
WHITE PAPER

DEVELOPMENT APPROACH FOR
CUSTOMIZED TESTING TOOLS
- SELECTING TESTING TOOLS
EFFICIENTLY
Vaibhav Suneja

Abstract

At times, the testing process requires the use of customized tools
along with standard automation tools. Customized testing tools
are required mainly for the conversion of data from one format to
another. This paper presents a brief comparison of open source,
closed source (proprietary) and custom build approaches to building
a testing tool. The comparison is demonstrated through a case study
and through the challenges faced while selecting one alternative
for developing the tool over another. The paper also highlights the
importance of the tools team in an organization.

When a testing project needs to be carried out across several organizations, typically an onsite-offshore model is used. However, in

such a scenario, consistently communicating the client’s needs to different teams working onsite and offshore can be a challenge.

Moreover, testing teams often operate in crisis mode when tools need to be implemented to perform the testing. Usually, teams

can choose from many open source tools that can be implemented. On the other hand, they may have access to several platforms

that can be used to develop the tool from the ground up.

Before deciding the approach, testing teams need to answer a few key questions regarding the tool and where it needs to be

implemented. The client’s concerns must be factored in. These may include the client’s inclination toward a certain technology,

their past experience with some solutions and, more importantly, the ease of use and accessibility.

Introduction

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Open Source Solutions

Open source applications are free-to-

distribute solutions which may be modified

and implemented in a testing project. It

is safe to assume a high probability of the

client choosing an open source solution as

opposed to a closed source one.

The most common problem faced while

using an open source solution is the lack of

adequate support. In case of commercial

software, the vendor is responsible

for timely assistance, especially when

resolving security bugs. But if the testing

team finds a critical bug in an open source

application and needs assistance in fixing

it, they may be required to pay an expert

to fix it [1]. Support for open source is

only in the form of forums and there may

not be a proper helpdesk, or a support

center. This underscores the need for a

well-experienced technical team that can

understand the code and implement the

fixes, adding to the cost of using the open

source solution.

Open source software concentrates on

addressing the needs of developers and

the end-users’ demands are not always

high on priority. Many open source

projects do not focus on user interface, and

do not provide adequate documentation.

[2]

The other factor that can lead to the

rejection of an open source solution is

the company’s (either the client company

or the service provider) dislike for open

source solutions. This can be due to their

previous experience and the concealed

terms and conditions, along with copyright

terms associated with open source.

Open source may be a good choice for

startups, but large organizations may find

it difficult to gain the confidence of their

stakeholders. Proving the advantages

of open source over closed source may

become a challenge.

Figure 1: In case of open source solution code is visible

Figure 2:In case of closed source solution code is not visible

In sum, while considering an open source

solution, the requirement and funding

should be cumulative. This means, the

technical support required to maintain

the solution must be added to the existing

requirement of the client.

Closed Source Solutions

If the open source route presents

problems, can closed source be looked

at as a more effective solution? While

this question can be answered in the

affirmative, mainly due to the full technical

support available, everything in the closed

source approach comes with a cost.

This cost may be low till the time the team

is working with a standard software tool.

If a slight modification is required, the

cost increases and this must be taken into

consideration. For instance, if the tool

offers to generate output in text file format

and the team needs the output from the

tool in a PDF format, this slight custom

modification can send the total cost of the

solution soaring.

The biggest disadvantage while
implementing closed source tools could
be the fact that the team deals with a set
of binaries and cannot see or modify the
code. To obtain even a slight modification,
they need to approach the vendor and
ensure that the requirement is fulfilled.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Building a Tool Ground-up or
Reusing Existing Tools

Building a tool from the ground up can

be a very effective option if the workforce

possesses the required expertise. The

following factors must be considered

before proceeding thus:

The nature of the requirement

It is important to clarify that the

reference here is not to large software

implementations in the testing process

such as QuickTest Professional (QTP),

but to small-size tools such as parsers

implemented in the process.

The process must start with a requirement

analysis. Weighing the advantages and

the disadvantages of the available open

and closed source solutions is vital. Most

importantly, the team needs to consider

the value the solution can add to the

project and its ability to increase client

satisfaction.

Many a time, the client has had better

experience with closed or open source

solutions that can perform the same

function the testing team proposes to

achieve through a custom-build testing

tool. In such a case, the team needs to

explore the solution the client refers to,

understand what it offers and determine if

the proposed solution can function better.

Skills requirement

If the required tool is related to project test

execution and the project team does not

have the capability to develop the tool, the

best option is to consult the tools group in

the testing unit to deliver the solution.

Platform requirement

The platform can be a challenge for most

startup organizations. For instance, if the

testing team needs .NET to develop the

tool then the license for the .Net framework

needs to be bought. However, if the .Net

framework is not required for any other

application, then ordering the framework

merely for one custom-build tool may not

be a feasible option.

Skills requirement as opposed to
platform requirement

There may be a discrepancy between the

platform chosen for the development of

the tool and the skill sets available within

the tools team.

The tools team needs to be flexible enough

to convert the code written in one platform

to the other and vice-versa. It is preferable

that some members of the tools team are

trained in open source languages because

these are the cheapest solutions that can

be offered to the client.

