

Presented at the 3rd International Software Testing Conference, India

The When & How of Test Automation

Vivek Motwani
Programmer Analyst

Product Competency Center
Infosys Technologies Limited, Bangalore

Abstract

Test automation has always been looked upon as a magic formula to improve the quality

processes of products/applications right from the day when first commercial product/application

was made. But when one actually starts automating the testing, the ground realities are realised.

More often than not, the teething troubles of deciding the right time to go for automation,

defining the scope of automation and selection of right tool for automation are over-whelming in

the first place. And even if these teething troubles are overcome, the automation tool developed is

usually inefficient as lots of important considerations are over-looked. This paper aims to suggest

the solution of these issues, and suggest best practices to be followed while doing the automation

so as to maximise the efficiency of the automation tool developed.

Introduction

Automation is the only long-term solution for reduced costs in software testing and better quality

products. But these aims are achieved only when certain best practices are followed before and

while developing the automation suite.

Howard Fear has aptly stated, "Take care with test automation. When done well, it can bring

many benefits. When not, it can be a very expensive exercise, resulting in frustration”. [3]

More often that not, after automating the testing of a product, the automation team finds the

automation tool more of a headache because of the unplanned and thoughtless approach adopted

while developing the tool. Generally, lots of effort is spent in developing the tool, only to

discover that the tool is limited in scope, lacks user-friendliness and requires frequent re-work

every now and then.

rahul_100112
Text Box
© QAI India Ltd, 3rd Annual International Software Testing Conference, 2001. No use for profit permitted.

Presented at the 3rd International Software Testing Conference, India

And if sufficient care is exercised and proper practices are followed before and while automating

the same product/application, the resulting automation tool not only saves time and effort, but is

also a sheer beauty in itself because of the amount of user-friendliness, flexibility, reusability and

extensibility it ensures.

Let us, therefore, discuss what all needs to be taken care of before going for test automation and

also while actually doing the automation.

Automation when?

(The Desiderata)

Lots of effort has to be spent even before you actually start with automation. It needs to be

ensured that following things have been taken care of: -

Stability of the product/application is ensured: The first thing that needs to be ensured is that

the product/application is fairly stable in terms of functionality. Even if it is slated to incorporate

new features, the new features should not disturb the existing functionality. There is no sense in

automation the testing of a product that is supposed to change functionality-wise.

Besides, the error messages generated by the product/application should remain consistent across

different releases. If the testing is GUI-based, then it needs to be ascertained that the future

releases of the product would not be undergoing GUI changes which might prove critical for the

automation suite.

Interface to be tested has been identified: Three different interfaces a product might have are

command line interfaces (CLIs), application-programming interfaces (APIs), and graphical user

interfaces (GUIs). Some may have all three, but many will have only one or two. These are the

interfaces that are available to you for your testing. By their nature, APIs and command line

interfaces are easier to automate than GUIs. Find out if your product has either one; sometimes

these are hidden or meant for internal use only. After this, you need to decide which interface’s

testing has to be automated. Some relevant points are: -

rahul_100112
Text Box
© QAI India Ltd, 3rd Annual International Software Testing Conference, 2001. No use for profit permitted.

Presented at the 3rd International Software Testing Conference, India

� GUI test automation is more difficult than test automation of the other two interfaces.

This is because firstly, GUI test automation will invariably require some manual script

writing. Secondly, there will always be some amount of technical challenge of getting the

tool to work with your product. Thirdly, GUI test automation involves keeping up with

design changes made to a GUI. GUIs are notorious for being modified and redesigned

throughout the development process.

� Despite the reasons for not depending on GUI test automation as the basis for testing

your product functionality, the GUI still needs to be tested, of course, and you may

choose to automate these tests. But you should have additional tests you can depend on to

test core product functionality that will not break when the GUI is redesigned. These tests

will need to work through a different interface: a command line or API.

� In order to simplify the testing of an API, you may want to bind it to an interpreter, such

as TCL or Perl or even Python. This enables interactive testing and should also speed up

the development cycle for your automated tests. Working with API’s may also allow you

to automate unit tests for individual product components.

Scope of automation has been defined: Before setting out to automate the testing of your

application/product, it is essential to define the scope/intended coverage of the automation tool.

The scope may encompass functionality testing, regression testing or simply acceptance testing.

You can even select to automate the testing of certain particular features or certain selective

testcases of different features.

