions/
truesight-operations-management.
html

17. http://www.microsoft.com/en-in/
server-cloud/products/system-center-
2012-r2/

18. http://newrelic.com/

19. http://www.compuware.com/
en_us/application-performance-
management.html

20. http://www.appdynamics.com/
solutions/application-performance-
management/

About the author

Gangadhar Hari Rao has worked in

large e-commerce transformational

programs for Retail and CPG clients. He

has more than 10 years of experience

which spans across architecture

definition and evaluation, technology

strategy for Continuous Delivery

and DevOps, implementation, and

performance engineering.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

© 2018 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
https://www.slideshare.net/infosys
https://www.infosys.com/

