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Figure 1

The use of any clustering algorithm must be preceded 
by cleaning data, handling missing data and integrating 
data. At that point the data is well-organized, but still its 
true structure may be hidden from the algorithm and 
applying inappropriate scaling or transformation would not 
reveal it. In this article we present the Dip Scaling and Dip 
Transformation techniques, which bring to light the data 
structure and improve the clustering algorithm performance.  

The goal of this work is to overview and extend the 
methodology described by Benjamin Schelling and 
Claudia Plant in their article. We will provide explanation 
of Dip Scaling and Dip Transformation methodology 
with a stronger focus on statistical properties of the data, 
implementation within Python environment. We will 
also consider possible applications on structured and 
unstructured data types like pictures.

However, it starts with two main questions:

1.	 What does it mean to have clusters (or structure) in data 
with respect to its distribution of variables? 

2.	 How can we reveal any hidden structure of our data with 
the proposed technique?

Let’s to go through the definition of two main terms we 
deem to be of importance: distribution and modality.

“The distribution of a variable is a description of the relative 
numbers of times each possible outcome will occur in a 
number of trials” Ref link

“Modality is a measure of the number of modes in a 
distribution of a numerical variable. A unimodal distribution 
has one mode, meaning that the distribution has one value 
that occurs noticeably more often than any other value.” 
Ref link

Below chart displays the relation between ‘sepal’ and ‘petal’ length of an Iris flower dataset. We can visually identify two groups 
in presented data.
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https://link.springer.com/article/10.1007/s10115-019-01388-5
https://mathworld.wolfram.com/StatisticalDistribution.html
https://en.mimi.hu/mathematics/modality.html
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If we project presented data onto X and Y axes, we can 
assess distributions of both variables. Visually speaking, the 
distribution of petal length (Y-axis) seems to have two peaks 
(multimodal distribution) and the sepal length (X-axis) has 
only one peak (unimodal distribution). 

Having more than one peak (two in our example) in 
dimension means that data within this dimension is 
somehow presented in groups. This means that multi-modal 

dimensions are the ones that we are looking for, while 
performing cluster analysis, because they contain valuable 
information about the data structure.

In our example, the dimension that is responsible for cluster 
formation is ‘petal length’ as it carries richer data structure 
(i.e., more modes) than ‘sepal length’ dimension. Therefore 
‘petal length’ is more interesting for our cluster analysis.

Figure 2
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Dip Value and Dip Scaling
How can we identify which dimension will be interesting for 
future analysis without looking at data presented visually?

Hartigan & Hartigan in the 1980s proposed a compact 
measure named Dip Value, which helps us answer this 
question. Let’s consider the next example.

If we look at below charts, we can see that the top pair 
presents a histogram of perfectly normal data and its 
respective CDF (cumulative distribution function). Bottom 
pair presents a dimension with 3 modes (groups) and its 
respective CDF plot. 

The idea of Dip Value is to measure the “distance” of samples 
of one-dimensional data to a unimodal distribution. In order 
to calculate this distance, we compare CDF to the closest 
S-curve. The further it will be, the more interesting it will be 
for future cluster analysis. 

This number varies between 0 and 0.25; smaller value means 
that our dimension is closer to unimodality, while higher one 
- to multimodality. Once we know the value of the test, we 

can scale our dimensions accordingly, to highlight the one 
that is more interesting for us. 

As dimensions with only one mode will have smaller value 
for this statistic, we will shrink them more by applying 
scaling, and we will therefore reduce their impact on the 
clustering results.

Now let’s check on our example how scaling axes according 
to Dip Value can improve the formation of clusters.

As an example, we will use k-means algorithm which belongs 
to a statistical learning method widely used in cluster 
analysis. It is widely used for the finance sector. 

The fact that the k-means method belongs to a class of 
statistical learning, suggests its success in producing 
effective result is inseparable from the statistical properties 
of the data itself. These model related assumptions are 
described in the article: K-means clustering is not a 
free lunch.

