
WHITE PAPER

LEVERAGING BLOCKCHAIN IN
CUSTOMER ORDER MANAGEMENT
(TELCOS)

External Document © 2022 Infosys Limited

Summary
This paper is focused on lifecycle
management challenges faced
in Telco organizations for Orders
that may span several physical
and logical Services/Elements and
require interactions from multiple
stakeholders (internal and external).
An entire spectrum of Systems
and Processes (which lead to data
duplication and $$$) are invested to
salvage trivial ask for tracking (Orders-
>Services->Assets).

Using this proposed approach on
extending standard Blockchain
implementation (such as Ethereum,
Hyperledger etc.) to this use case,
we can bring in the best of both
worlds (Centralized monolithic and
Distributed system patterns) to
existing ecosystem.

It also makes provisions to bring
maturity in business process
management with time, by utilizing
an amendable and agreed on
Constitution within a Consortium.
Although it can be applied to
any industry with Supply chain
requirements, the use case we are
taking here deals with, Orders for
Telco Customers (Government,
Enterprise, and Retail).

Please note that solution
applies to consumer world
too.

What is different here

In a typical Consumer world scenario,
primary concern is “Cycle time”. Say, for
Mobile and Home broadband services, it
is in days, may be a few weeks. However,
with Customer Segment (Gov, Enterprise,
Retail), Order cycle time (for O2A, Order
to Activate) spans in months and in some
cases, Years, just for completion of one
(Master) Order.

In Customer Segment, ONE Order can be a
very big number.

One such order can easily contain multiple
sites, multiple services with internal/
external dependencies and hundreds of
parts (both Managed and Unmanaged,
plus Accessories). Normal add-ons will
include Amortisation, Upgrade path
support, Fault repairs (and the list grows).
So, it is Large and Complex. What we
observe here (because of sheer size &
complexity) is, following inefficiencies arise
that are systemic in nature and we need a
good resolution approach –

1)	 It is always difficult to estimate stock
consumption and then track it (What
was reserved, and did it get used
for that purpose, and how much?).

Replenishment becomes a challenge, so
should we overstock/understock? It may
not be always directly a Telco problem.
This will be more of a Vendor end
challenge, but it hurts margins for both
parties.

2)	 In this Segment, Sunny day scenarios are
very less. Most of the times, we need
to Change/Postpone/Cancel/Recover
multiple items in very single life of One
Order. This creates two types of impacts -

a.	 Increase in Complexity - Process
gets complex. Communication
(unsupported interface scenarios)
and Turnaround timelines suffer.

b.	 No single Point of truth - What is
reported in different systems, and to
what degree do they differ from one
another (which way to reconcile)?

This becomes standard (a.k.a. BAU, Business
as Usual) where manual updates/overrides
are used to fix these (comments are
“conveniently” added to explain what is
being fixed). Unfortunately, there is no way
to tell how big of a leak is (and there will be
multiple of these).

External Document © 2022 Infosys Limited

A logical way will be to put all of it in
one Master inventory and always keep
it up to date (somehow). It does work
for certain scenarios, where there is
only one party/Reseller involved.

But in large Telco solutions there
are multiple Vendors, Suppliers and
multiple contract management
systems which effectively create
multiple “Masters” (pseudo/local
masters). This is the base challenge of

Conventional approach

being a Telco. It must support Technologies
that are 2 generations old and at the same
time, it must invest in technologies of
future (5-10 years down the line). So, there
are Services with Customers that must
be supported through older Inventory/
hardware channels, while using other
systems, it will have to manage fulfilment of
the latest and greatest on offer.

Invariably, a Telco enterprise ends up with
all kinds of systems and processes that

must be baked in together to track and
deliver using different networks and
technologies. This topic gets big and
messy very quickly (and we completely
skipped diving into complexities of
distributed Service and Resource
inventory management).

So, Single Master Inventory (Point-of-
truth) option is not practical. Let’s see if
using Blockchain brings anything new to
the way we tackle these problems.

External Document © 2022 Infosys Limited

•	 Privacy-Preserving Scheme in the
Blockchain Based on Group Signature with
Multiple Managers (hindawi.com)

•	 Ethereum vs Fabric vs Corda: Enterprise
Blockchain Protocols Compared (kaleido.io)

•	 Zero Knowledge Proofs: An illustrated
primer – A Few Thoughts on Cryptographic
Engineering (cryptographyengineering.
com)

Blockchain adoption in enterprise

Let’s first quickly summarise the current
state of adoption in Enterprise and the
“quirks” associated with this approach.
Though, Blockchain is now well accepted
in other industries (Supply Chain, trace,
finance etc.), it is still bit unconventional
when we talk about OSS (Telco world).
Hence, we have this write-up.

