
VIEW POINT

ANGULAR

Abstract
The advent of modern browsers and network technologies led to a digital
disruption, where user experience, ease of access and speed have been key
towards delivering consumer experience. Enterprise solutions delivering
digital content from servers in response to browser requests, have
transformed to full blown browser based apps leveraging advancements in
HTML5, offline access and AJAX.

With the focus shifting to building highly complex browser based
applications delivering rich experience, developers were challenged with
the primary concerns of maintenance and scalability. Libraries like jQuery
did not bring a clear separation of concerns, and often resulted in cluttered
codebase and excessive DOM manipulation. This resulted in the evolution of
frontend JavaScript frameworks like Angular, providing an architecture for
building interactive web apps, with support for data binding, enabling faster
development of CRUD based applications. This PoV focuses on Angular and
how it helps in building web and mobile apps with rich experience.

Angular
Angular is a front-end open-sourced
JavaScript based web framework mainly
maintained by Google and open source
community to address the challenges
faced by developers building single-page
applications. It was first officially released
in October 2010 as AngularJS (or Angular
1.x) and later completely revamped on
September 2016 as Angular (Angular 2+).

Angular had the following advantages
over the traditional development of web
applications:

• Provides structural framework for
building rich interactive web apps, with
support for data binding, view hierarchy
and route navigations enabling
faster development of CRUD based
applications.

• Intends to decouple DOM binding

and manipulations from app code in
jQuery, Backbone era, introducing clear
separation of concerns.

• Better abstraction and articulation of
presentational elements as loosely
coupled components.

• Encapsulation of business functionality
by means of reusable services and
dependency injection.

• Focus on independent unit testing.

Inevitable Framework
Revision
While AngularJS came with huge boost for
developers building rich web applications,
there were few limitations that resulted in
redesign of the framework from ground up.
Key challenges were:

• The concept of Scope was confusing
to developers and misused in many
contexts.

• Though envisioned with component
design, development of custom
components / directives required a
detailed understanding of digest cycle.

• In larger applications, the performance
considerations forced developers to
be knowledgeable of the internals of
AngularJS such as, the digest cycles,
watches, bootstrapping etc.

• Lack of a standardized tool chain, to help
productivity and to troubleshoot issues.

External Document © 2019 Infosys Limited

External Document © 2019 Infosys Limited

Angular Redefined
Angular 2.0, being a complete rewrite
from AngularJS, came with significant
improvements in the core framework both
in terms of performance and developer
experience. The major advantages were:

• Typescript bringing Object Oriented
techniques to JavaScript and makes the
code more structured and organized.
Angular 2.0 leveraged typescript to
ensure type safety of the applications
built.

• Declarative metadata by means of
Typescript annotations.

• Adherence to web standards, enforcing
developers to think more in terms of
components, enabling better modularity
and wider reuse.

• Improved bootstrapping, component
tree and change detection strategies.

• Ahead of Time compilation (AOT) for
better security and performance.

• Provides easy upgrade options from
AngularJS (1.x) and do incremental
development in latest version.

• More choices of languages - ES5, ES6,
Type Script or Dart.

• CLI gives a head start with creation
of boiler plate code, enabling rapid
application development.

Where does Angular fit?
While deciding the technology to be used
for building a web application, fitment
analysis for the suitability of Angular is
important. The scenarios where Angular
would be a good fit are:
• Single page applications which need

capabilities of a full-fledged web
application development framework
like application modularity, dependency
injection and a component driven User
Interface.

• Mobile first web apps and progressive
web applications with offline capability.

• CRUD based applications demanding
rich user experience and high
interactivity.

• Cross platform mobile applications built
over web based technologies (such as
NativeScript and Ionic).

Hybrid Development
Platform
Angular is not only used to create dynamic
web applications. It can be used to build
intuitive mobile and desktop applications,
supporting multiple form factors.

