
WHITE PAPER

MICROSERVICES, NOT A CAKE FOR
EVERY BUSINESS

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

Introduction .. 5

What’s going wrong with Microservices adoption? .. 6

 Lack of holistic 360-degree view of the application ..6

 Services granularities not defined properly ..6

 Non-involvement of required stake holders while defining microservices ...7

 Tight coupling amongst microservices ..7

Key decision factors for Microservices adoption ... 8

 When should we not go for Microservices? ..8

 When should we go for Microservices? ..9

 To achieve higher scalability ...9

 To support Polyglot development ... 11

 To support independent and frequently changing parts ... 11

 To isolate failures and external dependencies .. 11

Guidelines or Key Recommendations .. 12

 Monolith-first mantra ... 12

 Follow 12 factor App methodology .. 12

 Two Pizza team approach ... 12

 Form cross functional teams .. 12

 Define a maturity model ... 12

Key Challenges in implementing Microservices... 13

 Setup proper DevOps Culture ... 13

 Querying data across microservices ... 13

 Distributed Transactions ... 13

 Distributed tracing .. 13

Table of Contents

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

Monolith to Microservices transformation roadmap .. 14

 Transformation strategy .. 14

 Apply Strangulation or Incremental Migration Strategy ... 14

 Plan for Canary release / Phased roll out or Incremental rollouts .. 14

 Segregate frontend and backend tiers .. 14

 Data considerations .. 14

 Choose the appropriate data store ... 14

 Choose the correct data manipulation strategy ... 14

 Choose the correct data consistency mode ... 15

 Handling the transactions across microservices .. 15

 Avoid rewrite from scratch until absolutely necessary .. 15

 Keep new functionalities in standalone Microservice .. 15

Conclusion ... 15

References.. 16

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

Microservices architecture (MSA) has
become one of the hottest buzzwords
in the IT industry. The gravitation of
microservices is so strong that it has
become more of a compelling solution
option for every business domain/problem
for the unique advantages it offers over
the traditional architectural styles. It would
not be wrong to say that it has become
the de-facto architectural style for digital
transformation programs.

Big Tech companies like Netflix, Uber,
Amazon, eBay and many others are
the live examples which have been
benefitted immensely by embracing this
new architectural style. Today, Netflix, for
example, streams around 250 million
hours of video per day to more than 139
million subscribers across the globe,
and the company continues to grow.
All this was possible because they took
timely measures to transform their video
streaming application from the monolithic

architecture to cloud-based microservices
architecture.

Not denying the fact that this new
architectural style offers numerous
advantages, it shouldn’t be considered
a panacea for every business problem.
The downside of it is that it doesn’t
guarantee the expected benefits for
every business. Its adoption, therefore,
must be carefully planned for, as the
path to microservices is paved with
hidden problems and challenges. Even
for companies like Netflix, it was not a
cakewalk then, though, now they are
pioneers in microservices. They took
nearly 2 years to break their monolith
application into microservices. They started
this exercise somewhere around 2009
and finally in 2011 announced end of
redesigning their structure and organizing
it using microservices. It therefore,
becomes essential that before jumping
onto the microservices bandwagon,

proper assessment and fitment analysis
needs to be done, otherwise it can lead
to over-engineering of the applications
with significant development overhead
and infrastructure costs, and the resulting
application with too many components/
services will become difficult to support
and maintain. In some cases, it would not
be wrong to say that traditional monolithic
architectural style(s) will be the best fit and
more efficient.

In this whitepaper, based on our
experience and working knowledge, we
have tried to highlight on what’s going
wrong with microservices adoption,
key deciding factors for microservices
adoption, monolith to microservices
transformation roadmap and finally
touch base on some of the microservices
best practices. We request the readers to
consider this article for reference purpose
only and kindly urge them to do their due
diligence when adopting MSA architecture.

Introduction

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

Monolith applications are not only
business-critical but, in general, are huge,
complex, heterogeneous and composed
of the varied technology stack. They
interact with multiple upstream and
downstream systems. To transform them
into microservices, a more robust and
structured approach must be defined.
Below are some of the most common
pitfalls which we have observed with
microservices adoption, these seems to be
a gap in adopting this new architectural
style because of which many of such
transformation projects got scrapped or
are bound to fail

Lack of holistic 360-degree view
of the application
It has been an observed trend that most
project teams are directly jumping on to
the microservices bandwagon without
analyzing their needs. In such a hurried
state of adoption, they are missing the
holistic 360-degree view of the application
and concentrating only on the server-
side decomposition or refactoring of the
existing server-side code into a set of
microservices by following the big-bang
approach without any view of providing
new functionality or business value add.
Another most common misconception is

to deploy each existing API as a separate
service and calling it as a microservice.
These are the two most detrimental
approaches towards microservices.

