

This Is An Update To The 2002 IT Task Force Report

- 2002:
 - Laid out a roadmap on role of IT
 - Limited implementation to date

- 2008:
 - MoP asked for update
 - Suggest what needs to be done for development of Smart Grid
 - Help transform Power Distribution by providing a holistic approach to technology adoption

Distribution Is The Focus Of The Report

- Distribution has the most pressing need for transformation
 - It also has the highest return of investment (Rol) for technology
- Generation and Transmission have done better, particularly in economic terms
 - However, there is an untapped potential to apply technology for business benefits
 - Technology adoption is generally low
- Across Power sector, there is an urgent need to learn and apply technology for better business results

Today: Core Issues Overwhelm DISCOMs

- High AT&C losses 33%
- Aging and poorly maintained assets
- Unreliable and overloaded system
- Low Demand Side Management (DSM) initiatives
- Corporate governance challenges
- Lack of skilled resources and training

Future: Unprecedented Scale And Complexity

Scale

- Accelerating demand growth
- Installed capacity 140 GW
- Capacity by 2030 40 > 800 GW
- Five fold increase expected (UMPP, MNRE, Nuclear etc.)
- Annual per capita consumption
 - India 700 kWh
 - World 2600 kWh

Complexity

- Economic and Business Issues
 - Energy efficiency
 - Tariff structure
 - Complex pricing
- Consumer Involvement and Choice
 - Transparency
 - Quality of service
- Climate Change
 - Clean energy sources
 - Distributed generation
 - Bi-directional flow

Illustration: RGGVY has both gigantic scale and enormous complexities, including distribution generation and renewable energy. Bi-directional flow capabilities would help maximize its reach and benefits.

India Has A Strategic Advantage Due To Lack Of Legacy

- Our Strategic Advantages:
 - Lack of legacy technology infrastructure
 - Learning from mistakes of other countries and players
 - Huge investment planned for future
 - Resources to take on these challenges
 - Anticipatory knowledge of future challenges

Benefits:

- Leapfrog to the state of the art in the industry
- Lower cost than global levels
- Positive impact on price of power
- Achieve business agility through a responsive infrastructure

Technology Can Help Realize This Opportunity

Technology should be looked at in totality

 IT, Communication, Automation/Control must be planned and implemented in synergy to achieve optimal results

Technology Must Be Applied Specific To The Context

- Technology needs to be applied in harmony with Social,
 Political and Economic context specific to the DISCOM
- There is large disparity across DISCOM's in maturity of technology adoption
- Blind copying of technology can be highly unproductive

The Report Details A Typical Trajectory Of Technology Adoption Specific To The Indian Context

Distribution Technology Trajectory

(DTT)

A system for:

- Operational efficiency
- Customer service excellence
- Automated control

A system for :

- Curtailing AT&C losses
- Driving transparency
- Driving accountability

DTT- Step 1

 2002 Report and Part of R-APDRP DTT- Step 2

R-APDRP and beyond

Illustrative

DTT- Step 3

- Smart Grid
- A system that is:
- Self-healing
- Adaptive
- Interactive
- Secure from attacks
- Accommodates all generation and storage options
- Supports bi-directional energy flow
- Distributed across geographies and organizational boundaries

1 to 3 years

3 to 5 years

5 to 15 years

Illustration Of A Smart Grid Based On Open Architecture

Self-healing, **Adaptive**, **Interactive**, **Secure** from attacks, **Distributed** across organisational boundaries, accommodates all generation and storage options and supports **bi-directional** energy flow

But Let's Not Expect Magic From Technology

- Technology alone can not directly:
 - Change work practices and culture
 - Not a substitute for providing incentive to employees to change
 - Create political will
 - Reduce AT&C losses
 - Change subsidy model
 - Change governance and project management
 - Address environmental challenges
 - etc.
- But Technology can act as a powerful tool to help address all the above, and more

The Report Provides Guidelines For DISCOMs To Move Swiftly Adopting A Holistic Approach

- Each DISCOM must define its own priorities and create a customized roadmap
 - Business strategy to drive technology strategy and roadmap
- Holistic approach instead of ad-hoc approach
 - Focus on business process re-engineering, program management, change management and governance
 - Do cost-benefit analysis
- Adopt standards and future proof designs
- Coordination at the state and national levels for research, prototyping and pilot projects

Game-Changer: Accelerating Change Through A National Institution

- Phenomenal addition of infrastructure
 - Spending 2000 billion dollars (Generation and T&D)
 - Lasting for next several decades
 - Needs thorough examination of all issues
- A national level coordinator can ensure synergy and increase rate of change
 - National Body, perhaps created by an Act of Parliament
 - Stakeholders from across the industry
- Authority to coordinate, create and assign responsibility
 - For economic/financial analysis, governance and policy, standards, technology transition, research and adoption, human resource development

Thank You