Individual testcases to be automated have been identified: Automation suite should be looked

upon as a baseline test suite to be used in conjunction with manual testing, rather than as a

replacement for it. It should aim at reducing the manual testing effort gradually, but not doing

away with manual testing altogether. It needs to be understood that automation can aid manual

testing effort but cannot replace manual testing. What machines are good at and humans are slow

at should be chosen for automation. Setting realistic goals in early stages of test automation is

rahul_100112
Text Box
© QAI India Ltd, 3rd Annual International Software Testing Conference, 2001. No use for profit permitted.

Presented at the 3rd International Software Testing Conference, India

important for achieving long-term success. So, even after defining the scope of the automation

tool in terms of acceptance/regression testing, etc, it needs be made sure that following kinds of

testcases are eliminated from the scope of automation: -

� Testcases that are long and complicated and require manual inspection/intervention in

between.

� Testcases that take tremendous amount of time in automation and it is difficult to ensure

re-usability even if they are automated.

� Testcases pertaining to usability testing. Usability testing means testing in a true end-user

environment in order to check whether the system is able to operate properly in

accordance with the exact set of processes and steps applied by the end-user, including

user's interface and system convenience estimation.

It’s very important to include the right testcases in the suite. If the selection of testcases for the

automation suite is not meticulous, you might end up discovering nothing really important about

the software you are testing even if you develop a highly robust and reliable test suite.

Testcases have been fine-tuned: The testcases need to be fine-tuned for automation. The

expectation level from the testcases for automating is widely different from the expectation from

manual testing point-of-view. The salient features that need to be taken care of include: -

� Manual regression tests are usually documented so that each test picks up after the

preceding test, taking advantage of any objects or records that may already have been

created. Manual testers can usually figure out what is going on. A common mistake is to

use the same approach with automated tests. But because of this approach, a failure in

one test will topple successive tests. Moreover, these tests also cannot be run

individually. This makes it difficult to use the automated test to help analyze legitimate

failures. So, it is advised to revamp the testcases so as to make them independent. Each

testcase should setup its test environment.

rahul_100112
Text Box
© QAI India Ltd, 3rd Annual International Software Testing Conference, 2001. No use for profit permitted.

Presented at the 3rd International Software Testing Conference, India

� The testcases need to be equipped with proper test-data. E.g. – If there is a testcase for

uploading of a file, then it should explicitly tell which file to upload. If there is a testcase

for creating a folder with invalid characters, then it should state which characters to use

for creating the folder.

Such fine-tuning of the testcases before starting automation ensures reduction in the actual time

for developing the tool. It also guarantees that the tool actually executes the testcases in a way

that checks the desired functionality.

The right tool has to be decided: There are hundreds of automation tools available in the

market. A careful effort has to go into deciding which tool would be most suitable for automating

the testing of your product/application. Following criteria would be useful in making the decision:

� Is the automation suite required to work on different platforms? If platform-

independence is required, the demands on the automation suite will be very high. E.g. – If

the suite has to support different flavors of Unix, it might be suitable to go for platform-

independent things like perl, etc.

� If the testing to be automated is GUI-based, it might be preferable to use a tool like

SilkTest, WinRunner, Rational Robot, etc. But every tool will have its own technical

limitations that prevent efficient automation. So, it is necessary to evaluate testing tools

for critical interfaces of the application that need to be automated.

� Sometimes, it might be best to develop a scripting tool using a suitable scripting language

instead of going for the ready-made tools available in the market. This is especially

preferable when the testing is on the server side.

The right mode (script recording/script development) has been decided: Most of the GUI

automation tools have a feature called ‘record and playback’ or, ‘capture replay’. Using this

feature, you execute the test manually while the test tool sits in the background and remembers

what you do. It then generates a script that you can run to re-execute the test. Script development,

on the other hand, implies writing the scripts for running the testcases in the language used by the

tool. Script development is akin to programming in a language like C or C++, but the purpose is

to execute the testcases in an automated style.

rahul_100112
Text Box
© QAI India Ltd, 3rd Annual International Software Testing Conference, 2001. No use for profit permitted.

Presented at the 3rd International Software Testing Conference, India

If you are going for GUI test automation, then points worth-considering while making a sane

decision are:

� Record and Playback approach to creation of test scripts and test suites is easy to develop

but difficult to maintain.

� Error recovery cannot be incorporated by just recording a test script.

� In data driven tests, achieving reusability of test scripts will be very limited. Creation of

test data and integration of the same with test scripts is the time consuming part. When a

function is coded for the same purpose with data input file, maximum re-usability and

ease is ensured.