Apart from the above two, the other
important aspects which are generally
missed out are: -

• Applications dependency matrix and
the order of their decomposition

• Microservices identification approaches
like DDD and bounded context, etc.

• Data considerations

• Impact on UI

• Third party interfaces / software
dependencies

• Defining services of proper granularity

This has not only resulted in more rework
with increased effort and missed timelines,
but at times led to project failures also.
So it becomes of utmost importance that
project teams must thoroughly perform
the E2E application assessment with the
required stakeholders and come up with a
proper transformation roadmap.

Services granularities not defined
properly
Services granularities must be properly
defined to prevent the two extreme
scenarios where services are defined
either too coarse grained (monolith) or
fine grained (nano). We have seen the
scenarios where the teams were not able
to draw this line of service granularity (as
shown in the below diagram) and ended
up with too fine grained services which
resulted in expensive remote calls, chatty
communications and un-manageable
services. Monolith services comes with
their own dark side nature which we are
well versed with. So defining the right
granularity of the services is more of an art
than a science.

Good microservices should be very close to
the line of granularity as shown below:

What’s going wrong with Microservices adoption?

Line of Granularity

M
on

ol
it

h
N

an
o

(Source: https://www.opengroup.org/soa/source-book/msawp/p6.htm)

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

One important point to consider is that the
number of lines of code must not define
the granularity of the service. The service
should be granular to such an extent that
it is does one thing and does it well. Below
are some examples of services with proper
granularity

• CreateOrder will do only the job of
creating the order

• RegisterCustomer will do only the job
of registering the customer

Let’s assume that RegisterCustomer
internally talks to another
ValidationService which validates
all the customer related information.
ValidationService is a valid microservice
which provides validation functionality
and encapsulates all the validation
logic. This ValidationService internally
talks to other small services like
addressValidationService,
EmailValidationService,
telephonevalidationservice to validate
the customer information. This is where
the things start going wrong as each
of these services are now nanoservices.
However, there’s an argument that says
nanoservices have a place in Serverless
architecture, so the debate continues. But
in general, nanoservices are considered
as anti-pattern in microservices realm.

To overcome this challenge, Domain-
Driven Design (DDD) modelling can
be adopted to come up with business
specific domains, sub-domains and
the corresponding bounded context.
Identifying the right set of bounded
contexts will help to define services with
proper granularity.

Non-involvement of required
stake holders while defining
microservices
One of the major gaps which we did
observe was that only the development
and none other stakeholders (business,
QA, support, etc.) were involved in
microservices identification exercise.
Practically, it is difficult to find too many

independent components /services within
an application because of cross-functional
processes and data requirements. It can
be addressed to some extent with the
involvement of required stake holders to
identify these independent components.
Such un-healthy practices have not only
led to the wrong identification of services
but dragged the development teams
to design and develop inappropriate
microservices and keep iterating over
solutions.

Tight coupling amongst
microservices
In MSA, each service is an independent

Service Choreography doesn’t follow the
centralized collector approach but rather
the set of independent services that interact
with each other in an asynchronous

entity and performs a specific task or
function. Sometimes these services need
to interact and share data. From interaction
per se, we can consider the following two
patterns

1. Service Orchestration

2. Service Choreography

Service Orchestration approach
consist of a central controller usually
called the orchestrator which handles
all microservices interactions. It calls
one service and wait for the response
before invoking / calling the next service.
It follows the request/response type
paradigm.

fashion using an event bus. Each service
broadcast data as events and the interesting
services subscribe to those events, use the
data and perform actions.

Service 1 Service 2

Orchestrator

Response

Re
sp

on
se

Request Re
qu

es
t

Service 2 Event Bus Service 3

Service 1

Service 4

Send

Send Send

Send

Receive

Receive Receive

Receive

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

In this section, we will discuss on some of
the key deciding factors or principles which
will guide in the microservices adoption
and help us avoid accidental complexity
into the system.