Figure 3
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https://en.wikipedia.org/wiki/Sigmoid_function
http://varianceexplained.org/r/kmeans-free-lunch/
http://varianceexplained.org/r/kmeans-free-lunch/
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In order to understand the impact of technique on k-means 
clustering algorithm, we first need to understand when it 
fails. One of the assumptions of this algorithm is that data 
has a spherical distribution. If we plot the data, we should 
see groups in a form of close-to-perfect circles.

Figure 4

Figure 5
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Let’s have a look now at similar data and check if Dip 
Transformation can help us with this issue.

On the left side of the image (Figure 6(a)) we can see that the 
dimension on the x-axis is unimodal, while on the y-axis it 
has three modes. The Dip Value Dx on the x-axis equals 0.011 
and it is small when compared to that Dy on the y-axis which 
equals 0.055. 

After min-max normalization on both axes using respective 
intervals [0,0.011] and [0,0.055] respectively, we obtain the 
scatterplot shown on Figure 6(b). After this operation, called 
Dip Scaling, clusters are easier to find by k-means: they are 
not stretched across x-axes anymore and are presented in 
more circular form or stretched in a “good” direction. Note 
that changes of usual min max scaling are minimal in this 
case, since x and y values have the very same range.

Figure 6 (a) Figure 6 (b)
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Dip Transformation
Below example works perfectly for data which is axis parallel. But what if cluster structure was hidden? Let us spin the data 
around its mean by 45 degrees. 

As we can see now, obtained dataset looks similar from both 
axes, and consequently Dip Values are very closed to each 
other – Dx= 0.015 and Dy= 0.014. It effectively means that we 
do not have any interesting dimension. This statement can 
guide our clustering algorithm, because scaling by the very 
similar number does not affect the data structure and has 
not impact on k-means. Note that neither min-max scaling 
would help in this case! 

Figure 7

The example shows that Dip Scaling itself does not work in 
every situation, but it also shed a light on a new way of data 
transformation: we should seek the optimal angle to rotate 
the data before Dip Scaling. This is the basic idea standing 
behind Dip Transformation.

The example was instructive and illustrative. However, 
in this case k-means algorithm worked well without any 
transformation. Now, we are going to present few examples 
which show the Dip Scaling and Dip Transformation 
power together.
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In the scatterplot presented on Figure 8(a) there are ten 
clusters. The distribution on x-axis is unimodal, while that 
on y-axis is multimodal. On Figure 8(b) there is the data after 
Dip Scaling. 

Figure 8 (a) Figure 8 (b)
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Figure 9(a) and Figure 9(b) show the result of applying 
k-means algorithm on both the raw data and dip scaled data, 
respectively. Each cluster is marked by a different color. The 
output of k-means on raw data is poor. At the same time the 
algorithm perfectly recognized clusters after Dip Scaling.
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Let move to the next example. On a Figure 10(a) we 
can visually identify three groups. Note that the x and 
y distributions are very similar and basically unimodal. 
The x-dip is 0.013 and y-dip is 0.010. After Dip Scaling the 
data changes slightly and the output of k-means does not 
improve much. Again, min-max scaling procedure would 
not help much, since x and y values have the very same 
range. What we can see on Figure 10(b) is the result of Dip 
Transformation.

Dip Transformation algorithm starts from computing 
Dip Values D1 and D2 for two features, then finding their 
maximum Dmax and applying Dip Scaling. Once data is scaled 
we go through the next steps: 

Figure 10 (a) Figure 10 (b)

1.	 Data is rotated by a small angle that is calculated for 
each iteration.

2.	 New Dip Values D’1, D’2 and D’max are computed.

3.	 If D’max > Dmax, then Dmax:=D’max and Dip Scaling is 
performed.

Step 1-3 are repeated until all those small rotations sum up 
to 180 degrees. Some technical details are omitted; they can 
be found in the original paper. Figure 10(b) is the final output 
of Dip Transformation applied to data from Figure 10(a). 
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On the next page you can see how the data is transformed step by step using rotations and Dip Scaling during 
Dip Transformation.
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Frames of Dip Transformation animation
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The aim of Dip Transformation is to prepare data for k-means 
algorithm. In Figure 11(a) there are clusters found by 
k-means after applying min-max scaling. We can compare 
them to the clusters found on dip transformed data in 
Figure 11(b).

