
VIEW POINT

IMPLEMENTING DMS ON HADOOP - HDMS

External Document © 2020 Infosys Limited

1 Executive Summary

A Document Management System (DMS)

focuses on managing unstructured

data or content using structured data.

The unstructured data (or unstructured

information) refers to information that

either does not have a pre-defined data

model or is not organized in a pre-defined

manner. Most common examples are

- Images, office documents, graphics

and drawings, print streams, web pages,

e-mail, video, rich media assets etc. A

structured data in DMS is data that has

been organized into a database, so that

its elements (or attributes) can be used for

managing unstructured data or content.

To implement DMS, a number of

licensed as well as open source products

are available in the market. DMS

implementation starts with the shortlisting

of a commercial-of-the-shelf (COTS)

product. A product which fulfils most of

the business requirements is considered

the best suited product. The product is

configured to build DMS artefacts such as

taxonomy, object model, access control,

ingestion routes, search and retrieve etc.

A User Interface (UI) is generally a part of

the product, i.e. admin UI, client UI etc.

The product as well as the user interfaces

are customized to fulfil the additional

business requirements. DMS users perform

operations such as file upload, metadata

tagging, retrieval, editing, search and so

on. The question is - Instead of going for a

COTS product, can DMS be implemented

on Hadoop? This paper conceptually

examines the feasibility of implementing

DMS1 on Hadoop (HDMS).

In the following sections, first, a short

introduction of DMS and Hadoop

technology is briefly explained. New

requirements that are getting injected

into DMS space, due to factors such

as the explosion in unstructured data,

shift in the definition of data and record

etc. are summarized. Later, key design

considerations required to implement

DMS on Hadoop are elaborated. While

discussing the design, how proposed

DMS will address traditional as well as

new requirements is also outlined and

highlighted in the benefits section.

Lastly the conclusion of the discussion is

presented.

2 Document Management
 System
In DMS world, the structured data is

referred as metadata or attributes and

unstructured data is referred as content.

A major percentage (estimated at 80% or

more) of the information in an organization

is maintained as unstructured content,

which includes valuable assets such as

customer correspondence, wikis, blobs of

text in a database, documents stored on

the shared drives, social media posts etc.

Because of the lack of structure in content,

it is very difficult to search and locate the

content. This difficulty is solved by the DMS

where an unstructured data is referenced

by the structured data which makes

centralizing, managing, searching and

locating the content much easier.

In an enterprise, content usually goes

through different lifecycle stages, for

example, capture, store, manage, deliver

and lastly retire. Capture or creation is a

process of ingesting or manually importing

content into DMS. Once ingested, the

content is securely stored. The content is

then made available for searching, viewing,

processing etc. Once the content is no

longer viewed or accessed it is retired or

archived2. DMS is the tool which helps

organizations to effectively manage

content throughout its lifecycle.

To capture metadata, a metadata template

or object definition is defined in the

database by creating one or more database

tables. The tables are created with relevant

columns (or attributes) which are helpful

in providing identity and the business

context to the content. When a content is

created or imported in DMS, the metadata

template is filled with the appropriate

values. The binary file of the content is

stored either on a file system (managed

by DMS) or directly into a database as a

blob object. If the binary file is stored on

file system, then the path of binary file is

stored in an attribute to create a soft link.

The metadata template with appropriate

attribute values together with the binary

file is called a content object.

In DMS, folder objects can also be defined.

Folder objects are container objects which

can contain other folders and/or content

objects. A folder helps in storing related or

similar content in one common location.

Folders are created and arranged in a

specific hierarchical order to elaborate

a file plan. A file plan helps to navigate

and quickly locate the content of interest.

When a content object is created, it can be

linked to one folder or multiple folders. The

content can be located by navigating to all

the folders it was linked.

When a content is stored in DMS, security

is enforced by defining Access Control

Lists (ACL) that allows operations such as

read, write, view etc. as permitted by the

relevant ACL. An ACL consists of list of

groups and/or users and the permission

they have. ACLs are defined in the

database using one or more tables. An

ACL can be attached to a content object

or a folder object. Each content object in

the DMS has directly attached ACL or it

is inherited from the folder object where

the content is stored. Whenever a user

performs operation such as read, update

etc. on a content object, DMS checks the

required user permission against the ACL,

either directly attached or inherited. The

operation on the object is permitted only

if the user has appropriate permission on

the object.