When should we not go for
Microservices?
The famous adage “one size doesn’t fit all”
holds good for microservices as well, as
they are not the right fit for every business/
project. Just because everyone is jumping
on the bandwagon cannot be the sole
reason for its adoption. We must spend
substantial amount of time to analyze
if the given application is fit for MSA or
not. Business value must be the key driving
force. The investments made must make
sense for the rewards. The rewards can be

Depending on the problem statement and
the use case in hand, the most appropriate
integration pattern must be adopted.
For some use cases which involves both
synchronous and asynchronous blocks of
activity, the hybrid or the combination of
both these approaches is most appropriate.

in terms of increased agility, faster releases,
improved performance, and increased
customer satisfaction which finally leads to
business growth.

It is therefore of utmost importance
that proper due diligence has to be
done taking into consideration different
aspects like business value add, cost-to-
benefit analysis, technology complexity,
architecture fitment, skill set availability,
monitoring and infrastructure overhead
and then decide on whether to go with
microservice architecture or not.

Based on our experience, we have
mentioned couple of below scenarios
where MSA is not the right fit. These are for
reference purpose only and we request the
readers to do proper diligence from their
end.

Our observation was that; the
organizations were using the traditional
request/reply way of interaction amongst
the services. This resulted into very tight
coupling amongst the services as change
in one service request had cascading
effect on the dependent services and this
defeated the very purpose of developing

• Small scale legacy applications which
doesn’t have future roadmap

• Non Complex applications

• Intranet based admin applications
which are not business critical

• No business value add for the time and
effort put in

• Organization cannot support multiple
development teams working
independently and simultaneously.

• Stable applications with low change
management

• Small scale projects which cannot
withstand integration and
infrastructure overhead

• Monolith UI with significant cross
references of data

• Tightly coupled application domains
which impose a greater challenge to
identify the independent bounded
contexts

• One-time point solutions with low
volumes of change

• Several dependencies and external
integration points

• Workload is low and applications NFRs
are within the defined SLAs

applications using MSA architecture.

Also, if too many service interactions are
needed to accomplish the task, then, it
raises the question on services granularity
and might be an indication to merge
services responsible for all operations
related to a particular entity.

“The road to microservices is paved with good intentions. But more than a few teams are jumping
on the bandwagon without analyzing their needs first”

 —Nathaniel T. Schutta

Key decision factors for Microservices adoption

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

When should we go for
Microservices?
Following are some of the decision factors
favoring MSA adoption.

Normally, over time, such deployments
lead to increased transaction volumes
with substantial growth in data which
increases the write to read ratio. When
it happens, monolith applications

Y-axis scaling refers to split the
application into different services, each
of which is an independent deployable
unit. Each service is normally composed
of one or more related functions.

Fig. Scalability Cube

Scale by functional
decomposition -
microservices

Scale by cloning-
horizontally

Scale by splitting
similar things-
containerized

To achieve higher scalability

Till now monolith applications have scaled
horizontally by running multiple copies
of application instances load balanced
across servers and sharing a common
database and cache. It works well when

become very resource-intensive which
reduces the applications performance
and scalability and other aspects of the
application take a hit and on top of that
continuous development, constant release

Microservices support this scaling
model, as they are smaller, independent
services with their own database. There
can be multiple ways of decomposing the
application into services but this model

the database read to write ratio is very
high and when the transaction growth
exceeds the data growth. This approach
corresponds to X-axis scaling (shown
below) in the “scale cube” model (for more
details please refer Art of scalability1).

and upgrade activities adds to increased
complexity and any further X-axis scaling
will only engender the situation. In such
situations, it’s better to consider other
dimensions of scaling (Y-axis or Z-axis).

mainly focuses on the following two ways
of decomposition.

1. Verb based decomposition

2. Noun based decomposition

Application Instance 1 Application Instance 2

Application instances cluster

Application Instance 3

Load Balancer

Z-axis

Y-axis

Scale Cube

Client

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

http://theartofscalability.com/

Noun based decomposition normally
split application into set of services which
are responsible for all the operations
within a particular entity like Order
management, User management etc.

Z-axis scaling is quite similar to X-axis
scaling in the sense that it also runs
multiple instances of the application but

An application can use either of these or a
combination of both these decomposition
techniques to achieve higher scalability.

• If there are parts of the system which
need to scale independently from

the data is partitioned/shared amongst
each of these instances i.e. each instance
works only a subset of data and a load-
balancer or a router is responsible to route

the rest of the system due to their
independent nature or the load or
throughput characteristics of these
components are quite different, then we
can go for Y-axis scaling for them.

the request to appropriate application
instances. For multi-tenant applications
this scaling model is the right fit.