Till now we have presented two-dimensional Dip 
Transformation algorithm. The question which arises here is: 
does this method work in higher dimensions?

Suppose that the data has n-features, n>2. Multidimensional 
Dip Transformation applies steps 1-3 of the algorithm to 
each pair of features once per cycle. Dmax is global for all of 
them. The algorithm will stop when the sum of all rotations is 
more than 180×n degrees. 

Due to optimization purpose, rotation angles are irregular: 
some feature pairs are rotated more than others at the end 
of the algorithm.

Idempotence of Dip Scaling and Dip 
Transformation
Let’s assume that the data consists of n numerical features. 
Then each sample can be represented as a vector in 
Rn. Many known transformations, like min-max scaling, 
standardization, or normalization, are linear transformations. 
They have also very important property - idempotence. 

A transformation T:Rn  Rn  is idempotent if T=T 0 T. Roughly 
speaking, if a transformation is idempotent, then applying 
it twice, or more times, gives the same result as applying it 
only once. So, a single use of the idempotent transformation 
delivers a final output, with no further need to employ 
it again.

The linear transformation of one feature does not change its 
modality. Since Dip Scaling technique scales each variable to 
interval [0,di ] where di is a Dip Value of the i-th feature, then 
it is an idempotent linear transformation.

Figure 11 (a) Figure 11 (b)
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For Dip Transformation it is more complicated. On Figure 
11(b) there is a scatterplot of data transform by Dip 
Transformation. Let us compare it to the second and third 
iterations of Dip Transformation given in Figure 12(a) and 
Figure 12(b), respectively.

The iterations are different. This proves that Dip 
Transformation is not idempotent. It could be if the iterations 
of Dip Transformation improved the output. Our experience 
says that it does not.

Implementation of Dip Scaling and Dip 
Transformation
The Authors of the original paper implemented Dip 
Transformation in Java. In order to make this method 
accessible for a wider audience, we have implemented it in 
sklearn-type package in Python. For those who are familiar 
with sklearn, it is easy to use. The documentation, source 
code and examples of use are available in public repository.   

The main part of the method computes Dip Value, which 
is a part of Hartigan & Hartigan's dip test for unimodality. 
Although there are several packages implementing it in 
Python, we modified one of them using numpy in order to 
make it fast. 

Figure 12 (a) Figure 12 (b)
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Let’s have a look at Figure 6(a) once again. If we reduce 
the x-dimension, and restrict only to the y-dimension, we 
will still be able to properly recognize clusters. In general, 
finding an appropriate rotation and Dip Scaling would allow 
to reduce axes which bring little information on the cluster 
structure. Finally, one would be able to represent the data on 
two or three dimensions to further analyze and visualize it. 

Applying Dip Transformation algorithm for image pre-
processing allows to improve results for color-based 
image segmentation and color quantization. We use these 
techniques to find a different colorful objects and parts on 
an image. It is one of the important steps in some computer 
vision algorithms. 

Also, it may help reduce the file size of the image. One of the 
simplest implementations is k-means algorithm used on the 
color channels of the image. Dip Transformation improves 
the separation of different colors, which makes result more 
visually colorful.

Figure 6 (a)Possible Applications 
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Below are shown some examples.

Original k-means, k=4 Dip transformation + k-means, k=4

Original

k-means, k=4 Dip transformation + k-means, k=4
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Summary
Dip Transformation can improve k-means algorithm by 
“finding” hidden structure within dimensions. Usually, before 
applying k-means, one standardizes the data coordinate-
wisely. Dip Transformation, or even Dip Scaling, nullifies any 
previous linear transformation of coordinates, which makes 
it the only transformation needed for k-means. The method 
has only rotation coefficient parameter. It also changes 
accuracy at the cost of computation time, which additionally 
makes it easy to use.
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Notes
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