When content is managed, the main

purpose is to serve the content. The

content can be searched, edited or

updated, versioned etc. These functions

are collectively called as library functions

and these are core functions of a DMS. A

content object can be checked-out. When

a content object is checked out by a user,

only the same user can update the object.

The user can change attributes and / or

content. During check out, other users

will get only read access to the object.

Once the user checks-in the content, it

is versioned, and the newly checked-in

content becomes the released version of

the content. This check-out and check-in
functions are known as version control.

Gartner redefined ECM as Content
Services. This redefinition is needed as
the importance of the data, is hidden in
the unstructured content, is suddenly
increased due to digitization, regulations
such as MiFID II, GDPR etc. Earlier ECM
as an application was focusing on
operationalizing the content. Now the
focus is, to treat the “content as assets” or
“core entity” and define the functions and

features, which serve the right content at

right time. This transformation has put the

concept of “Headless DMS”, “Lite DMS” in

focus as the solutions build around these

concepts offers flexibility of implementing

needed features, black boxing the backend

products and avoiding vendor locking.

Hence there is a need to build a generic

solution which can be progressively

tweaked to fulfil traditional as well as new

DMS requirements.

External Document © 2020 Infosys Limited

External Document © 2020 Infosys Limited

3 Apache Hadoop
There is hardly anyone in the IT industry

who has not heard of Hadoop. Using

Hadoop, a large amount of data can be

stored and processed in parallel. In earlier

days, data was generated by humans only,

but now, machines along with humans

are generating data, leading to petabytes

of data being generated. Due to this huge

volume of data, there is a growing need

for distributed storage and processing,

so that the data can be broken down into

manageable sizes and then, at the same

time, processed by multiple processor (or

machines) in parallel. This is exactly what

Hadoop does. A typical Hadoop installation

can have multiple master nodes and data

nodes. Together with master node and

data node, Hadoop forms a cluster.

Hadoop ecosystem consists of components

(or resources) such as HDFS, HBase, etc.

and a number of open source tools such as

Apache Ranger, Apache KNOX. Some of the

relevant Hadoop resources or component

are discussed briefly below:

3.1 Hadoop Distributed File
 System (HDFS)

Hadoop Distributed File System (HDFS) is

a Java-based file system for Hadoop that

provides scalable and reliable data storage.

It can span across hundreds of commodity

servers and can store petabytes of data.

An HDFS cluster is comprised of a name

node, which manages the HDFS cluster

metadata, and data node that stores the

actual data. While storing a content in

HDFS, it internally splits the content in

one or more data blocks. The data block

size is configurable. If the content file size

is greater than the configured size, HDFS

internally splits the content into data

blocks. These data blocks are then stored

on data nodes. If the content size is less

than what is configured, it is copied to a

data block, leaving the remaining space.

The data blocks are replicated or copied

to different data nodes to make the HDFS

fault tolerant. If one data node is down or

crashed or even if a data block is corrupted,

the data can be accessed from its copy.

Because of this powerful data replication

feature, applications built on Hadoop need

not worry about content getting corrupted

and becoming garbage. Replication feature

also eliminates the need of backup and

restore procedures.

3.2 Apache HBase
Apache HBase3 is an open source NoSQL

database that provides real-time read

and/or write access to large datasets.

Real time access to large dataset, makes

HBase suitable for the applications which

are heavily dependent on data. HBase

scales linearly to handle huge data sets

with billions of rows and millions of

columns. Metadata template, in HBase,

can be modelled by defining the table and

appropriate columns or attributes.

3.3 Apache Ranger

Apache Ranger provides a centralized

platform to define, administer and manage

security policies consistently across

Hadoop components. Apache Ranger

offers Admin Portal as user interface and

RESTful server for managing policies,

users and groups. It also contains the user

interface for Audit queries and ad hoc

reports.

Apache Ranger controls what operation

a user can perform in a Hadoop cluster.

For example, once a user is connected to

HBase, which tables the user can access

and what operations the user can perform,

will be controlled by the policies defined in

Apache Ranger.

4 New DMS Requirements

According to the estimates, the volume

of business data worldwide, across all

companies, doubles every 1.2 years,

most of which is unstructured data.

It is further estimated that poor data

can cost businesses 20%–35% of their

operating revenue and bad data or

poor data quality costs $600 billion

annually for US businesses alone4. Such

a tremendous data growth is forcing

DMS to manage high volume of data

and adding new requirements to fulfill.