Frameworks like Ionic and Cordova help
packaging an angular web app to iOS and

Android platforms with access to native
device capabilities. As for building native
desktop applications, there are frameworks
like Electron and Photon Kit targeting the
Windows, Linux and MacOS platforms.
NativeScript relies on angular to build
mobile apps rendering native components,
and utilizing JavaScript runtime core.

Angular Architecture
Angular provides constructs to build a
modular, decoupled, layered and testable
web application. Key architectural
elements of Angular include:

• Modules: Provide isolated compilation
context to allow decomposing
applications into manageable sub units.

• Components: An angular app
consists of a composite component
tree. Components take up the role of
controller and view model in case of
angular apps. Components are bound to
templates which represents the views.

• Directives: Help altering appearance
and behavior of UI elements or
to introduce structural layout of
components and UI elements. Directives
help bind angular code directly to host
elements in the DOM.

• Pipes: help transformations of display
values in templates (such as currency
formatting, date formatting etc.).

• Router: Help tracking the changes to
browser URL and declaratively include
components corresponding to the route
state. Router also supports imposing
routing restrictions based on application
states.

• Services: To declaratively include
application based functionality. Services
are injected to components and other
services by means of an Injector.

Angular CLI and Console
Angular CLI is an incredible tool that allows
developers to setup an Angular application
with boiler plate code, and workspace
setup in a fraction of minutes. It reduces
the complexity of creating the application,

module, components from the scratch.

Angular Console is an external plugin
developed on top of Angular CLI to serve
as an UI for Angular CLI. With Angular
Console, developers no longer need to
memorize the commands, the Angular
Console UI will enable user to create
application, components visually.

CDK and Schematics
The Component Dev Kit (CDK) is a set of
tools that implement common reusable
patterns/features. CDK acts like an interface
upon which view components can be
developed.

Schematics are a “recipe” to generate and
modify files in a project. In a way, Angular
Schematics helps to create, manage and

update the file system.

External Document © 2019 Infosys Limited

External Document © 2019 Infosys Limited

Libraries and Angular
Elements
Angular libraries are reusable packages and
provide projects that cannot run on its own
but are imported in other Angular projects.

Angular Elements helps us publish Angular
components as custom HTML elements,
which could be used in non-angular

context.

SSR and Angular Universal
Server Side Rendering(SSR) is a process
by which pages and routes of a JavaScript
based web app are rendered from the
server.

Angular Universal helps in executing the
Angular application in server and at a
later point of time gets bootstrapped on
the client. This gives a boost to angular
applications demanding the need of SEO

and faster bootstrap time on the browsers.

Angular 8 Features
On 29th May 2019, Angular team
announced the official release of Angular 8.
It comes with a whole bunch of cool new
features that the community were eagerly
expecting.

• IVY rendering engine: With this new
rendering engine released in preview
mode, the code generated by Angular
compiler is easy to understand.
Application rebuilding time is
significantly faster with decreased
payload size.

• Differential loading made default:
Angular compiler will produce both
legacy (ES5) and modern (ES2015+)
javscript bundles which will differentially
be loaded to the browser effectively
improving the loading speed and time
to be interactive for modern browsers.

• Enhancements to service workers:
Service worker registration has a new
option that allows to specify when the
registration should take place. It is now
possible to bypass the Service Worker for
a specific request by adding the ngsw-

bypass header. Further, hosting multiple
apps on same domain has also been
made possible with the help of the new
updates.

• Web Workers in CLI: Provides new
schematic to add Web Worker to any one
of the components.

• Typescript upgraded to 3.4: Latest
version has faster builds, omits helper
type and improved excess property
check in union types.

• Builder APIs: The new API helps in
changing the behavior of the CLI
command, including addition of new
ones to create custom logic.

• Workspace APIs in CLI: The latest updates
brings in an easy way to modify the
angular.json file through CLI itself.