More often than not, it will be required to strike a careful balance between the two modes, instead

of using one of the two modes. Using the recording mode alone will render the automation suite

non-reusable and using the scripting mode alone will require more investment of effort and time.

Though a middle path will be suggested generally, it might be worthwhile spending some time to

decide the right mode or right mix of modes as per the application/product under consideration.

Most of the further discussion will be useful only when the right mix is adopted or scripting is

followed altogether.

All in all, the suggested steps to be followed before starting with automation can be depicted in

the figure below: -

\

Fig.1: The pre-automation stage cycle

Check the stability
of the product /
application

Decide the
interface to be
tested

Define the scope
of automation

Identify
individual
testcases

Fine-tune the test
case documents

Decide the right
tool

Decide the right
mode/ right mix
of modes

rahul_100112
Text Box
© QAI India Ltd, 3rd Annual International Software Testing Conference, 2001. No use for profit permitted.

Presented at the 3rd International Software Testing Conference, India

Automation how?

(The Regimen)

After taking care of the above stipulations, the right direction has been identified and now the

stage is all set to go for automation full-fledged. But in order to reach the destination, lots more

needs to be paid attention to. So, here we go: -

Following proper test scripting standards: Automated testing involves a mini-development

cycle. So, proper coding standards for test scripts should be prepared. Checklists should be

developed for review of test scripts. On the whole, all the software practices followed in the

development of an application or a product, which are applicable to the development of the

automation suite, should be put in place. Whatever tool is chosen, ultimately, a tool will be only

as good as the process being used to implement the tool.

Identifying common steps and converting them into functions: At the outset, the steps

common amongst different testcases should be identified and converted in the form of functions.

Such functions can be placed in a common file, from where they can be called by different

testcases by passing suitable parameters as per the need. This will encourages re-usability of code

and save effort and time. Besides, these functions can be used again when newer testcases are

added to the automation suite at a later stage.

Identifying other peripheral functions: After the functions as stated above have been identified,

it is advisable to identify the peripheral functions that will be required by all the testcases in

general. E.g. – A separate function for writing into log files can be written. This function can take

the error message, severity level of the error message and the path and name of the log file as the

input parameters. Depending on the requirements, more of such reusable functions can be

identified. Such functions will simplify and streamline the process of test script development in

the long run.

Providing room for extensibility: The automation suite should be written in a manner such that

additional testcases can be added to it. The additional testcases may cater to testing enhanced

rahul_100112
Text Box
© QAI India Ltd, 3rd Annual International Software Testing Conference, 2001. No use for profit permitted.

Presented at the 3rd International Software Testing Conference, India

functionality of an existing feature as well as testing new features incorporated in the

application/product. The suite should have such an architecture that it is extensible both in terms

of being able to add more functions and also in terms of being able to add more testcases by

calling the existing/new functions.

Generating proper logs: A common problem is what to do when automated tests fail. Failure

analysis is often difficult. Was this a false alarm or not? Did the test fail because of a flaw in the

test suite, a mistake in setting up for the tests, or an actual defect in the product? Hence, it is

required that the suite should generates logs of its own. But a good automation suite with

ambiguous logging messages is worse than manual testing. Few points that need to be taken care

of from logging point-of-view are: -

� An ideal automation suite should explicitly check for common setup mistakes before

running tests and generating detailed logs of its own. And logging needs to be as user-

friendly as possible.

� The logging should be done in a manner that facilitates statistical analysis of the results.

This implies that the log file should have the results in such a format such that can be

processed by parsing, and useful statistics can be generated.

Independence of selective execution: The scripts should be written/arranged in such a manner

that they provide the independence of executing individual testcases or at least testcases

belonging to the same module. This is important when the need is not to execute the entire suite,

but to verify particular bugs.

Signal-handling and clean exit on abrupt termination: It needs to be ensured that the suite

does all the clean up when terminated abruptly, consciously or unconsciously, by the user. It may

be required by the script to handle the termination/kill signal for a while so as to get the time for

clean up (and may be, complete the currently executing testcase, if the suite desires). Such signal

handling is extremely important in some particular cases. E.g. - When an automation suite is run

rahul_100112
Text Box
© QAI India Ltd, 3rd Annual International Software Testing Conference, 2001. No use for profit permitted.

Presented at the 3rd International Software Testing Conference, India

through command line on a Unix terminal as a foreground process and the user does a Ctrl-D in

order to stop the suite for whatever reasons. The suite might have changed some configuration

files or properties files before it received the signal. So, if the changes are not reverted back

before the termination of the suite, then things will go for a toss.