Verb based decomposition mainly concentrates of defining services which can handle an atomic operation or a single use-case like
search, payment, add to cart, etc.

Client Search DB

Client

Application Instance 1 Application Instance 2 Application Instance 3

Router / LB

Client

DB

Order Management

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

To support Polyglot development
If there are parts of the system or
business use cases which suits a particular
technology stack or which can benefit
from a particular technology stack, then
it’s better to pull them apart as a set of
independent services (microservices)
from the rest of the system which can
be on a different technology stack. For
example, Search functionality can be
developed as an independent entity using
Elastic Search engine to achieve higher
performance and increased scalability.

Following are some of the guiding
principles which we should be adhered
to for polyglot development

1. Technology stack standardization must
be done so that team doesn’t start using
every technology under the sun! Every
technology stack must be evaluated
before adopting them.

2. Proven technology stacks for a particular
use case must be adopted

3. Proper technical guidance must be
provided to the team to make the best
use of the chosen technology stack.

4. Teams must be trained on the chosen
technology stacks.

To support independent and
frequently changing parts
If there are independent components
within a system whose lifecycle can be
managed separately from the rest of the
application, then, such components are
the right candidates for microservices.
They can be developed fast, tested quickly
and released to the market in no time.
This promotes agility and enable to take
up new business opportunities/use-cases
faster.

Also if there are frequently changing
parts within an application which need to
evolve at a different speed or in different
directions then those parts are the good
candidates for microservices.

To isolate failures and external
dependencies
If an application is dependent on some
unreliable external systems which are
not meeting our availability requirements
and can result into failures, then, it is better
to bundle such external system calls within
a microservice and handle the failure over
scenarios. This will prevent from entire
system going down in case of any failure
on the external system.

Even if the external systems are highly
reliable and designed for failure but are the
candidates for change in future, then, such
system calls must also be bundled within a
microservice. One such example can be a
payment gateway

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

Following are some of the key guidelines
or best practices being followed within the
industry for MSA adoption.

Monolith-first mantra
From the domain modeling perspective,
any new application development can be
classified into following 2 broad categories:

a. Part of existing business domain

b. Part of completely new business
domain

• If we have teams with reasonable
experience of building microservices
systems and SMEs with extensive
knowledge of the existing business
domain and combinedly they can help
identifying the right set of bounded
contexts or independent entities, then

we can start with MSA approach for
greenfield applications.

• In case the team is new to MSA or
we don’t have SMEs with required
domain knowledge or the domain
is too complex or it is completely a
new business domain, in either of
these cases going directly with MSA
architecture will be risky. In such
scenarios, the mantra to follow is to
follow Monolith-first approach and
build an iterative model of the system
and as we mature our knowledge
around the business domain and
understand the system complexity
and its component boundaries, it
then becomes easy to identify the
parts which can be taken out into
independent existence.

Follow 12 factor App
methodology
It is industry proven methodology for
building modern web applications. These
best practices enable applications to be
highly portable and resilient in nature
when deployed to the web. They provide
the required governance structure for
building microservices. Please refer to this
wiki2 to get more details about the same.

Two Pizza team approach
Another key tenant for successful
implementation of microservices is to
have team size small enough to be fed
on two pizzas (“two pizza rule” coined
by Amazon CEO Jeff Bezos). The rationale
behind this rule is to form autonomous,
creative and innovative teams which
have effective communication amongst
the team members and is only possible
when the teams are smaller in size and
work together. The team members know
each other better, form relationships, trust
and motivation which ultimately leads to
improved productivity.

Form cross functional teams
The rationale behind it is to form teams
which can handle the E2E lifecycle of
microservices (development, testing, build
and deployment) and thereby avoid the
dependency on other teams which can
slow down the entire DEVOPS chain. The
team can be composed of a developer,
a QA, a database person and operations
guy or the developer must to be able to
take on different roles. This practice is
very common in big product companies
like Google, Netflix and Amazon etc. The
mantra is whoever builds should be
responsible for it.

Define a maturity model
It’s better to define the microservices
maturity model. This will help to gauge
applications current maturity level and
define the transformation roadmap to
achieve the next maturity level.

Guidelines or Key Recommendations

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

https://en.wikipedia.org/wiki/Twelve-Factor_App_methodology

Following are some of the key challenges
in implementing Microservices: -

Setup proper DevOps Culture
The goal of microservices is to accelerate
software delivery through continuous
delivery and deployment and is only
possible with cross-functional teams
(DevOps) who can cooperatively build,
test, release, monitor and maintain the
applications. Lack of DevOps culture
increases dependency on other teams,
which will bottle up the releases and
impact the overall time to market. So even
before we embark on the microservices
journey, we need to ensure that DevOps
culture is adopted at the organization level.