Shift in definition of “Records” is also

evident. Earlier only physical documents

were considered as records, but due to

regulatory requirements, such as GDPR,

all customer data including documents

and structured information is considered

as records. A new question “what business

value we can create from the idle

content?” is on rise. All these changes are

injecting new requirements in document

management landscape. Some of the key

new generational requirements where

traditional DMS are lagging are as follows;

4.1 Any Format
Over the years, content has changed its

form. Earlier word or PDF document were

considered as content; today, audio and

video files are also considered as content.

Traditional DMS solutions offer storage

of media files such as audio and video as

separate solution or additional licenses are

required to enable media storage. There is

growing need to store documents as well

as media files in single repository.

4.2 Any Type
Currently DMS, is designed to store content

and its associated metadata. The solutions

provided are not optimized to manage

structured data. As stated earlier, due to

regulation such as GDPR, today’s DMS

should able to manage structured data as

well. This new requirement of managing

structured data as records should be

implemented and optimized in DMS.

4.3 Huge Volume
In traditional DMS, number of objects

it can store depends on the backend

database which is generally a relational

database. To scale relational database for

higher volumes, more infrastructure and/

External Document © 2020 Infosys Limited

or licenses are required which drives TCO

up. New generational DMS should be able

to support huge volume of data keeping

the infra and licensing cost low and should

perform better under the high volume.

4.4 Integrated DMS
DMS stores recent information in the form

of content or documents and its metadata.

If this information is not used by business

applications and processes, DMS will

become silo application and will lose its

importance or focus. Unfortunately, today

most of the DMS implementation falls in

this category.

Requirement of integrated DMS is not

new, but in recent years, it has gained

momentum as organizations are realizing

the value of making right information

available at right time. Traditional DMS

products offer standard set of web services

for integration. But the web services

available by default are basic in nature and

does not support end-to-end integration

with business applications and processes.

4.5 In-Place Archival

Usage of content decreases with time.

When the content is no longer viewed or

accessed, it is archived. During archival,

content is moved into archival repository.

Most of the commercial archival solutions

are offered as a separate product with

additional license cost. It is quite possible,

that the archived content is needs to be

retrieved, for example, as part of some

ongoing investigation. Retrieving content

from such archival repository is often a

sub optimal process and its cycle time

depends on how content is archived in

the archival repository. Some organization

uses backup solution as archived solution.

Retrieving a content from such archival

solution is lengthy process. With focus on

huge volume and need to retrieve archived

content quickly, a DMS solution is needed

which can fulfill regular DMS as well as

archival requirements.

View layer

Services
layer

Data
layer

User Interface

Document
services

Folder
Services

Functional
Services

WebHDFS HBase
(stargate)

Rest Services

HDFS HBase

Hadoop cluster

Ranger

4.6 Cost

Licensing model for most of the DMS

product is “per user” based. For an

organization where user base is large,

licensing cost will be significant. Licensing

cost of the backend database is additional.

Implementing media management and

archival use cases will require additional

set of products and will add up to the

cost. With the infrastructure required for

the commercial products, TCO of DMS

with traditional product is high. DMS

implementation based on subscription-

based product can bring down TCO by

96%5. Having a common platform for

implementing media management and

archival will be much more cost effective

than commercial product.

4.7 Content Analytics

Content Analytics is a tool for reporting

statistics and for obtaining actionable

insights. With the help of these actionable

insights existing information can be

enriched with the business intelligence or

rules which, in turn, can be used in providing

better user experience.

A DMS storing content will definitely have

“actionable insights”. Bigger the data set,

better the insight. Content and data stored

in DMS should be analysed to discover

“actionable insights” such as business

rules, which can be used in web services

to make response “Smarter”. Such analytics

will be helpful in generating value from

content. This is new requirement and DMS

implementation should be aligned toward it.

4.8 Summary
With the current DMS products, to fulfil

these requirements more than one

product is needed leading to fragmented

landscape, vendor locking, high TCO,

etc. Some products offer document

management and media management

as separate products or add-on with

additional licenses. On the other hand,

some products cannot scale to huge

volume without adding additional

appropriate hardware, which add ups

to TCO cost. Therefore, COTS products

are lagging in fulfilling these new DMS

requirements. Its time to address these

challenges through different thought

process. The new though process is to

build DMS solution on a generic platform

which can store petabytes of data of any

type and keeping TCO lower. The platform

that is being considered in this paper is,

Hadoop. The solution that is proposed, is

to implement DMS on Hadoop or HDMS,

which is discussed in the remaining part of

the paper.