Self-sufficiency in individual testcases: Testcases should not be dependent on preceding

testcases for execution. If there is dependency on testcases occurring before in the sequence, then

the subsequent testcases will fail without any reason. If at all such dependence is unavoidable, the

error message in the log file, when such testcases fail because of the failing of preceding testcase,

should be explanatory enough.

Equipped with test data: The automation suite should be equipped with all the test data required

by the different testcases. The test data may consist of simple data input as required by the

testcases to supply parameters to the functions for testing different conditions like numeric input,

alpha-numeric input, non-alpha-numeric input, etc. It may as well consist of specific files to be

supplied to the testcases to test particular functionality of the application/product. The automation

suite has to be accompanied with such test data and this test data has to be prepared for the suite

with precision. Example: - A particular feature of the application/product may have to be tested

with files of different sizes, say 0 bytes, 64 KB, 1MB, 30 MB, etc. So, the suite requires to have

the files precisely of these sizes only. All such files may be kept in a particular folder from where

the suite picks them up. The regular input data, which is required by the functions as parameters

can be supplied through the input data files. The individual testcases may parse the parameters to

be supplied to the testcases while reading them from the input data files. The tools available in the

market support different types of file to be used as data input files. Example: - WinRunner uses

excel sheets for reading data, while SilkTest uses .dat files.

Dynamic generation of names for temporary files and input data: Sometimes, the automation

suite would require to create certain temporary files. If the suite does not delete the temporary

files created by itself, then they will get over-written in the next run of the suite. Besides, if a file

rahul_100112
Text Box
© QAI India Ltd, 3rd Annual International Software Testing Conference, 2001. No use for profit permitted.

Presented at the 3rd International Software Testing Conference, India

by the same name exists even before the first run of the suite, then that file may get over-written

in the first run itself. The consequence will be even worse if the write permission is not there on

the already existing file. The script will fail to over-write also in such a case and the testcase

might eventually bombard. Similar problems are faced when the suite contains a positive

testcases like creating a folder with a given name. If the suite does delete this folder created as a

part of the clean-up process, the testcases fails unnecessarily when the suite is run again with the

testcase trying to create a folder with the same name.

A solution to all such problems is to dynamically generate the names for temporary files

and all such input data at the run time. This way the names will not conflict with those of the

existing files and fresh data. Such dynamic generation of names can be accomplished by several

ways. One typical way of generation can be stripping the microsecond part of the current time

and appending it to a name. This way there will be an extremely rare probability (10 to the power

of –6, to be precise) that a conflict in the names will take place.

Cleaning-up: It has to be ensured that the automation suite brings the application/product back to

the original state it was in before the suite executed. If any configuration or properties file was

changed for the execution of some testcase, then the changes must be reverted back. If the suite

generates some temporary files, they should be deleted by the suite towards the end.

Incorporating user-friendliness: The automation suite should be as user-friendly as possible.

Some basic points for ensuring user-friendliness are: -

� The user should have freedom to put the test data files anywhere on the m/c.

� The suite can be run from anywhere on the m/c.

� It can be installed anywhere on the m/c.

� Once it is run, the suite should not require any manual intervention till completion. The

user should be able to run the suite unattended.

For incorporating such user-friendliness, the suite needs to be designed in a proper way. A

separate configuration file can be created that contains all the variables that the user might want

rahul_100112
Text Box
© QAI India Ltd, 3rd Annual International Software Testing Conference, 2001. No use for profit permitted.

Presented at the 3rd International Software Testing Conference, India

to change. E.g. – The user might want the log files to be generated on the desktop instead of a

hard-coded path. The user might as well want the suite to pick-up the test data/files from a

directory of his choice. All such entities can be placed in the configuration file in the form of

variables that the user can change easily. The suite can read these variables from the

configuration files every time it is run. If such a design is used, all that the user would need to do

before running the script is to change the configuration file as per his needs. Thus, the user will

get a tremendous amount of flexibility and independence.

Developing an efficient error recovery routine: Error Recovery routine enables the test suite to

run continuously unattended. The function of this routine is to anticipate errors, decide on

corrective action, log the error and proceed further with next test, if possible. E.g. - If unexpected

termination of application under test happens, the routine should recognize the interruption and

restart the application. This prevents cascading effect or reporting wrong defects after a test suite

execution. In a nutshell, this will ensure that failures in test execution are effectively trapped,

interpreted and suite continues to run without failures. Without such an error recovery system,

automated test suite runs will never take off. Manual presence will become a necessity during test

suite execution.