Reusing the existing solution

Depending upon the requirements, it may

be possible to reuse an existing tool from

the tools repository. The existing solution

or tool should be analyzed properly to

explore the reusability. Experts must

decide whether the reuse can be more

productive than developing the tool

from the ground up and encourage reuse

wherever possible.

Application
type

Requirement for
development

Requirement for
running at client

organization

.NET Web Application

.NET Console/
Windows Application

Java

PHP

Visual Studio

Visual Studio

JDK/Editor

WAMP Server or any other
server which can render php

.NET Framework

.NET Framework

JRE

WAMP Server or any other
server which can render php

Table1: Sample requirements for developing different applications

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Advantages of Developing
over Reusing a Tool

• Ability to build exactly what is
required

It is possible that a closed or open source

tool offers the same functionality that

the testing team is trying to achieve. If

the functionality is insignificant for the

majority of developers or users, then to

present the package better, tool vendors

might combine it with some features which

are not part of the team’s requirements.

This makes the tool more complicated to

use. On the other hand, when the team is

building the solution from the ground up,

they can concentrate on their end-users

who need to work on it and build the tool

based on the users’ skill sets and abilities.

• Adequate support

The tool team developing the tool knows

it completely as they go through each line

of code. This means adequate support is

always available. The tool can be modified

or extended as and when required.

• Making the tool reusable

The new tool can be developed by the

tools team in such a way that it can be

easily reused for other projects with slight

modifications.

• Development of project asset

The tool developed by the tools team can

become a project asset. The organization

can refine it later and use it in other

projects. The organization can also patent

it and explore market opportunities for it.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Introduction to SWIFT message

The Society for Worldwide Interbank
Financial Telecommunication (SWIFT)
provides a network to allow financial
and non-financial institutions (such as
corporate establishments) to transfer
financial transactions through a ‘financial
message’.[7]

Some examples of message standards
supported by SWIFT are:

• SWIFT MT

• ISO 15022 MT

• ISO 20022 MX

Project requirements

iTKO LISA does not recognize a SWIFT MT
message. It can only recognize XML. The
requirement was to develop a solution that
can parse SWIFT message to XML. XML
needed to be processed by LISA later post
which it needed to be converted back to
SWIFT and sent back to the application
(which recognizes SWIFT).

Open source solutions available

On consultations with subject matter
experts (SMEs), we found an open source
solution termed WIFE.

According to WIFE’s documentation, this
community is an open source Java library
for SWIFT messages parsing, writing and
processing.

The main features of the solution are:

• Parsing of SWIFT MT messages into
Swift Message Java objects

• Writing SWIFT MT messages from Swift
Message Java objects

• De/Serialization of Swift Message
objects into XML

• Hibernating the mappings for Swift
Message objects

• Simplifying the persistence in
applications

To achieve this, two tools were required:

• SWIFT to XML Parser

• XML to SWIFT Parser

Introduction to iTKO LISA

iTKO LISA is a middleware automation tool
for Service Oriented Architecture(SOA)
testing. iTKO LISA enables testing
of individual components, process,
and workflows during design and
development, integration, and in
completed applications in deployment.
Individual functional tests and system-wide
business processes are load tested using
the same environment and test suites, with
performance reporting and error checking
within each test instance. [1]

iTKO LISA solutions offer a unified solution
for Testing, Validation and Virtualization. It
provides three key capabilities to help firms
mitigate risk and get better results from
enterprise IT.

Case Study

Development of Parser for
Converting SWIFT Message into XML
for SOA Testing on iTKO Lisa

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Problems faced using WIFE

Most features were not useful: The
WIFE package comes with more than 100
classes, out of which we required only
three or four classes. The rest of the classes
were never required in our project.

Lack of knowledge or documentation:
There was no documentation and no
one in our team was aware of how the
WIFE actually functions and how it can be
integrated with iTKO LISA.

Approvals for open source: WIFE being
an open source solution, the stakeholders
perceived it as unreliable. This meant that
taking approval from the client was a
challenge.

Missing functionality: After thoroughly
examining the requirement, we were not
able to find out whether WIFE had the
functionality for performing the required
task or not. Going ahead with it was a risk.

• The application should integrate with
iTKO LISA.

Requirements at later stage

• The application should be able to
process multiple SWIFT messages in
one .txt file, identify the start-and-stop
sequence and mark the start and end.

• The multiple XMLs resulting from
multiple SWIFT messages must be
stored in different .XML files.

• The application should not be heavy.

The road we took

After understanding all the requirements
we decided to code the parser. We had
not finalized a specific technology for
developing the parser. Therefore, we chose
ASP.NET, the technology we already had
with us.

What we did

After considering all the pros and cons,
we decided to develop the parser from
the ground up. We decided to build an
application to identify the tags in SWIFT
message and convert them into XML.

Initial requirements

• The application should be able to read
the SWIFT message from .txt file.

• After reading the message, the
application must be able to process the
SWIFT message.

• There could be a different number of
blocks in each SWIFT message. Some
messages could consist of 4 blocks
while others could have 5 or more
blocks.

