
WHITE PAPER

PRESENTATION TIER
PERFORMANCE OPTIMIZATION

Abstract

The performance of websites was always a critical non-functional
requirement. A better performing site directly translates into better user
experience, repeated site visits, and hence increased revenues. A fast
performing site invariably provides a competitive edge as well. Also these
sites are often indexed faster by search engines and often appear at the top
of search results8.

An ever increasing expectation for performance of websites means that Web
pages need to be designed to be optimal and fast rendering. Many a times,
websites lose their customers in a blink of an eye if they are a sub-second
slower than their competitors1

This white paper discusses this critical non-functional requirement, methods
to achieve it, and draws examples from various real-world scenarios. Most
of modern applications follow layered architecture mainly consisting of
three key Layers: presentation layer, business layer and integration layer. An
optimization approach invariably involves all the layers. This white paper
mainly focuses on the optimizations in the presentation layer.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Need for Speed

Not long back even a 2-second page

response time was considered as an

acceptable one. However, web users have

become increasingly impatient when

it comes to speed these days. Earlier,

speed was considered a feature and now

it is deemed a necessity. Additionally,

technological innovation in mobile space

has raised the bar for speed. Hence, speed

makes a lot of economic sense now.

A recent research found that 250-450

milliseconds are the magical numbers

that decide the winner in the race of

web speed1. Research also indicates that

the slower the site, the lesser would be

Bottom-up performance optimization
This strategy essentially is performance-by-design wherein performance optimization principles are framed, applied, and maintained right
from application design phase. This is the preferred strategy to incorporate performance as a core development principle instead of having it
as an afterthought which involves following key stages:

1. Layout performance principles

2. Execute the performance principles by identifying the key pages/transactions and optimizing them

3. Monitor and maintain the performance SLAs

the number of clicks and transactions

performed on the site, which would

eventually result in the loss of users2.

Strategies of presentation
layer performance
optimization
There are broadly two main categories
adopted for performance optimization:

a. Bottom-up strategy: This involves

carefully laying out the ground rules

for performance based on required

SLAs and design / develop the pages

by adopting the principles laid out. This

is the preferred approach that involves

optimization in both presentation layer

design and development.

b. Top-down strategy: This is a reactive

strategy which involves doing a

post-mortem of pages when any

performance issue is discovered.

This involves analysing the page

components and targeting the

optimizations which reap big and

quick benefits and iteratively enhance

other components. This is potentially

costly and the cost mainly depends

on the phase during which the issue is

uncovered.

Subsequent sections discuss these

strategies in detail.

Develop/
update

principles

Identify key
pages/

transactions

Test and
re-iterate

Apply
performance
optimizations

• Start with performance best
practices check-list

• Use the check-list as basis for
user interface development

• Test the performance of pages
using automated tools for
required performance

• Update the principles if required
and repeat

• Identify the key pages and
transactions/functionalities

• Target the optimizations for
those pages and transactions

• Apply performance
optimizations like merging,
minifying, CSS sprites, HTTP
compression etc to the list

External Document © 2018 Infosys Limited External Document © 2018 Infosys LimitedExternal Document © 2018 Infosys Limited

Step – 1: Layout performance principles

An organization can create a performance guideline framework that forms the guiding principles for individual projects. The performance

guideline framework can be constructed based on:

The performance service level

agreement (SLA) the organization

has promised to its customers :

i. Page render time across different geographies

ii. Overall transaction time for key processes.

Making the user interface rich as

well as responsive:

i. Richness involves providing feature rich client-side components like widgets and

pages with high degree of intuitiveness

ii. Responsiveness and interactivity involves making those client-side components

highly interactive by adopting techniques like partial-page-rendering.

Request optimization for a page

which mainly involves:

i. Minimize number of HTTP requests

ii. Minimize amount of data requested per request by maximizing usage of client-side

components wherever possible and employ partial page rendering to avoid the full

page refresh.