Querying data across
microservices
As per the norms, every microservice
must have its data source, which keeps
its persistent data private and make
accessible only via its API. Some use
cases will demand fetching data from
multiple data sources. In such scenarios,
all the required services need to be
invoked to fetch the data, which, not only
increases the complexity by creating hard
dependency amongst the services but hits
the performance as well. Instead, we can
follow one of the below approaches which
provide a more robust and loosely coupled
approach

• API Composition

• Command Query Responsibility
Segregation(CQRS)

• Event Sourcing

Distributed Transactions
Since microservices are distributed in
nature, it’s possible to have transactions
that span multiple services and therefore
databases. The major challenge with such
distributed transactions is to ensure their
atomicity as they don’t have a global
transaction coordinator. However, there are
a couple of approaches that can be used to
handle distributed transactions.

• 2 phase commit

Though this approach guarantees
transaction atomicity but is not a
recommended approach for microservices
as it is inherently slow and can have
adverse effect on the system throughput
during high load. Also it requires significant
development effort in every service that
can participate in a transaction

• Eventual Consistency and
Compensation/SAGA

In this, distributed transactions are
handled through asynchronous local
transactions on related microservices
which communicate through an event bus.
It is the most recommended approach to
handle distributed transactions.

Distributed tracing
In MSA, the request can flow through
multiple layers of services which are spread
across the network, so it becomes very
difficult to trace a particular request to
debug a reported issue. Below are some of
the solutions to handle distributed tracing.

• Correlate requests with a unique ID
(Request ID or Correlation ID). This will
be added to all the logs and sent to all
downstream service calls

• Spring Cloud Sleuth tracing library

• Using distributed tracking system like
Zipkin

Key Challenges in implementing Microservices

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

Once the organizations have decided
to transform their existing monolith
applications, the major challenge before
them would be to define the MSA
transformation roadmap. The below
section highlights the transformation
strategies which we have adopted
successfully in a few transformation
programs. They can be used for referential
purpose and project teams must do proper
due diligence in coming up with the
contextualized solution approaches.

Transformation strategy
Once the set of applications have been
identified which need to be transformed to
MSA, we need to define the transformation
strategy for each of them. One of the most
popular industry strategy is to adopt the
principles of “Domain Driven Design” to
guide us along the way. The domain and
technical knowledge of the existing brown
field applications will enable to perform
domain modelling and come up with the
set of bounded contexts which can then be
converted into Microservices.

Once bounded contexts are identified and
defined, we can follow the below strategies

Apply Strangulation or
Incremental Migration Strategy
Instead of going big bang on monolith
decomposition, the best strategy would
be to follow incremental approach and
slowly strangulate the application with
1 or 2 micro services and run them

simultaneously alongside monolithic
application. Over time, keep on adding
new set of micro services which will finally
result into lean / no more monolith.

Plan for Canary release / Phased
roll out or Incremental rollouts
For microservices deployment the best
approach would be to plan for Canary
releases or incremental rollouts to reduce
the risk of production failure and be sure
that services are working as expected and
entire business functionality is intact with
this new architectural change. With this
approach the main advantage gained is
that we can do phased rollout of services
to a small subset of users and test them
thoroughly and once fully satisfied roll out
to wider audience.

Segregate frontend and backend
tiers
Split out the presentation and business
tiers. They must communicate using light
weight messaging protocols like REST/
HTTP(s) with proper message format(s) like
JSON/XML over HTTP(s). This will promote
loose coupling and increase application
scalability as each tier can be scaled
independently of the other.

Data considerations
When it comes to data, maintaining data
integrity and consistency are the major
challenges posed by MSA architecture.
Data privacy need to be dealt with and

the data owned by a service is accessible
via its API only. Apart from this, reporting
and querying functionalities poses their
own respective challenges. So each
aspect of the data must be properly dealt
with. Following can be some points for
considerations

Choose the appropriate data store
• Based on the application complexity and

the defined SLAs, decide on the most
appropriate data store. To play safe and
ensure least risk, continue with existing
data store and perform data decoupling
(in terms of schemas, tables, views etc...)
amongst services as the first solution.
Once data is decoupled successfully,
later planning for or exploring another
technology becomes easy.

• For services demanding high scalability
and throughput validate appropriate
data store.