Source reference URL - Crosschainsecurityguidelines (entethalliance.org)

To mitigate Privacy related issues, a whole segment of solution patterns are available. Adding references to few of them below -

In Private or Consortium based
deployments, there are fundamental
differences in terms of trust of
participants. Parties are well known,
usually legally registered institutions.
There are natural (financial) disincentives
for bad behaviour. There are established
legal remedies - whether imposed

by a Central authority (Government)
or agreed to by a binding off-chain
agreement.

Enterprises are also providing feedback
that they expect to be using more
than one blockchain (Crosschain
implementations) in their business, often
different blockchain types.

An Enterprise also expect to interact
with other enterprises having their
own blockchain types. In addition to
Separation of concern, there is a need
for sharing of the logic code across
blockchain types. This may require
sharing of same logic in different,
distinct chain deployments OR to
have this logic bridge multiple chains
together. A model where the same

logic must be written, tested, and
maintained in different chain specific
languages is not optimal.

Blockchain domain is vast and offers
many ways to tackle these scenarios.
Here we will be using Enterprise Smart
Contracts and Cryplets for the required
flexibility in building a Trusted, yet
Discreet Transaction model.

https://www.hindawi.com/journals/scn/2021/7094910/
https://www.hindawi.com/journals/scn/2021/7094910/
https://www.hindawi.com/journals/scn/2021/7094910/
https://www.kaleido.io/blockchain-blog/enterprise-blockchain-protocols-a-technical-analysis-of-ethereum-vs-fabric-vs-corda
https://www.kaleido.io/blockchain-blog/enterprise-blockchain-protocols-a-technical-analysis-of-ethereum-vs-fabric-vs-corda
https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
https://blockapps.net/enterprise-blockchain-smart-contract/
https://blockapps.net/enterprise-blockchain-smart-contract/
https://cryplets.io/

External Document © 2022 Infosys Limited

A trusted, yet discreet transaction model

What we see above is a simplified view which most of us can co-relate to a standard Pub-Sub (Event driven Architecture) Order orchestration
model in OSS (Telco) space. Familiarity is intentional here. This model inherently allows us to be readily accepted/adopted in Enterprise and
grow organically based on changes in ecosystem.

Only differentiation here is that Black box which is responsible for all the magic we are planning to bring in. Well, that and how all of this
gets baked in together.

Example (Ethereum based) Network

Message Bus

Dapp1 Dapp2 Dapp3

Analytics and
Machine Learning platform

(Distributed App)

Management Portal
(another Distributed

App)
TEP

(Black Box)

………………

External Document © 2022 Infosys Limited

Key feature - support for visibility constraints

Simple flow where multiple Members of
consortium transact on same object (M1
----> M2 ----> M3)

•	 M1 may allow M2 to see the transactions
made by M1 (but M3 can’t access it)

•	 M2 can make a new transaction on
same object and allows M3 to see this
new transaction, (but M1 cannot).

•	 When M3 makes an Update, it may allow
M1 and M2 both to see the changes
it has made. However, previous two
transactions remain hidden as they
were.

•	 So, how do we trust any transaction (if
the history of its changes cannot be
seen, due to constraints in visibility)? A
transaction is always validated by the
Trusted platform and hence, members
can operate in discretion.

Note: This allows for all types of possibilities in Telco where multiple Vendors
can participate in fulfilling the same order without sharing any information with
competition. On top of that, information is available on the Assets and Order at relevant
milestones only.

Characteristics of this transaction model

We will briefly touch upon key characteristics
that enable us to deliver the desired features -

•	 Consortium(s): Supports 1 or more,
depending on how many tenants (business
streams) would like to use the same
infrastructure

•	 Constitution: A Constitution for every
consortium. This defines policies on What
and how (i.e., Roles, Permissions, Allowed
Actions with scenarios, including Voting
rules/types). Policies can be queried and
modified (and are treated as Actions).
Other examples of Action include:
Authorisation and posting encrypted
notifications to allowed members in the
Consortium.

•	 Smart Contracts: Functions which execute
the Constitution actions, like read, add
members, update etc.