Test scripts for test data setup and cleaning up: If the automation suite does not take care of

test data setup, it will have to be done manually by the user, which reduces the fun of test

automation. This becomes all the more important when test data setup requirements are huge and

as a result, the whole exercise become highly time consuming. Hence, an ideal automation suite

should incorporate dedicated scripts for test data set-up. These scripts are executed before any

other functionality test can be executed on the product. E.g. – When the application/product in

focus is an ERP suite or a banking software, the test data setup part itself may take 3-4 man-days

of effort. With the automation in place for this setup, the effort is reduced drastically.

 Similarly, scripts for cleaning-up should also be incorporated in the automation suite.

Such scripts will aim at bringing the application to the ground state it was in before the

rahul_100112
Text Box
© QAI India Ltd, 3rd Annual International Software Testing Conference, 2001. No use for profit permitted.

Presented at the 3rd International Software Testing Conference, India

automation suite was run, i.e., they will undo all the changes that any testcases in the suite

brought about while executing. E.g. – If there is a testcases for creating a folder, then the clean-up

action will delete this folder.

Testing the test scripts: Test scripts should be tested before they are used in a test suite. Testing

of all test scripts should be planned in test automation activity. Adequate tests need to be

performed for each test script. When test error simulation and rectification is difficult and time-

consuming process, reporting false errors can cost more and defeat the objective. The goal for the

automation team has to be that a test program should never report a false problem. All scripts

should satisfy the following criteria: -

� When given a valid input, they produce the correct output.

� When given an invalid input, they correctly and gracefully reject the input.

� Do not hang or crash, given either valid or invalid input.

Conclusion

Test automation is a great idea. But it is not a magic wand. Proper time and effort has to be spent

for the development of the test automation suite. And the key is to follow the right processes. In

eagerness to achieve fast results, the desirable processes are compromised. And that is the reason

why, more often than not, it only promises and raises hopes, but simply fails to deliver.

Acknowledgement

I wish to express my sincere gratitude towards Sridhar Kumanduri and KiranKumar Marri for

sharing their experience in test automation with me and giving me extremely valuable feed-back.

References

1. Bach, James. 1996. “Test Automation Snake Oil.” Windows Technical Journal, (October).
http://www.satisfice.com/articles/test_automation_snake_oil.pdf

2. Success with Test Automation by Bret Pettichord (bret_pettichord@bmc.com)
3. Howard Fear on Test Automation by Howard Fear (hsf@pageplau.com)
4. Automated Testing: A Practical Approach for ERP product by Kishore C.S.

(cs@rsi.ramco.com)

http://www.satisfice.com/articles/test_automation_snake_oil.pdf
mailto:bret_pettichord@bmc.com
mailto:hsf@pageplau.com
rahul_100112
Text Box
© QAI India Ltd, 3rd Annual International Software Testing Conference, 2001. No use for profit permitted.

	Identifying common steps and converting them into functions: At the outset, the steps common amongst different testcases should be identified and converted in the form of functions. Such functions can be placed in a common file, from where they can be ca
	Providing room for extensibility: The automation suite should be written in a manner such that additional testcases can be added to it. The additional testcases may cater to testing enhanced functionality of an existing feature as well as testing new fea
	Independence of selective execution: The scripts should be written/arranged in such a manner that they provide the independence of executing individual testcases or at least testcases belonging to the same module. This is important when the need is not t
	Signal-handling and clean exit on abrupt termination: It needs to be ensured that the suite does all the clean up when terminated abruptly, consciously or unconsciously, by the user. It may be required by the script to handle the termination/kill signal
	Self-sufficiency in individual testcases: Testcases should not be dependent on preceding testcases for execution. If there is dependency on testcases occurring before in the sequence, then the subsequent testcases will fail without any reason. If at all
	Dynamic generation of names for temporary files and input data: Sometimes, the automation suite would require to create certain temporary files. If the suite does not delete the temporary files created by itself, then they will get over-written in the ne
	A solution to all such problems is to dynamically generate the names for temporary files and all such input data at the run time. This way the names will not conflict with those of the existing files and fresh data. Such dynamic generation of names can b
	Cleaning-up: It has to be ensured that the automation suite brings the application/product back to the original state it was in before the suite executed. If any configuration or properties file was changed for the execution of some testcase, then the ch