• Forms module enhancements: The
AbstractControl class now offers a new
method named markAllAsTouched. The
FormArray class now offers a method, to
quickly remove all the controls it contains.

• Dynamic Imports: All the lazy-loaded
routes will use standard dynamic import
syntax instead of a pre-defined string.

• Bazel build support: Bazel is a powerful
tool which can keep track of the
dependencies between different
packages and build targets. It has
a smart algorithm for determining

the build dependencies. Bazel is
independent of the tech stack.

• Router enhancements: Lazy loading
of modules through import() format
instead of string. This gives more control
over when a module has been loaded.

• Angular Firebase integration: Possible to
deploy the angular application directly
to firebase using CLI.

Considerations on Angular
Apps
While choosing Angular for building
responsive web apps, there are few
considerations to be kept in mind:

• Mobile first and responsive approach to
ensure the app seamlessly work across
multiple form factors.

• Choice of progressive web applications
ensuring app like experience to websites
with limited offline capability.

• Considerations towards the extent of
SEO and discoverability of the app in
public.

• Social Integration and Single Sign On
(SSO).

• Dynamic contents and integration with
Content Management Systems (CMS).

• Applications with high performance and
better security.

Figure 1: Angular 8 - Features

External Document © 2019 Infosys Limited External Document © 2019 Infosys Limited

Development Practices

Following are the best practices to consider

while development with Angular:

• Wireframe / UX break up to identify

components, behavior and navigations.

• Design for reusability and consistency.

• Use SCSS / Stylus aligned to style guides

and branding themes. Consider isolation

of themes from components.

• Effectively use Angular CLI and

Schematics for code generation.

• Minimize interactions, data exchange

and event bubbling across component

tree.

• Package generalized reusable

components and services as

independent libraries.

• Isolate shared components from feature

components.

• Have common behavior abstracted as

base components, services and shared

reusable module.

• Have separate routing module, and on

demand download of lazy modules.

• Effective use of mono repo pattern and

angular workspaces.

• Use mediator services where ever

required, to orchestrate between

components.

• For complex and large scale enterprise

apps, have a standard mechanism like

ngrx to manage application state.

• Build components that are testable.

• Effectively use playground for unit

testing and showcasing of common

components.

• Use async pipes for managing reactive

streams.

• Implement the component life cycle

methods for proper initialization and

clean up.

• Consider using AoT and tree shaking for

build.

External Document © 2019 Infosys Limited

Developer Pitfalls

Following are few potential pitfalls the

developers have to be cognizant of

developing angular application:

• Improper use of view encapsulation of

components.

• Excessing argument passing over

component tree using input / output.

• Mutating the input data resulting in

problems that are hard to troubleshoot.

• Incorrect management of application

state through multiple channels and

components.

• Improper use of change detection

strategies, causing performance and

functional issues.

• Improper content transformation and

ineffective use of pipes.

• Using functions in template

interpolations.

• Leaving out Zombie subscriptions,

without unregistering them.

• Improper module exports, component

declarations and use of providers.

• Direct DOM manipulations, bypassing

change detectors.

• Keeping logic inside components.

• Ineffective use of content projection.

• Exporting the same component in

multiple NgModule.

• Incorrect use of Providers.

• Component layer holding business logic.

External Document © 2019 Infosys Limited External Document © 2019 Infosys LimitedExternal Document © 2019 Infosys Limited

Enterprise Angular Adoption
From its launch, Angular has been one of
the most sought after frameworks by front-
end developers. Over the years Angular has
evolved from being a niche library to a full
blown framework helping development
of rich, highly intuitive mobile and web
applications. Community has also helped
to evolve a large platform ecosystem to
build rich web applications with Angular.
The ecosystem includes, but not limited to:

• IDEs, CLI, development tools, & testing
tools.

• Data access and storage libraries.

• UI components toolkits

• Cross platform development tools.

• Books, workshops and trainings.

• Community groups and curators.

This has facilitated increased adoption of
Angular for building enterprise web apps.