Adopting wide variety of caching

strategies across various layers

which involve things like

i. Using cache headers

ii. Caching lookup lists

iii. Caching can be applied at webserver, server side, database layer and other possible

integration layers

iv. Avoid 3rd party plugins unless absolutely required. Even when they are included, only

load the scripts on-demand and keep the 3rd party scripts at the bottom of the page.

Optimizing static assets like

images, JavaScript, CSS, JSON

which involves

i. Minimizing number of JS/CSS/Image files by minifying and merging them

ii. Appropriate positioning of the files to improve the perceived page load time for user.

iii. Use PNG format of image always

iv. Encouraging usage of CSS sprites

v. Use lazy loading of content wherever possible

vi. Avoid iframes and redirects to the best extent possible

Heighten the user experience of

key business processes:

i. Understand the key application expectation from end uses by conducting usability

studies, surveys, interviews and A/B testing. Once the key expectations are

understood design performance strategies around these expectations

ii. Adopt process improvements such as:

 1. Reduce number of steps/pages for completing the overall process

 2. Automate the steps in process to the extent possible.

 3. Provide quicker alternatives for a business process like one-click checkout,
guest shopping etc.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Step – 2 Execute performance principles

Once the performance ground rules are set, individual project teams can implement the performance guidelines by adopting various

optimization techniques applicable to their context. Optimization occurs at two levels:

• During application design

• During application development

Application Design Optimizations

Some of the design optimizations emerge from performance guidelines laid out in step – 1. Following list provides few key design

considerations from performance point-of-view:

i. Wherever possible, employ partial page rendering to avoid the full page refresh.

ii. Adopt client-side validation framework to catch the errors

Provide interactivity through usage of

client-side components:

i. Providing optimized search functionality on all pages to reach any page using

keyword search

ii. Providing elaborate menu to allow the user to navigate to any sub level page.

Provide intuitive information architecture

and easy navigation after careful and

thorough research of key functionalities.

This involves things like:

i. Provide alternate versions of pages / functionalities to multiple devices

ii. Provide cross-channel integration for seamless user experience
Provide multi-channel interface:

i. Provide personalized experience based on user’s previous browsing history.

ii. Remember user’s preferences to customize the key functionalities such as search, navigation

iii. Recommendations based on transaction history

iv. Leverage web analytics to gain insights into customer’s implicit preferences and use it for

further customizations

Enhance user overall experience by

leveraging client-side components:

i. Wherever possible load the data only on-demand instead of pre-loading all the data. For

instance:

 1. Use pagination for search results and load the second page only when requested

 2. Information in the popup can be loaded only when user clicks on popup link.

On-demand data loading:

Identify areas for automation:

i. Come up with process for automating and make it part of process. For instance merging and

minification can be automated and added to the build process

ii. Identify all the tools which help in automation and optimization to improve productivity

 1. Use tools like Google PageSpeed, Yahoo YSlow etc. for constantly checking the page
performance.

 2. Use tools like Gomez for identifying page performance across geographies.

 3. Identify Web analytics tools for automatically tracking the user activities and page
performance.

Avoid chatty service calls i. Minimize the service calls from presentation tier

Encourage asynchronous calls i. Wherever possible promote asynchronous calls between presentation tier and
business tier.

i. Including only key functionalities to keep it light weight

ii. Having optimized marquee images

Simple and Lightweight: Keep the

frequently used pages like home page and

landing page simple and yet effective. This

would involve things like

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Application development performance optimizations

Before discussing the techniques for performance optimizations, let’s look at the factors which contribute to page performance

Normally performance optimization is a multi-layer (presentation layer, business layer, database layer etc.) and multi-team (UI developers,

business logic developers, networking team, and Infrastructure team) effort. This paper primarily addresses the concerns related to the

presentation layer.