• The application should be able to
convert an XML message back to SWIFT
message.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Development of parser
application using ASP.NET:

ASP.NET is a Microsoft proprietary

technology which is used for developing

active server pages or, in simpler terms,

web pages.

We chose this technology for the

development of the parser because we

already had this application installed on

our system.

Requirements Software
required

Developing ASP.
NET application

Visual Studio

Running ASP.NET
application

Windows IIS
Server

Requirements:

We developed the ASP.NET application on

Visual Studio 2008. We had IIS installed on

our computers and we could easily see its

working and integration with iTKO LISA.

However, the problem occurred when we

tried the same using the client’s network.

Challenges we faced:

There was no IIS installed on the client’s

computer and therefore, we could not run

the application.

Even if we installed IIS on a computer in

the client’s network, we needed to have

the administration rights on the machine,

which was a challenge.

Running an IIS server on a machine could

create security issues in the client network.

This meant finding an alternative.

The next steps

As we had Visual Studio installed on our

machines, we decided to convert the

application created in ASP.NET into a

Windows console application.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

The Windows console application was

the best and quickest way to eliminate

the need for IIS on client machines. It also

helped side-step administration related

issues.

Challenges we faced:

We could not run the application because

.NET framework was not installed on the

client machine.

Rewriting the code:

As ASP.NET is a .NET technology, converting

its code into Windows console application

was not a tedious task.

Requirements:

The final destination

To avoid further delays, additional effort and rework, we analyzed the client machine and

checked the framework installed. Since all the modern-day operating systems (OS) come

with Java Runtime Environment (JRE) package, we decided to create the parser in Java.

Place Swift message in

_inputSWIFT\\readSWIFTmsg.txt

Converts all the swift message into

xml and all the xml are stored in

_tempfiles \\newfile.txt all xmls are

seprated by ^ delimiter

Divides all the xmls in .txt file

that were delimited by^, into

separate xml files and store it in

_outputxml\\Convertedxml1.xml

Place Swift message in

_inputSWIFT\\readSWIFTNorkomMsg.txt

Converts all the swift message into

xml and all the xml are stored in

_tempfiles \\newfilenorkom.txt all

xmls are seprated by ^ delimiter

Divides all the xmls in .txt file

that were delimited by^, into

separate xml files and store it in

_outputxml\\Convertedxml1.xml

Place XML File in

_inputSWIFT\\swift.xml

Converts the xml and store in _

tempfiles\\ReconvertedSWIFTmsg.

txt

Processes the swift message and

generate .txt and .doc file for

proper formatting.

Figure 3: A representation of the information flow

Developing
Windows console
application

Running Windows
console application

Requirements

Visual Studio

.NET
Framework

Software
required

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Basic architecture:

The parser developed in Java consists of
only six classes which can be packed and
run on any machine with JRE.

Integration with LISA:

We found out that the parser can be fully
integrated with iTKO LISA as it comprises
only .Class files that are to be invoked.
These can be easily invoked through the
batch schedule.

Currently we are working with the
following:

Requirements Software
required

Developing the
parser in Java

Java
Development Kit
(JDK) and editor

Running the
application
developed in Java

Java 2 Runtime
Environment
(JRE)

Requirements: • Conversion of SWIFT MT message into
XML

• Conversion of Norkom SWIFT message
into XML

• Conversion of XML back into SWIFT MT
message

Advantages of building parser from
the ground up

The parser we developed is light - there
are only six classes for all the functioning
required in our project.

• There are no integration issues.

• There are no licensing issues.

Conclusion

While creating a tool for the testing

process, the testing team must have

a clear and detailed picture of the

client’s requirements. In the case study

we presented earlier, the requirement

was to build a parser. If we explore the

requirement further, the client needed

a parser that was not built using any

open source or closed source solution.

The client wanted the parser to be

developed in a way that eliminated the

need for installing any framework.

To conclude, it is important to focus

on the development approach while

developing custom-build tools.

Impact and effort involved in using

open and closed source alternatives

as compared to custom building the

solution must be properly assessed.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

References

1. http://www.gnu.org/software/classpath/docs/hacking.html

2. Meffert, Klaus; Neil Rotstan (2007). “Brief summary of coding style and practice used in JGAP”. Java Genetic Algorithms Package. http://

jgap.sourceforge.net/doc/codestyle.html. Retrieved 2008-09-08.

3. http://www.tamingthebeast.net/articles5/open-source-software.htm

4. http://www.helium.com/items/514407-the-pros-and-cons-of-open-source-software

5. http://wapedia.mobi/en/SWIFT:Message_Types

6. “List of MT and MX Messages”. SWIFT. http://www.swift.com/index.cfm?item_id=60538., pdf document from August 2008

7. http://www.technologyexecutivesclub.com/sponsorpages/itko.php

8. http://www.prowidesoftware.com/en/wife-documentation.html

Vaibhav Suneja

A Test Analyst with 4.5 years of work experience across various platforms and technologies.

He has a diverse experience in Testing tools design, development and resuse

He can be reached at vaibhav_suneja@infosys.com

About the author

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

© 2018 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
https://www.slideshare.net/infosys
https://www.infosys.com/