The Future
With the enhancements to Server Side
Rendering methods and Service workers,
Angular is leading the way in the general
trend of web development leveraging
both server and browser, to deliver the
highest user experience. As for Progressive
Web Apps and offline access, Angular
gives more flexibility in terms of what and
how content is being cached. By utilizing
browser services like IndexedDB and
Storage, Angular apps can be developed
to work fully offline in a disconnected
environment.

In modern digital era, it is imperative
that systems are extremely scalable to
meet unprecedented usage, especially
in business to consumer scenarios. This
implies that efficiency is paramount
in serving requests with minimal
computational and network costs, typically
over cloud. With the SPA nature of angular
apps, and the capability of serving
responses within the browser, Angular
turns out to be a good bet in serving user
interfaces for massively scalable reactive
web apps.

Since Angular distribution contains only
static assets of HTML, JavaScript and CSS
bundles, it is easy to deploy Angular apps
to the edge and CDN, thereby improving
the performance and experience.

Due to demand on high scalability and
efficiency, the recent development trends
has been favoring reactive, asynchronous
and functional programming paradigms.
The application architecture components,
including user interfaces are expected to
respond to streams of events and data in
an efficient manner. Angular framework
extensively relies on Reactive Extensions
for Javascript (RxJS) and Observable
patterns to meet the asynchronous
behavior in modern web applications.
This is further supplemented by support
towards reactive state management,
aligned to REDUX architecture by means of
libraries such as NgRX.

Organizations choosing Angular as a
preferred framework for building SPA, on
massive and diverse scales often rely on
standardizing the component libraries
and frameworks across multiple web
applications. Angular ecosystem enables
building and maintaining an enterprise
component repository with the support
from tools like Angular Playground and
Storybook.

Organizations are also driving towards
reusability of presentational elements and
business components across the Angular
applications developed by multiple
teams. The Angular Workspace APIs and
mono repo patterns support exposing
reusable artifacts within an organization as
exportable Angular libraries.

With the increasing industry interest
in MBaaS platforms and Serverless
architectures, for building cloud native
enterprise scale digital solutions, Angular
will continue its traction as a preferred web
development framework supporting offline
capabilities, deployment on edge and easy
integration to REST, GraphQL based end
points.

Conclusion
Angular is extremely well-aligned for
building next generation applications
which need to be decoupled, fault-tolerant,
reactive, performant and massively
scalable

Regular framework upgrades, a constantly
growing eco-system, ease of adoption and
fitment with cloud native patterns ensure
that all the capabilities needed for building
next generation application are already in
place.

Developers can focus on building what
they need to build best, amazing user
experiences!!

Google’s backing, over 1M weekly
downloads in npm and 49k stars in the
official GitHub repo stand testimony to this
adoption

References
https://angular.io

https://cli.angular.io

https://material.angular.io

https://blog.angular.io

https://blog.angular-university.io

https://blog.angularindepth.com

https://angular-checklist.io

For more information on this PoV, contact digital@infosys.com

About the authors

Amit Nigam, Principal Technology Architect DX - Infosys

Amit Nigam is a Principal Technology Architect with Infosys. He has over 19 years of experience in IT with recent
focus on Digital Modernization and Transformation programs

His current technology focus areas are Modern Web Applications, JavaScript UI Frameworks, Mobile Applications
and Cloud Native Application Architectures

He can be reached at amitnigam@infosys.com

Roy M J, Technology Lead, DX - Infosys

Roy is a Technology Lead with Infosys unit DX. He has over 9 years of experience in open source web technologies
mainly focused on the front-end.

Over the years he has worked on front-end frameworks like Angular, React, Ionic, Cordova and back-end frameworks
like Yii, CodeIgniter, OpenCart, WordPress etc.

He can be reached at roy.john01@infosys.com

© 2019 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/Infosys
http://www.slideshare.net/Infosys
https://www.infosys.com/