Factors affecting page performance

Today’s websites are expected to be highly user intuitive and feature-rich. They almost always compete in the online Olympics to serve

“richer, friendlier and faster” content. During development of some of these features, developers would inadvertently compromise

performance. Let’s examine few of the key features and their impact to page performance in detail:

Rich and Intuitive User interface using

client side modules

• Inclusion of multiple JavaScript libraries which build the UI modules and impart

interactive behaviour. This increases resource requests for a page.

• Inclusion of multiple CSS files for adding styles for the UI modules. This increases

resource requests for a page.

• Including the JS files at the top of the page which blocks the loading of subsequent page

components.

Support huge number of functionalities on

the home and landing pages

• More the functionalities more will be the Document Object Model (DOM)/page size.

• Possibility of duplicate resource requests.

• Possibility of internal or external network bottlenecks.

Integration with 3rd party functionalities

• Include ads before the page load

• Include lots of plugins like Twitter, Facebook, Google+, and LinkedIn etc.

• Include JS files required for site survey at the beginning of the page

Security requirements preventing usage of

client-side components

• Absence of client-side page components forces the user to load the full page for each

functionality. This would increase the overall time taken for completing a transaction.

• Absence of server side caching would aggregate the performance issue

Adding large marquee images / animated

flash objects/videos on each page
• Multiple images increases the resource requests

• Bigger the asset size, larger would be the bandwidth consumption

Enable mobile access • Absence of device specific site and mobile accelerator would render the page slow in

mobile devices

Feature Factors affecting page performance

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

A deep-dive into User interface performance optimization techniques

Following table provides a comprehensive list of performance optimizations that can be carried out at a user interface level:

Performance Optimizations table

• Use the JavaScript library which is enough to satisfy

application requirements.

• Avoid loading unnecessary components of the JavaScript

library which are not used for page. For instance while using

DOJO library, we can create custom build to load only the

required components.

Choose appropriate presentation

components

Merge all the JS and CSS files • Minimize the total number of resource requests.

• Network round trip for additional resource trip is avoided

• YUI

Minify:

• Minify the JS and CSS files

• Minify the HTML content

• Reduced size would minimize the response time

• On an average there will be 30% reduction in the file size for

JS and CSS files.

• On an average there will be about 20% size reduction

in page size.

• JSMin

• YUI

• As JS files are at the bottom of the page, it will not block the

serial load of the page. This would decrease the perceived

load time for the user. Many times 3rd scripts related to

analytics and others has the potential to slow down the entire

site. Hence placing them at the bottom would eliminate this

problem

Asset Placement:

• Place all external JavaScript links at

the bottom

• Place all CSS file links in the head

element

NA

• Results in multi-fold benefits such as reducing the number or

resource requests and reduced image size

• Image compression would decrease the size by approximately

25%

Assets Optimization

• Use CSS sprites

• Use lossless compression or PNG

files

• Smushit Image

compressor

• Trimage

• Absence of device specific site and mobile accelerator would

render the page slow in mobile devices

Compression

• Enable gzip compression for HTTP

traffic

• Content-Encoding

header

UI performance optimization Performance gains Tools and Techniques

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Caching

Caching requires a special mention among optimization techniques as it has potential to drastically impact the page performance if

optimally employed. Following are some of the caching techniques that can be employed at presentation tier:

Cache controlled values on client side

Normally Web applications display list of controlled values. For instance, a typical registration form displays the list of allowed

countries in a drop-down. In such cases instead of reading the complete list of controlled values from the data source every time,

it can be added to a JSON file and cached as a static asset. The JSON can be refreshed based on update to the source data. Similarly

the client-side validation framework requires things like data patterns, validation business rules which can be stored in client-side

components like JSON/XML file.

CDN caching

Sometimes clients will be having performance specific requirement for each geography. Let’s say that we would like to render a

normal page across all geographies when the origin server is in the US, then even with fully cached and an optimized site, it would

be challenging to render the page within 2 seconds in the Asia Pacific region.

In such scenarios it is worth considering the Content Delivery Network (CDN)/Edge caching like Akamai, Amazon CloudFront.