5 Design Considerations

Design considerations are design activities

which an application designer or architect

needs to finalize before commencing

actual application development. Design

considerations focusing on implementing

capturing, storing, managing, delivering

and archiving related capabilities, in HDMS,

are discussed below.

5.1 High Level Architecture

A high-level architecture of HDMS can be

represented by the following diagram. It

mainly consists of three layers:-

5.1.1 Data Layer

The Data layer consists of Hadoop and

its components such as HDFS and HBase.

HDFS will be used as file storage and

HBase will be used for storing metadata

and files as blob objects. Apache Ranger

is required for configuring authentication

and auditing.

5.1.2 Service Layer

Service layer6 contains services developed

to interact with content stored in HDMS.

Services can be object specific services

such as ContentServices, FolderServices

and operation specific services such as

RecordsMgmt services. In short, the service

layer will have entire logic of interacting

with the content objects and can be

considered as HDMS engine.

5.1.3 View Layer

View layer consists of a user interface

which enables users to interact with the

HDMS. It presents content & data to users

and provides menu items to perform

operations, such as version, update etc. on

the content and data

5.2 Data Layer

Following design activities required for

configuring Hadoop and its component for

HDMS implementation.

5.2.1 Defining Object Types

Metadata template or object definition

consists of list of attributes that helps in

capturing identity and business context of

the content. The section below discusses

how object types can be defined in

Hadoop.

5.2.1.1 Content Objects

In Hadoop, object types can be defined by

defining tables in HBase. Columns defined

in the tables represent the attributes of

the object definition. Since there are

no relationship and joins in HBase, all

attributes of an object type are defined in

one table.

Some of the core attributes that are

required in HDMS are content_id7 to

store unique identification number,

creation_timestamp to store when content

is created, created_by to store who has

created the content object, content_type

to store what type of document is this, etc.

To store folder related attributes folder_id,

content_location etc. are required. Each

cell or row is created with proper attribute

values in HBase represents a content

object. In HBase, columns are grouped

into column families. Relevant column

families are defined, and attributes are

put together into an appropriate column

family. For example, core_attributes can be

one column family and library_service can

be another column family. Library_service

contains attributes those are required to

implement library services.

5.2.1.2 Folder Objects

Although representation and behaviour

of folder object is different than that

of content, object definition of a folder

object is similar to that of content object

definition.

Folder attributes should be defined

in a different HBase table, with core

attributes such as folder_id to store

unique identification number, folder_

name to store the name of the folder,

folder_creation_timestamp to store folder

creation timestamp and folder_creator

to store who has created the folder.

Additionally, folder object should have an

attribute, such as folder_location, to store

its location in folder hierarchy. For example,

a folder object, with folder name “Customer

Documents” created inside folder with

name “HDMS”, which is at root level, should

folder_location attribute value be set to

“HDMS/Customer Documents”.

5.2.2 Security Implementation

In HDMS, security is imposed on objects

to restrict access from unauthorized

users. It provides allowable access, such

as, read, write, delete to an authenticated

user. This is also referred as fine-grained

authorization. Auditing is an additional

security function to keep a detailed log of

what operations are performed by users,

on which content and when. To implement

auditing, Apache Ranger is required.

Coarse-grained authorization is about

controlling which user can access which

resource. Coarse-grained authorization, if

required, can be configured using Apache

Ranger. For example, if auditing data is

saved in HDFS directory, then policies can

be defined in Ranger, to make sure only

designated users can access the HDFS

directory.

It is recommended to use Apache Knox

for securing Hadoop cluster. The Knox

Gateway provides a single access point

for all REST and HTTP interactions with

Hadoop clusters. In other words, Apache

Knox can control who can access Hadoop

cluster.

5.2.2.1 Authentication

Authentication is the process of

determining who the user is, whereas,

Authorization is the process of allowing

the authenticated user what actions s/

he can perform. By default, Hadoop

authentication is set to “simple”. Under this

External Document © 2020 Infosys Limited

configuration, any user can connect to

Hadoop. Therefore, to protect the Hadoop

cluster from unauthorized access, it is

recommended to set the authentication

to “Kerberos”. Once kerberized, a user

connecting to Hadoop cluster needs to

be authenticated. Using Apache Ranger

authentication can be extended and

Enterprise Active Directory (AD) or LDAP

can be used. Apache Ranger can also sync

users from AD or LDAP and store user list in

its own database.

5.2.2.2 Fine-grained
Authorization
Generally, Access Control List (ACL) is
set on every object, either directly or
by inheritance. When an authenticated
user tries to perform an operation on an
object, such as read or write, the system
checks ACL associated with the object. The
operation is permitted only if allowed by
the ACL.