•	 A Trusted Execution Platform:
Where Smart Contracts are
executed. This could be an
appliance hosted by a Central
agreed/trusted authority. This
platform can also be implemented
using specialised software
stack. There is no persistence of
transactions and therefore, we
might use Analytics platform as an
“approved” sink to all the applicable
events.

•	 Critical requirement: This Trusted
platform (Black box) complies to
always encrypted Data i.e., “at rest,
in motion and in use”. Example: It
cannot be implemented using a
simple VM, since Hypervisor will
have access to data in memory
i.e., “in use”. Messages can only be

decrypted by this trusted platform.
Hence, the secrecy/segregation
of information is implemented by
the Platform and governed by its
constitution.

•	 Analytics and Machine learning
loopback provides insights (as
per Constitution) on how the
transactions are being utilised,
its drill down details (where
applicable) and ability to identify
any attempts of possible misuse to
the platform.

•	 There is no compute cycle wastage
(say Currency mining) unless
unauthorised access to Messaging
service has been obtained. This
pattern should be detected early
enough by the Analytics platform.

External Document © 2022 Infosys Limited

Following basic constructs are used to
make system flexible to changes -

•	 A constitution holds the policy for
each Action type and new actions
can be added/ modified/ deleted, as
needed.

•	 Voting may be associated for
some Action types, like adding
members, or changing a member’s
permission. A transaction/action
type can only be accessed by the
applicable consortium members
where permissions are granted. All

A constitution allows for growth and management

these functions are always executed
on the “Black Box” (a.k.a. TEP, Trusted
Execution Platform).

•	 Members will vote (as per
Constitution rights) to make amends
to the Actions and behaviour.
Effectively, additional code (smart
Contracts) can be imported at
runtime.

•	 Secure protocol must be used for all
messages and communication.

•	 Expected typical transaction rates for

such a system is expected to be north
of 1,000-1,500 transactions per second.
This should easily satisfy business needs
for an Enterprise.

•	 Trusted platform can be managed
internally as cluster of resources for
mitigating any security concerns.
However, this is not always encouraged
as the design complications
encompassing Security and Consistency
must be adequately addressed.

Note: More insights on this gets covered in
Appendix – Internals of Transaction flow

http://Appendix - Internals of Transaction flow

Applying this transaction model to customer order management

First, typical anatomy of a customer order

Note: For efficiency, at a later stage some of the Orders may be executed in batch where a logical grouping might entail same location/
technology within Same Project Identifier.

There could be several seemingly
disjoint work parcels flowing through
various systems but can be still
aggregated based on one common
identifier. This common “Root
Identifier” can thus be trusted to use
for dependency/co-relation. There are
practical challenges to this ->

1.	 While this “Root Identifier” binds
everything together, the immediate
children (CRM Orders) will have
their own independent lifecycle.
Ideally (and it is a presumption),
Start date and End date of a Project
will encapsulate the life cycle of all
other (children) CRM Orders. So,
can this affect the “Asset Lifecyle
Management”? If Asset needs to
be replaced, for whatever reason,
will it be associated to same Project
ID? Necessarily not. This depends
on lots of factors. So, tracking and
co-relation for follow-up orders OR
Revisions is not black and white in
nature.

2.	 Continuing previous point, status
of Asset is loosely related to status
of Service(s). If the Service(s) is/
are not activated and tested by the
field agent, then the Asset can only

achieve status of “Delivered/received”
at Customer Premises. An actual
Service activation test will determine
whether the Device is good to be
called “commissioned/in-use”.

3.	 We must determine the most
appropriate stage to accurately
resolve/identify the existence of an
Asset. And how important it is, to
tightly couple an Asset Identifier with
Device Physical Identifier such as a
Serial number. The deployed Asset is
a logical view and is subject to ad hoc
Service repair requests that might not
flow through all key systems. So, what
kind of Lifecycle Management are we
interested in? Is it for the Asset OR is it
for the Physical Device?

a.	 Customer is keen on Asset (doesn’t
care about Serial# of the device).

b.	 Device Vendor doesn’t care about
Asset. Serial# is key to track what is
delivered.

c.	 Telco Service Provider cares about
Asset and to an extent, about the
Serial# because of the warranty
procedures (mostly when they
might deal with Vendor for
replacement).

So, we add LCM model
assumptions for asset
1.	 An Asset in its lifecycle can and will be

associated with multiple “Root identifiers”
and Children work parcels.