CDN systems would cache assets like images/Videos/JS/CSS and would serve the content from geographically optimal location to

accelerate the page rendering.

Browser caching

• Leverage browser caching by leveraging

headers like “cache-control” and “expiry” for

static assets.

Web server caching

• Store the static assets in web server which are fine-tuned

for delivery of these assets

• Leverage the cache settings for rendering the static assets

Step – 3 Monitor and maintain performance SLAs

Post-production the application needs to be continuously monitored for performance issues. Following are some of the methods for

implementing the same:

Monitoring

Following are some techniques that can be

used for post-production page monitoring.

Page performance monitoring

Few web analytics tools like Omniture

provide the page load times which can be

constantly monitored for any performance

issues

Real time cross geography
monitoring

Systems like Gomez networks provides real

time monitoring capability which monitors

the site from various geographies on

frequent basis and notifies the site admin if

the site performance falls below specified
threshold.

Additionally in-house custom tools can

also be developed to do a health check of

servers and page load. A combination of

effective in-house and external monitoring

infrastructure helps the site admins to

better respond to performance situations.

Application Monitoring

Post production release the application
needs to be constantly monitored to
identify any performance bottlenecks and
performance issues. Tools like IBM Tivoli
monitoring and IBM Tivoli composite
application manager (ITCAM) can be used

for this purpose

Maintenance

• All production updates should strictly

adhere to the performance guidelines

outlined in step above. For instance

if there is a need to add additional

JavaScript page, it must be minimized

and merged with the existing master

script to minimize HTTP request

• While adding additional functionalities,

client-side version of that functionality

needs to be given preference to avoid

full page refresh.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Figure 2: The proposed reporting mechanism

Case studies

Following are some of the real-world case studies related to performance optimization

Case study – 1: Banking client’s site performance optimization

Following graphs indicate the asset (JS, CSS etc.) contribution to overall page size and page load time:

1. Context and Analysis

• The dashboard page consisted of large

number of functionalities.

• To support large number of

functionalities it also needed good

number of scripts and CSS files

• The page was taking about 30 seconds

for the first time load and about 10

seconds for subsequent loads

2. Root cause

• The performance optimization was an

after-thought rather than a bottoms-up

approach.

• The creative agency had missed the

performance optimizations for the

delivered web artifacts that includes

HTML, JS, and CSS etc.

• The dash board page had too many

portlets which required lot of server

side processing

3. Performance Optimization Exercise

A thorough performance optimization

exercise was carried out at all layers.

Following were the recommendations

made:

a. Business layer:

• Server side caching and connection

pool was recommended.

• Batching of services call was

recommended to reduce the round

trips to services layer.

b. Presentation layer:

• All the performance optimizations

recommended in the performance

optimizations table (merging and

minifcation, asset placement, browser

caching etc.) was recommended.

• A CDN network like Akamai was

recommended to maintain acceptable

page load times across geographies.

• It was recommended to reduce the

number of portlets on a dashboard

page. The optimal size of portlets on a

page is between five to eight.

4. Results

a. Page load times improved to

acceptable levels of 10 seconds

By Size

41
22.8

10.8 6

20.1

30.30 33.00

30.30
4.00

By load time

JS (935KB)

CSS (827)

Image (273KB)

Server resp (443 KB)

Xhr

JS (12s)

CSS (10s)

Image (1s)

Server resp (9.8s)

1 HTML/Text

6 JavaScript File

24 Stylesheet File

110.3K

705.5K

144.1K

24 CSS Image

27 Image

6.1K

38.2K

1 Favicon 1.4K

HTTP Requests - 65

Home

WEIGHT GRAPHS

Empty Cache Primed cache

Grade Components Statistics

Statistics The page has a total of 65 HTTP requests and a total weight of 1005.7K bytes with empty cache

Total Weight - 1005.7K

HTTP Requests - 62

Total Weight - 110.3K

1 HTML/Text

6 JavaScript File

24 Stylesheet File

110.3K

705.5K

144.1K

24 CSS Image

27 Image

6.1K

38.2K

1 Favicon 1.4K

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Case study – 2: Semiconductor based Manufacturing client’s site performance optimization

Another example of a frequently visited page for a North American based semiconductor major is shown below:

1. Context and Analysis

• The home page of the manufacturing

site consisted of multiple JS and CSS

files

• The CSS and JS files were not minified (?)