Similarly, fine-grained security control
can be implemented in HBase using a
coprocessor called Access Controller. A
coprocessor is a code that runs inside
HBase and can be restricted to a row or cell
(or object) level. A configured coprocessor
is capable of intercepting operations such
as put, get, delete, etc., and run the code
before the operation is executed.

Using this ability to execute some
code before each operation, an Access
Controller coprocessor can check the user
rights and decide if the user can or cannot
perform the operation8.

What permissions users should have on
an object can also be linked to attribute
value of an object. For example, a content
with security_classification as all, should
be accessible to all users whereas a
content with security_classification as
confidential should be accessible only to
users from a group. When a row (or object)
is put in HBase (put operation in HBase
is equivalent to create), permissions can
be granted based on the attribute value.
For subsequent operations, the ACL or

permissions attached to the row (or object)
can be checked by the coprocessor and
the operation is authorized only if it is
permitted by the ACL.

5.2.2.3 Auditing

When auditing is implemented, specific

actions performed by a user are logged in

database table or in text file. Audit serves

as evidence for an operation performed by

a user, on the content object.

Apache Ranger offers plug-ins for

Hadoop resources such as HDFS, HBase

etc. Once plug-in for the resource is

installed, it generates and sends access

logs to destination. The destination can

be a table in relational database, log4j

or HDFS. By installing Ranger plug-in for

HDFS and HBase and by configuring the

plug-in to capture the user actions such

as create, update, etc., the auditing data

can be generated and saved in the desired

destination.

5.2.3 Storing Content File

When content is uploaded, it is tagged

with the appropriate attribute values

and the binary file is either stored in the

database as blob object or in the file

system. As Hadoop is not optimized for

handling smaller files (<10MB), for HDMS,

both approaches are required. Using

medium objects (MOB)9 feature of HBase,

content with size up to 10MB can be

stored as a blob object. If the size of the

content being stored is greater than 10MB,

the binary file can be stored in HDFS. The

path of the binary file in HDFS can be set

to an attribute as value, to establish soft

link between the content object and its

corresponding binary file.

To facilitate the storage and retrieval of a

binary file, a set of additional attributes,

such as storage_location (database or file

system), file_size, storage_path (HDFS

directory path if stored in HDFS) etc. are

required to be defined in object definition.

5.2.4 Storing Media Files

Attribute file_format can be defined in the

object definition to store the format of the

file as an additional information. Hadoop

can store files of any format. PDF, MS Word

as well as MP3, AVI and so on. There is no

special implementation required to store

and retrieve media files. Therefore, HDMS

can store documents such as PDF as well as

media files such as MP3, AVI files, etc.

5.2.5 Storing Structured Data
To facilitate the storage of structured data,

it should be treated as objects with no

content. To store structured data, table

with appropriate columns need to be

defined. Once the object representing

structured data is defined, no other special

implementation is required to interact with

the content-less object. Services can store,

search and retrieve the structured data just

like any other object. Although, services

can create and store structured data, there

are multiple tools which can ingest millions

of rows of structured data into HBase table

and manage it as objects or records.

External Document © 2020 Infosys Limited

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

5.2.6 Folder Structure

A Folder structure or a File plan is a folder

hierarchy that needs to be defined to

help users to locate content quickly.

Folder objects are created in database

and arranged in a hierarchy by setting

folder_location attribute appropriately.

Multiple file plans can be implemented.

For example, one file plan can be based

on the organization structure, so that all

content of a specific department is stored

in one folder and another file plan can be

based on the creation date of the content,

so that content created on a specific date is

organized in a single place.

Defining object definition for a folder is a

design activity, whereas, creating file plan

is “pre-launch” activity. Folder objects are

created by setting folder_location attribute

appropriately to arrange folders in pre-

defined hierarchy.

There is a concept of metadata-based

Document Management System, where

instead of creating folders and file plans,

content is stored by tagging additional

context values. Content is then presented

by creating different views based on these

context values.

Implementing file plan or no file plan,

both scenarios can be designed and

implemented in HDMS.

5.2.7 Library Services

Library services are functions or operations

such are search, view metadata, upload

or download files, check-out, check-in

etc. To implement library services except

check-in and check-out, no other special

considerations are required. With proper

modelling of services, these functions can

be implemented

To implement the check-out operation,

a set of additional attributes in object

definition are required. For example,

attribute such as is_checked_out, checked_

out_by and checkout_timestamp should

be defined. If a content is checked out,

then is_checked_out should be set to true,

checked_out_by to the user_name who

has checkout and checkout_timestamp

appropriately. Setting these attributes

should be part of checkout method

of the ContentObject service. Value of

these attributes should be verified before

allowing certain operation on the objects.