2.	 Changes in design due to requirement
correction can also directly impact the
Asset lifecycle status.

3.	 Most important thing is association of
Asset->Serial#. For maximum flexibility
and minimum complexity, we will some
base assumptions -

a.	 An Asset (ID) can be created in concept,
with/without a Serial# attached to it.

b.	 However, the lifecycle status of Asset
(ID) cannot progress beyond a certain
point without associating with a Serial#
of the Device.

c.	 Once a Serial# is associated to an
Asset (ID), the Asset must carry
this association till the Asset is
decommissioned.

d.	 There should be a trusted way to
determine a valid/unique association
between the two (Asset ID and
Serial#). So, this association must be
executed by agreed member(s) of the
consortium.

External Document © 2022 Infosys Limited

Sample flow

Test approach resiliency

Managing Action Rollback (i.e., Change and/
or Rejection of Change).

Say, a Single Order carries 5 logical Services
(A, B, C, D and E).

•	 As part of design (late in Order lifecycle),
multiple Devices were added as
requirement. They are A1, D1 and D2

•	 Now, we applied Order requirement
changes (due to any reason, previous
design cannot be implemented OR simply
change in requirement). This creates
different Service versions, A’, B, C’, D (and
no E).

•	 To make things messy, the eventual design
takes out A1 and D2 devices, but adds C1
to the tally. So (A1, D1 and D2) becomes
(C1 and D1).

•	 There are two options that can be
exercised before all these changes are
applied -

o	 Pause: We can publish immediately to
the intended Suppliers that a change
might be initiated in CRM, so, this
Order is being “re-planned”.

o	 Auto-correct: We may have enough
visibility of potential impact to decide
that we don’t need to pause, and we
will auto-correct, once design is redone
(i.e., only additional devices may need
to be ordered)

Note: Both options can be applied atomically
on per Device basis in the same order. In
this case, requested (set) metadata will drive
decision making for Smart contracts.

Under all its discretion and
trust, “new” OSS arrangement
still appears simplified to its
consumers -

External Document © 2022 Infosys Limited

Appendix - internals of transaction flow

Flow example -

1)	 Member performs “executeAction” with
Action name “updateDeviceOrder” and
provides supporting parameters.

2)	 TEP receives the requests

a)	 Validates Permission to execute, returns
success/failure for execute permission

b)	 Executes referenced algorithm which
then may change the values and use
sendNotifications to inform members as
needed

3)	 Applicable member(s) receive
Notifications on action and will follow
local procedures as needed

To implement this, members need to
support following methods (Common
implementation library can be circulated/
shared amongst consortium members)

•	 async getNotification(action,
parameters) - This is populated
with values when TEP (trusted
platform) executes “internal”
Action sendNotifications and is
sent to applicable members only.
Once a notification is received, it is
responsibility of the member to call
appropriate executeAction method, as
needed.

•	 async executeAction(action,
parameters): For simplicity,
execution of only one operation
type is supported for each
member. It is always only directed
to TEP (other members have
no use for this action). Only
returns a success/failure message
with Transaction ID (optional).
Any output is received via
getNotification (triggered by TEP).
More details: Execute Action is
used to Update Constitution and
Assets.

Note: Not all systems are required to be
engaged in every flow. There is no PoNR
(Point of No Return) required. Even if
cancellation happens post device delivery,
a separate process can be triggered for
recovery. Business process will touch
minimum relevant systems.

However, the status will be visible to all
systems (allowed interested parties) to
trigger any further processes (manual or
automated).

It makes intra system status update
interfaces (like status update notifications)
redundant.

External Document © 2022 Infosys Limited

action: Action name (example:
addMember, amendConstitution,
refreshTrustKeys, updatePermissions,
voteFor, getDeviceStatus,
updateDeviceOrder etc.).	 This
will execute existing Action in the
constitution. TEP will verify permission
for execution. Business validation is
part of Action algorithm. An Action
algorithm may then refer to additional
Actions (Scope: Internal only. Please see
amendConstitution Action parameters
below). It should be noted that
certain Actions are created as base/
fundamental Actions to support day to
day operations. While they themselves
can be modified/refined, it is advised
to be done with maximum caution
to maintain constitution integrity.
Example of such actions -

amendConstitution: Adds/Replaces
with new Action definition in the
constitution. Always replaces the
existing Action definition. Parameters
include Language (example python/
java with version), Permission meta-
data for members and actual Code
submission. TEP will verify integrity
of Action scope. We can use this
to revise action definitions and/or
Permission meta-data for members.
amendConstitution Action must carry
three parameters-

1.	 Scope (of type Public/Internal) -

	 Public: Can be called by any member
(subject to Permission meta-data
validation by TEP)

	 Internal: This can only by executed
by TEP and is meant to be used
as support algorithm for “public”
Actions like gathering data.
Outgoing calls might be made, if
needed (example, sendNotifications
or query external systems). An
internal action must not reference
another “Public” action. This is to
restrict scope of chaining of actions.