• Most of the functionalities were doing a

complete page refresh which made the

user to wait.

2. Root cause

• Development team had missed out the

presentation layer best practices.

• Partial page rendering was not adapted

to the fullest extent.

3. Performance Optimization Exercise

Following were the recommendations

made:

a. Business layer:

• Out-of-the-box server side caching was

widely adopted for all content/data

fetched from external systems

b. Presentation layer:

• All the performance optimizations

recommended in the performance

optimizations table (merging and

minifcation, asset placement, browser

caching etc.) was recommended.

• A CDN network like Akamai was

recommended to maintain acceptable

page load times across varied

geographies.

• AJAX based client side modules were

suggested for key functionalities like

search, product finder to enhance user

experience

4. Results

• As a result of these performance

optimizations all HTTP based pages

were rendered within 2 seconds across

all geographies

• All HTTPS based pages were delivered

within 5 seconds across all geographies.

• Page views increased by 100% to 80,000

as compared to previous year owing to

user experience improvements caused

by client- side modules.

• Overall customer satisfaction increased

to 81%, a major chunk of contribution

came from performance improvements

in HTTPS pages and client side

modules.

1 HTML/Text

6 JavaScript File

24 Stylesheet File

110.3K

705.5K

144.1K

24 CSS Image

27 Image

6.1K

38.2K

1 Favicon 1.4K

HTTP Requests - 65

Home

WEIGHT GRAPHS

Empty Cache Primed cache

Grade Components Statistics

Statistics The page has a total of 65 HTTP requests and a total weight of 1005.7K bytes with empty cache

Total Weight - 1005.7K

HTTP Requests - 62

Total Weight - 110.3K

1 HTML/Text

4 JavaScript File

23 Stylesheet File

110.3K

0.0K

0.0K

0.0K

0.0K

0.0K

6 CSS Image

27 Image

1 Favicon

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Case study – 3: Top engine manufacturing client’s site performance optimization

Following graph indicates the asset size to page size ration of a supplier portal for energy major in North America:

1. Context and Analysis

• Supplier and distributor portals

were taking about 25 seconds in the

production environment.

• Much of the page load time was spent

in server calls and loading heavy static

assets.

• The database access layer consisting of

Hibernate was not optimized.

2. Root cause

• Web components were not optimized

using performance best practices.

• Server side code was not optimized

3. Performance Optimization
 Exercise

Following were the recommendations

made:

a. Business layer:

• Batch the database calls and use

Hibernate caching, lazy loading to

enhance the database operations.

• Use on-demand pagination instead of

pre-fetching a large result set.

• Rewrite the queries to use the database

indexes for faster performance.

• Use optimal application server

parameters related to thread and

database connection pool.

b. Presentation layer:

• All the performance optimizations

recommended in the performance

optimizations table (merging and

minification, asset placement, browser

caching etc.) was recommended.

• A CDN network like Akamai was

recommended to maintain acceptable

page load times across geographies.

• AJAX based client side modules were

suggested for key functionalities

like pagination and dashboard

functionalities.

4. Results

• Page load time reduced to within 10

seconds.