For example, request to update attribute of

a checked- out object, should be declined.

5.2.8 Versioning

When a user checks-in a previously

checked-out content, a new version of the

content is created and the new content

becomes latest representation (released

version) of the content. To implement

versioning function, attributes such as

previous_content_id to store content_id of

previous version, version_number to store

version number and is_latest to identify

latest content should be added in object

definition.

When a content is checked in, the service

methods should update these attributes

accordingly. While accessing or updating

an object, the service should perform the

operation only on the latest version of the

object. Similarly, search queries should be

appended by “is_latest=true” clause.

5.2.9 Records Management

Using HDMS implemented on Hadoop,

petabytes of structured as well as

unstructured data can be managed as

records.

Specific content or structured data, having

business significance or being a part of an

evidence, are declared as records. Records

are ‘read only’ objects. Records cannot be

updated or modified. To capture record

declaration, attributes, such as “is_record”,

“declared_by” and “record_declaration_

timestamp” should be added in the object

definition.

Retention is applied to a record, based on

an event. For example, when a content

or structured data is archived, retention

is applied on the object and it will be

retained in HDMS until the retention

period is over. Records which are under

retention cannot be deleted. To implement

retention function, a set of attributes

such as “retention_start_date”, “retention_

end_date” should be added in the object

definition.

Disposition report is a report which shows

the records whose retention is over. A

user, member of records manager role,

can run a disposition report and can list

all the records with expired retention.

The user can then either explicitly mark

those records for deletion or can extend its

retention. Records marked for deletion are

then deleted by a batch job.

Records which are required for a legal case

are held for a specific duration (as dictated

by the legal authorities) in the system

by putting a “legal hold” on the records.

“Legal Hold” function can be modelled by

defining attributes such as “marked_for_

deletion”, “legal_hold” etc. in the object

definition and implement it by setting the

value of these attributes appropriately.

All services interacting with objects, should

be developed in such a way that, the

services are aware of these attribute values.

For example, if a content object is marked

for legal hold, then it should not be deleted

by a service. Due to huge scalability of

Hadoop, organizations can build a system

of records catering to different compliance

needs, such as MiFID.

5.2.10 Implementing Archival

Data, structured or unstructured, is

archived when it is no longer accessed. The

factual intention of the archival is to offload

the content or data to cheaper storage

to optimise the resources and cost. To

implement archival in HDMS, data nodes

with cheaper hardware can be added

and the content or data can be moved to

these data nodes. Single HDMS repository

can fulfil use case of recent storage and

archival storage with added value of cost

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited

optimization. Another advantage of this in

place archival, is that, the archived content

will be still accessible. With Hadoop as

backend, huge amount of data can be

archived and managed as records, keeping

TCO lower.

5.2.11 Administration
There will be multiple user interfaces to

administer HDMS. For Administration

of Hadoop cluster Apache, Ambari can

be used. Apache Ambari is a tool for

provisioning, managing, and monitoring

Apache Hadoop clusters. Hue (Hadoop

User Experience) is an open-source Web

interface that supports Apache Hadoop

and resources such as HBase and HDFS.

Hue can also be used for performing

HDMS administration related task such as

creating tables in HBase, creating directory

structure for file storage etc.

HDFS has its own set of commands which

can be executed using command prompt.

Alternately, HDFS exposes a web server

which is capable of performing basic status

monitoring and file browsing operations.

Apache HBase also has its own commands

which can be executed from command

prompt. Using command prompt, activities

such as table creation etc. required for

HDMS implementation can be performed.

5.3 Service Layer

Service layer consists of object and

functional services and encapsulate

business logic to interact with objects

stored in Hadoop

5.3.1 Defining and Developing
Services

To interact with content and folder objects,

web services needs to be modelled and

developed. Services should be a single

point of contact for interacting with the

HDMS objects. Services should have

methods corresponding to the operations

performed on the objects. For example, to

interact with an object of content_obj type,

there should be a dedicated ContentObject

service. Only the ContentObject service

will interact with content_obj objects.

The ContentObject service might have

different methods, such as create, read and

update, corresponding to the operations

performed on the objects.