Choose the correct data
manipulation strategy
• Considering each service requirements

and the involved complexity, decide on
the most appropriate data manipulation
strategy. General rule of thumb is to
go with CRUD (Create, Read, Update
and Delete) strategy for services which
need same data model for both read
and write operations and adopt CQRS
(Command and Query responsibility
pattern) for services which need
separate data models for both read
and write operations.

Monolith to Microservices transformation roadmap

UI Layer UI Layer

API Layer API Layer

Commands QueriesBusiness Layer

DAO Layer DAO Layer

Read ReadWrite Write

Traditional CRUD architecture Basic CQRS architecture

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

Choose the correct data
consistency mode
• Decide on the consistency model to go

with [Eventual Consistency Vs Strong
Consistency]. If immediate consistency
is the requirement i.e. any update in any
node requires all nodes to agree on the
new value before making it available
for client reads, then go with Strong
consistency and if high throughput
and availability takes precedence over
immediate consistency then go for
eventual consistency. Point to note
here is that most of the real world
business use cases are already eventual
consistent.

Handling the transactions across
microservices
• One of the major challenges with

microservices architecture is to develop
transactional business applications. One
of the proven ways to overcome this
challenge is to design microservices
using DDD (Domain Driven Design),
Event sourcing and CQRS (Command
Query responsibility segregation)
approach. For details you can refer this
link3

Avoid rewrite from scratch until
absolutely necessary
Try to reuse the existing business code/
logic by retrofitting it to the micro services
need. Avoid rewriting the entire application
from scratch. It should be done in the
extreme cases where the existing business
functionality need to be revamped or we
are going for polyglot development.

Keep new functionalities in
standalone Microservice
If the new functionality can have
independent existence better to develop it
as a standalone micro services rather than
making it the part of existing monolithic
application. Initially, it will take time and
effort both to manage monolith and
microservices, but gradually it will prove
beneficial.

There can and will be different factors
which need to be considered depending
on the application complexity and the
underlying business domain. So having
said that, we have come to the end of this
article and hope you might have enjoyed it
and got some insights on how we should
plan for MSA adoption.

In this article we talked about what’s going
wrong with microservices adoption and
when we should and shouldn’t use this
new architectural style. While MSA may not
be suitable for every problem statement,
it is a compelling choice for problems that
benefit from the independence constraint.
Having said that, we are not trying to
advocate any negative mindset towards
microservices but rather trying to guide
the teams to be more cautious and follow
a holistic approach towards this new
architectural style.

Moreover, Organizations must have a
more focused approach towards “Why
Microservices” rather than “Why not
Microservices”. This article will help them
with some of the necessary concepts / to
come up with to do list before they start
on the MSA journey. They shouldn’t be
attracted to the hype as the cost and
challenges are as real as the benefits.
With that said, Microservices are not a
free lunch!

Conclusion

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

https://microservices.io/patterns/data/event-sourcing.html

https://blog.christianposta.com/microservices/the-real-success-story-of-microservices-architectures/

https://microservices.io/articles/scalecube.html

https://akfpartners.com/growth-blog/scaling-your-systems-in-the-cloud-akf-scale-cube-explained

https://content.pivotal.io/blog/should-that-be-a-microservice-keep-these-six-factors-in-mind

https://www.hys-enterprise.com/blog/why-and-how-netflix-amazon-and-uber-migrated-to-microservices-learn-from-their-experience/

https://medium.com/@abinoda/how-teams-get-microservices-wrong-from-the-start-51777c99c059

https://www.opengroup.org/soa/source-book/msawp/p4.htm

https://techbeacon.com/app-dev-testing/challenges-scaling-microservices

https://divante.com/blog/10-companies-that-implemented-the-microservice-architecture-and-paved-the-way-for-others/

References

Madhavi Shailaja Katakam, Technology Architect

Madhavi is a Technology Architect in Infosys. She has strong expertise on Java technologies. She also has very good expertise related to
various CI and CD aspects-build management using Maven and auto deployments.

Ravi Shankar Anupindi, Senior Technology Architect

Ravi is a Senior Technology Architect in Infosys. He has strong expertise on Java technologies and has been working on the cloud native
technologies.

His area of interest includes exploring latest technologies and looking at ways to adopt them to derive significant business benefits. He has
been involved in many DevOps initiatives for clients.

This paper is the personal point of view of the authors

About the Authors

© 2020 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
https://www.slideshare.net/infosys
https://www.infosys.com/