1 HTML/Text

18 JavaScript File

4 Stylesheet File

154.2K

894.4K

48.7K

14 CSS Image

16 Image

11.5K

4.4K

1 Favicon 0.2K

HTTP Requests - 48

Home

WEIGHT GRAPHS

Empty Cache Primed cache

Grade Components Statistics

Statistics The page has a total of 48 HTTP requests and a total weight of 1024.2K bytes with empty cache

Total Weight - 1024.2K

HTTP Requests - 47

Total Weight - 154.5K

1 HTML/Text

17 JavaScript File

4 Stylesheet File

154.2K

0.0K

0.0K

0.0K

0.2K

0.0K

14 CSS Image

10 Image

1 Favicon

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Top-down performance optimization

This strategy is employed when an existing application needs to be optimized for performance. This is preferred only when we are optimizing

legacy applications; all newly developed applications should use bottom-up strategy as the cost involved in top-down optimization is high

and optimization options are limited.

Getting the pages on a fast lane

Pareto’s principle of 80-20 rule applies well to performance related issues. This is true for both analysing root cause and for fixing the issue.

One would start with the critical performance optimizations that would result in major benefits in the initial iteration and involve the

remaining ones in subsequent iterations.

Following chart depicts the key performance optimizations and the performance gains that can be realized:

Following are the high level steps involved in top-down performance optimization:

1. Analyse the factors contributing to the page performance. We can use tools like PageSpeed, YSlow for performing this operation.

2. Start optimizing the activities which would realize maximum performance improvements. Above chart provides a guideline for this step

3. Iteratively implement other optimizations with subsequent releases.

Note:

1. The application design and the time available limits the performance optimization options in this strategy. For instance if the complete

application is developed without any client-side components, then developing client-side widgets would potentially involve major

application framework changes leading to higher development and testing times.

2. Application domain requirements need to be kept in mind while performing this step. For instance if security requirements don’t permit

usage of client-side components, then all optimizations related to that would not be applicable.

Ea
se

 o
f i

m
pl

em
en

ta
ti

on

Performance gain

© 2018 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

Few other dimensions

Real world scenarios are bit more challenging than what we have discussed till now. These would pose its own challenges for performance.

Few of them are discussed below

Mobile device support

As the mobile internet traffic is increasing,

following are few thoughts to keep the site

optimized and ready for mobile devices:

1. Support an alternate version of your

site for mobile devices which has an

optimized layout and images to suit the

mobile platforms.

2. Keep the pages light and load the JS

code through XHR call

3. Many servers provide mobile

accelerators

Security vs. Speed

While building financial sites, there could

be instances wherein the performance

principles cannot be fully applied due to

security constraints. For example:

• The financial firm has restriction

for using client-side modules and

functionalities.

• Restriction for AJAX proxy which

prevents content served from different

domains

• Mandatory usage of HTTPS for all pages

• Heavily loaded pages to incorporate

multiple functionalities

In such instances optimization can be done

mainly for the server side components.

Future outlook

Some of the future trends in performance

optimization are given below:

1. HTML 5 offers a whole array of features

related to performance optimization.

This includes hardware acceleration

support for graphics and video

2. Offline web apps features in HTML

5 can be leveraged to serve static

informational content.

Transport level security

Most of the financial sites and other sites

which transmit confidential information

employ transport level security and serve

content over HTTPS. As the delivered

content is encrypted at the transport layer,

there is an obvious performance trade-off

for this. Following are some of the options

that are worth considering in this scenario:

1. Carefully evaluate if a page really needs

HTTPS. If it just displays public content

and campaigns, it is better-off to serve

them over HTTP instead of HTTPS

2. CDN networks also have modules

which would speed up the delivery for

SSL sites. Consider employing them. For

instance Akamai offers secure content

delivery.

Additionally, we can also consider using

hardware SSL accelerators like that of Blue

Coat and Coyote Point.

About the Author

Shailesh Shivakumar

is a Technology Architect with the Manufacturing unit at Infosys. He has over 10 years of industry experience. His areas of expertise

include Java Enterprise technologies, portal technologies, User interface components and performance optimization.

He can be reached at shailesh_shivakumar@Infosys.com

https://twitter.com/infosys
https://www.linkedin.com/company/infosys/
https://www.youtube.com/user/Infosys
https://www.slideshare.net/infosys
https://www.infosys.com/