Additional services based on the user

requirement, such as search and retrieve

are also required. Abstraction of interaction

logic with objects in services, will make the

HDMS independent of backend Hadoop

implementation.

Microservices can also be used to build

the service layer. Microservices can be

modelled based on HDMS functions

or operations, for example, check-out

operation. Check-out operation needs

three steps: first, check if the content is

already checked-out. If no, then the next

step is to check whether the user has

appropriate permissions on the object or

not. If yes, then checkout operation can be

performed on the object. To implement the

check-out operation using microservices,

three services are needed, a service to

check whether the object is available

for check-out, another service to check

whether user has appropriate permissions.

Third service will set attributes such as

checked_out_by, checked_out_timestamp

and is_checked_out appropriately to mark

the object is checked out by the user.

Implementing microservices architecture

can deliver advantages such as enhanced

continuous integration and deployment

etc. but it has few disadvantages such as

higher cost and project complexity.

Universal Description, Discovery, and

Integration (UDDI) is an XML-based registry

for web services whereas for microservices,

a database is used for service registry.

In case of microservices, registration

pattern can be self (service itself interact

with service registry) or third party (a

different process poll services and update

service registry). In client-side discovery,

client query service registry to access

microservices whereas in service side

discovery an API Gateway query service

registry and forwards the client request

accordingly.

Service layer needs to be highly

configurable. Which HBase table to interact,

what is the list of attributes etc. should

be configured externally through use of

property files or separate configuration

services. The team developing services

need to have complementary skills of

Document Management System and

Hadoop.

5.4 View Layer

View layer consists of a user interface

which will enable users to interact with

data layer through service layer.

5.4.1 Lean User Interface

All Document Management System

products offer a User Interface (UI) to

connect to their system. These user

interfaces have many menus and

submenus and sometimes, it causes

the UI overwhelming for a user. A lean

user interface, which has only required

operations, has a better user adoption.

Such user interface can be developed

by using new generation browser-based

technology, such as, Vue.js. An additional

advantage of Vue.js is that it can easily

consume REST services. Using Vue.js, a

user interface can be developed with

responsive design approach, so that it can

be accessed on any device.

All key functions such as create, upload,

update etc. should be available on the

user interface as clickable menu items.

Once a menu is clicked, the respective

function can be performed by executing

appropriate service and message can be

displayed on the user interface to indicate

the result of the execution. For example, to

update attributes of an object, a user needs

to key-in new values on the user interface

and click on update. In service layer,

ContentObject service’s “updateObject”

method can be called, which in turn,

updates the attributes of the object.

Some of the administration function can

also be incorporated in the user interface

and these functions can be enabled if

logged in user belongs to admin role.

Functions such as creating additional

folders, creating archival policies etc. can

be part of the user interface.

5.5 Search

Search is an important feature of any

Document Management System . There

are two type of searches: attribute search

or metadata search and full text search.

In attribute search, value of an attribute is

searched. In full text search, text of content

(or document) is searched.

As HBase supports attribute search,

attribute or metadata search can be

implemented in HDMS. For implementing

full text search an external search tool

such as Solr is needed. With the help of

the external search tool, both the search

features, attribute as well as full text search,

can be implemented. Use of external

search engine will not only improve the

search feature, but it will also make the

search faster. Since, a search request goes

to the external search engine, it helps in

reducing the load on Hadoop.

6 Benefits

6.1 Generic Solution

HDMS is a generic solution which focus

on new DMS requirements. HDMS can be

easily tweaked to implement additional

requirements and use cases. It can also be

used as headless DMS.

6.2 High Volume

Hadoop can scale horizontally, on

commodity hardware, to thousands of

nodes and hence can store petabytes of

data. With Hadoop as a backend, volume

of content stored in HDMS, can grow to

petabytes.

6.3 Media Files Management
Current Document Management Systems

provide media file management either as

a separate product or an add-on with a

separate license. Since, any file irrespective

of its format can be stored and managed

in HDMS, the requirement of media file

management in single repository, is

fulfilled.

6.4 Fault Tolerant DMS
Hadoop has a powerful feature of data

replication which guarantees the content

and data availability. If a data node

(or machine) fails or a data block gets

corrupted, the data can be accessed from

its copy. Therefore, in HDMS, risk of content

or data loss is automatically mitigated.

Replication feature also eliminates the

need of time-consuming backup and

restore procedures.

6.5 Content Anywhere, Any device
A user interface built using Vue.js can be

based on responsive design approach

so that user interface can be accessed

from any device. Coupled with the

organizational tools such as VPN, content

can be accessed from anywhere and any

device.