2.	 Action Permission list - It is a simple list
of: MemberID, Execute(Y/N) and Validity
date range (Optional). Sub level checks
like whether a member can change
device status from A to B should be
implemented within Action algorithm

3.	 Voting schema - Includes Voter list
(specific/all/any), Majority margin
(minimum count) and Veto member
list. Voting will be conducted when
the applicable Action is requested for
execution (example - addMember). If
voting is not needed for that action, we
can specify Voter list as “Any”, Majority
margin as 1 and Veto member list as
NULL. In such case, member requesting
executeAction (subject to Permission
list) will be counted as “Any” with
default Majority margin count of 1. If
“specific members” or “All” is used, then
executeAction for that Action will not
proceed till it is Approved or Rejected.

Note: Although amendConstitution can be
used to disable/decommission any action,
it is advisable to use updatePermissions
to disable further execution permissions.
As a special case, amendConstitution
may replace itself (should the capability is
provided, but it is highly recommended to
avoid using such capability). In Enterprise
scenario, normally one member will have
permission to execute this Action. Same
with updatePermissions (see below)

updatePermissions: Simple operation
to updatePermissions for any
action. It should not have capability
to change permissions on itself.
amendConstitution should be used to
make such changes.

refreshTrustKeys: Provides ability
for members to refresh trusted keys
with TEP for communication. Initial
set of trust keys are already added by
addMember action (by a registered
member) and therefore, any new
member should use this method to
refresh with new set of keys, as needed.

voteFor: This is a very special Action
and is called by members in response to
“getNotification” (where voting action
is mentioned). It has dependency on
internal Action “approveAction” to be
implemented first. approveAction will
verify the voting count and return the
control back to original executeAction
once a decision is reached.

parameters: This provides a flexible and
powerful extension to implement any
generic business validation algorithm.
It is like declaring parameters for any
method and should suffice to provide
for any/all required functionalities
under the specified constraints. A
custom Transaction reference ID
can be supplied to co-relate with
getNotification responses.

Implementation details of executeAction on TEP end. Parameter info –

External Document © 2022 Infosys Limited

© 2022 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

Additional references

•	 GoQuorum (consensys.net)

•	 Enterprise middleware for blockchain smart contracts - Second State

•	 Growing interest in Telecom Sector - Blockchain In Telecom Market By Offering, Organization Size, Provider Type, Application, Region |
Absolute Markets Insights

•	 Using Trusted Compute - https://entethalliance.org/wp-content/uploads/2019/11/EEA_Off-Chain_Trusted_Compute_Specification_
v1.1.pdf

•	 Privacy-Preserving Scheme in the Blockchain Based on Group Signature with Multiple Managers (hindawi.com)

•	 Ethereum vs Fabric vs Corda: Enterprise Blockchain Protocols Compared (kaleido.io)

•	 Zero Knowledge Proofs: An illustrated primer – A Few Thoughts on Cryptographic Engineering (cryptographyengineering.com)

About the Author

Debashish Mukherjee
Senior Technology Architect

https://docs.goquorum.consensys.net/en/stable/
https://docs.secondstate.io/white-papers/enterprise-middleware-for-blockchain-smart-contracts
https://www.absolutemarketsinsights.com/reports/Global-Blockchain-In-Telecom-Market--2021---2029-881
https://www.absolutemarketsinsights.com/reports/Global-Blockchain-In-Telecom-Market--2021---2029-881
https://entethalliance.org/wp-content/uploads/2019/11/EEA_Off-Chain_Trusted_Compute_Specification_v1.1.pdf
https://entethalliance.org/wp-content/uploads/2019/11/EEA_Off-Chain_Trusted_Compute_Specification_v1.1.pdf
https://www.hindawi.com/journals/scn/2021/7094910/
https://www.kaleido.io/blockchain-blog/enterprise-blockchain-protocols-a-technical-analysis-of-ethereum-vs-fabric-vs-corda
https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer/
https://au.linkedin.com/in/debashish-mukherjee
mailto:debashish_mukherjee@infosys.com
https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys

