
Application Performance Engineering
DHL’s Experience

Ashok Shah
May 2006

Page 1

Application Performance Engineering

Who am I?

What is my role?

Introduction:

Page 2

A bit of history:
In 2000 DHL was:

- A federated organization in >220 countries

- Autonomous IT in many of these countries

- Slowly centralizing core applications

- Growing organically at about 10 %

- Capacity never an issue

- Approximately 90,000 employees
1000 regional applications

- 1 Global Outsource partner

Application Performance Engineering

Page 3

Now DHL is:
- A Global Organization servicing 228 countries

- IT serviced out of 4 regional centers

> 1700 legacy applications

> 30 Global applications

> 500,000 People, 1 Global outsource partner

- Grown by aggressive acquisition

- Applications so big even the largest machines
small (some systems expected to top 70B
transaction / year)

Application Performance Engineering

Page 4

These changes meant a dramatic:

- Increase in business - business transactions

- Increase in number of stake holders & user base

- Increase in competition - need for increased
responsiveness

- Need for Automation, higher fault tolerance

- Change in the deployment footprint

- Focus on rapid integration and assimilation.

Application Performance Engineering

Page 5

Performance Management Of The Resource Centre

The Results:

- (almost) 100% UAT Passes

- (almost) 100% Performance Failure

Application Performance Engineering

Page 6

All the correct remedial Action was taken:

We put the failing applications into intensive care:
Met daily to assess progress
Blamed our suppliers

Threw more hardware at the problems:
Applications not designed to multithread or cluster
Blamed other suppliers

Scaled back deployment:
Upset our users
Blamed our users

Application Performance Engineering

Page 7

There had to be a better way!

Application Performance Engineering

Page 8

…

To be able to predict
application behavior &

user loads

To maintain quality
of service with

increasing loads

Efficiently use
available
hardware

To identify performance
requirements before

design (let alone
implementation)

To reduce
performance related
issues in production

To predict project
hardware

requirements

Scale applications to
cater to increase in

business load

C
ritica

lity

Specifically the challenges for the internal IS department and third party vendors in
maintaining/developing these applications were:

Although caught off guard by the sudden growth of business and the exponential complexity
this caused, we realised we did not treat Non Functional Requirements seriously.

Application Performance Engineering

Page 9

We had to learn (fast) that performance engineering was not a ‘nice to have’
and certainly was not an end of development ‘bolt on’.

Performance
Verification

Non-Functional
Requirements
Gathering and

Validation

Architecture,
Design

Verification

Performance
Modeling and

Bottleneck
Analysis

Continuous
Monitoring in
Production

Environment Application
Development and

Maintenance

•NFR is captured & validated either
through industry benchmarks or
enterprise level benchmarks

•Architecture Analysis for
bottlenecks in the
architecture and design

•Sample Business transactions are
implemented as per the prescribed
architecture and subjected to
Performance Tests to determine the
scalability.

•Performance Results Analysis
•Bottleneck Identification
•Capacity Projections

•This is done on a
regular basis either once
a month or once in 3
months
•The collected
production data is
analyzed with respect to
capacity saturation,
volume growth,
utilizations, future
projections, etc.

Requirements Phase

Architecture & Design
Phase

In Parallel with
Detailed Design

System and
performance
Testing Phase

Deployment &
production
support

Application Performance EngineeringApplication Performance Engineering

Page 10

But wasn’t it a bit late for the current
applications?

Well Yes and No:

Application Performance Engineering

Page 11

Application Performance Engineering

Page 12

- WebSAM – scaled to support 8X users

- SCL - improved response time (~20%), reduced memory
(~40%), CPU usage (~15%)

- NPTS – scaled to support 20X users

- CDU & CSV - performance improvement suggestions and
capacity planning for regions

- CALMS – scaled to support 1.3X users

- PQT – 3X improvement in response times

- SDS - 10X increase in tps, 4X improvement in response
times

Application Performance Engineering

Page 13

Typical tools used for performance bottleneck analysis and improvements…

• InFlux™ Benchmarks Page • Benchmarks

• Shunra Cloud, Ganymede Chariot • Network Simulators

• TeamQuest, Hyperformix, Metron• Infrastructure Design

• Rational Purify - Memory error detector for C++, Java

• Rational Quantify - Profiler for VB, C++, Java

• Numega TrueTime - Profiler for VB, VC++, Java

• Numega TrueCoverage, Rational PureCoverage - Coverage tool for VB, VC++ and Java

• VMGear OptimizeIt, Sitraka JProbe - Java Profiler

• Intel Vtune

• Application Optimization

• ARM • Instrumentation

• Windows NT - PerfMon

• Windows 2000 - Performance

• Unix - vmstat, iostat, top, sar

• Performance Monitor

• HTTP - WebLoad, Web Application Stress Tool, Mercury LoadRunner, Rational TestStudio, Segue SilkPerformer

• DCOM - Mercury LoadRunner, Rational TestStudio, Segue SilkPerformer

• CORBA, RMI - Mercury LoadRunner, Segue SilkPerformer

• Load Generator

• Load Generator, Load
Coordinator, Transaction
Recorder

ToolsTool Type

Page 14

What we learnt:

Application Performance Engineering

Page 15

- Performance management is an iterative process that must start at the beginning of
the project

- The Business has to ‘own’ performance requirements in the same way as
functionality

- For critical applications, almost by default you will never have all the HW/SW you
need so model and test - then repeat.

- This will create a performance model that will be increasingly accurate over time. It
must be maintained.

- This is a resource intensive activity; good planning helps avoid the resource
contentions (people and hardware)

- End of project performance tuning is unpredictable,expensive and improvement is
dependent on several parameters and not guaranteed – this is a last resort.

- Vendors hide their light. World class companies such as Infosys, HP and IBM have
some of the industries best experts.They have proven methodologies, tools and
frameworks but like us do not always deploy these skills when needed ie up front.

Application Performance Engineering

Page 16

What they learnt:

Application Performance Engineering

Page 17

- Performance is critical to us

- Vendors must push back when presented with inadequate
requirements

- Bring in the experts on critical applications

- Vendors will have to partner with other vendors to be successful

- Create and maintain their part of the performance model.

- This is a resource intensive activity; good planning helps avoid
the resource contentions (people and hardware)

- They are going to get the blame anyway!

Application Performance Engineering

Page 18

Questions?

Page 19

Background

SAM 3.x was facing performance related issues. With the data volumes and number of users bound to increase, redesign of the architecture was done with
changes being made to enhance the performance of the application to support growing workload. The main objective of SAM v 4.0 was to make the
application more scalable and robust with high performance.

WebSam Scalability Analysis & Capacity Projection

Objective

Perform an analysis of the WSAM 4.0 Prototype (POC-3) to determine the application
scalability

Conduct Bottleneck Analysis of the application architecture

Perform a capacity projection exercise to meet the projected Operational Workload by
determining the Scale Factor with respect to the infrastructure in the test environment.

Performance Testing Approach

Creating an Abstract model of the system.

Perform Workload Modeling and Workload
Characterization of the Current Application to
determine the workload characteristics.

Performing Iterative performance tests on the
provided Prototype.

Identifying Bottlenecks.

Capture Performance Metrics in the Lab Environment

Analysis & Inferences

Initial Observations revealed a problem at the app server side - Web logic crashing with
increase in load. Modifications were done at the code level and the heap memory size was
increased to resolve the issue.

Further tests revealed high disk utilization (100%), low throughputs, low utilizations
indicating a bottleneck at the database side.

– Clear observation of the disk subsystem revealed improper distribution / fragmentation of the
database data.

– After carefully distributing the database data across the various disks, and tuning of Unix
Operating System and Informix database config parameters the disk bottleneck was resolved.

On this tuned environment, the system began scaling up with increase in load. Although the
station and country level were scaling up, the Region Level Report may not scale up to meet
the Required SLAs under operational workload. This has to be critically looked into

It was determined that the bottleneck device is the Database CPU

Conclusion

Analysis of Performance Metrics revealed that the
application is scalable, except for the Region Level
Report

In the absence of proper NFR for WebSAM, what-if
analysis was conducted with a scale factor of 3 (with
reference to Lab Infrastructure for the bottleneck
device – Database CPU) and 4 using Analytical
Techniques for Extrapolation .

For a Scale Factor of 4 it was recommended either to go
in for 290 Concurrent users with 5 sec SLA ,500
Concurrent users with around 11 sec SLA

Page 20

SCL – Scalability Analysis and Capacity Projection

Background

SCL is being enhanced for piece enablement

Some new transactions are being added to the existing application

NFR has been provided for the already existing transactions however
for the new transactions, SLA has to be defined

Information in terms of expected data growth, future business
growth mentioned in NFR is being taken into consideration

Objective

Perform an analysis of SCL 6.0 prototyped transactions to determine the application scalability

To identify bottlenecks in the application that will impact the performance and scalability of the application

Findings

The implementation of the Batch Jobs was not correct

Throughput mentioned in the NFR was not reachable and was not correct

Scale factor for the overall system, taking business growth into account

Recommendations

Code profiling

Database tuning (dropping of unnecessary indexes, providing
appropriate fill factors for the clustered and non-clustered indexes,
re-indexing, index de-fragmentation and query optimization)

Hardware upgrades were suggested

Application-related

Three transactions were selected based on the following criterion:
maximum throughput, effect of adding new transactions and category of
transactions

Purge has been selected as one of the transactions based on the inputs
received from APIS about its criticality

Workload-related

To determine whether the customer requirement of given throughput would
be met. The throughput targets have been mentioned in the NFR for
important transactions

Database-related

Database organization and disk layout needed to be reviewed, since the
application was more database centric