6.6 Cost
Licensing model of most of the Document

Management System is “per user”

based. Cost of the backend database is

an additional one. For an organization

where user base is large, licensing cost

is significant and it increases the total

cost of ownership (TCO). As compared

to a traditional Document Management

Systems, cost involved in implementing

HDMS is much cheaper and it will be

mainly, the subscription cost of Hadoop.

Apache Hadoop is a free product. For other

open source Hadoop implementation, such

as HortonWorks, the subscription cost will

be much lower.

6.7 In Place Archival

For HDMS, there is no need to have a

separate archival solution. In the same

Hadoop cluster, cheaper data nodes can be

added, and old data can be moved to these

cheaper data nodes. The same Hadoop

cluster can be used for both structured as

well as unstructured data archival.

6.8 Integrated HDMS

During development, services required

for interacting with HDMS, can be aligned

towards end-to-end integration. Using

these services, business applications can

retrieve the most recent information and

use the same in its processes.

6.9 Content Analytics

Hadoop can be integrated with content

analytics tools to find out actionable

insights. For example, data gathered using

queries to find out who is generating

which type of content, which is the most

searched keyword, which is keyword

is returning zero results, system usage,

is it increasing or decreasing etc. helps

understand user expectations and HDMS

usage. Such information can be used

to enhance user experience and HDMS

adoptions. Depending on the data stored

in Hadoop, content analytics can be

extended for more complex use cases.

6.10 No Vendor Locking

Object and functional services are

responsible for connecting to Hadoop

and performing operations on objects.

Since every operation on object is being

channelized through services, dependency

on Hadoop implementation is minimized.

If today Apache Hadoop is used, tomorrow

some other implementation of Hadoop can

be used without a significant impact on

overall ecosystem.

External Document © 2020 Infosys Limited

Conclusion

To implement HDMS, the key design

considerations are object definition,

service implementation, security

implementation and methodology for

storing and managing binary files in

Hadoop. Implementing functions such

as folder structure, library services,

versioning, records management and

archival are independent of Hadoop

and can be implemented by extending

the logic of managing objects, in

services. Usage of external search

engine will make search function faster

and will help in distributing the load.

A lean user interface will help users in

completing the daily work faster and

hence will have better adoption. Vue.js

based user interface can be developed

using responsive design approach,

which can be accessed from mobile

devices.

By architecture HDMS offers advantages

such as data resilience, very minimal or

no backup and restore procedures, no

need for deployment in high availability

mode. HDMS is a better fitment when

DMS need to be deployed in headless

architecture, huge amount of data

needs to be stored and documents as

well as media files need to be stored

in single repository. Additionally,

advanced capabilities of content

archival, tagging, analytics can be

easily integrated over this flexible

architecture.

In nutshell, HDMS is a generic solution

which can provide multifaceted

benefits and can be used for various use

cases. HDMS not only fulfils traditional

requirements but also conveniently

addresses new document management

system requirements.

External Document © 2020 Infosys Limited

© 2020 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

References

1. Focus of this paper is to conceptually examine the feasibility of implementing Document Management System on Hadoop and not

implementing Content Services or Enterprise Content Management (ECM)

2. http://www.aiim.org/What-is-ECM-Enterprise-Content-Management

3. Hadoop can have Apache Accumulo, Cassandra etc., as its database. These databases are not considered here.

4. https://www.waterfordtechnologies.com/big-data-interesting-facts/

5. http://876solutions.com/sites/default/files/white-papers/Alfresco_White_Paper_TCO_for_ECM.pdf

6. Component services such as WebHDFS and Stargate are not considered as part of HDMS service layer.

7. http://hbase.apache.org/0.94/book/rowkey.design.html talks about dos and don’ts of defining unique identification number in HBase

8. http://blog.cloudera.com/blog/2012/09/understanding-user-authentication-and-authorization-in-apache-hbase/

9. https://issues.apache.org/jira/browse/HBASE-11339

About the Author

Girish Pande
Senior Technology Architect, Infosys Digital.

A senior technology architect with digital practice of financial unit at Infosys, Girish Pande, has around 19 years of
experience in Information Technology. He has played key role in architecting and implementing end to end Content
Services, Enterprize Search, NLP and Automation solutions for various client across the globe. He is an M. Tech. in
Industrial Engineering & Operations Research from IIT Bombay.

He can be reached at girish_pande@Infosys.com.

https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
https://www.infosys.com/

