
DEVELOPING HIGH-
PERFORMING MEDICAL
DEVICES SOFTWARE –
UNDERSTANDING WHAT
LIES BEHIND IT

WHITE PAPER

Developing high-performing medical devices software – understanding what lies behind it External Document © 2022 Infosys Limited

Contents

Introduction 4

Medical devices software classification 4

Some standards used in the medical domain 5

Focus is on software - defective software emerging as a key reason in medical device recalls 5

Typical components used in medical device software applications 5

Key design considerations for medical device software development 6

Design with regulatory classification in mind 6

Design for software reliability 6

Design for modularity 6

Robust data structure design 6

Design to abstract 6

Design for secure software 6

Design for Code level security 6

Design for network security 6

UI design to minimize user error and aid the user to provide correct inputs 7

Software traceability and software documentation. 7

Software validation 8

Unit testing 8

Unit test automation 8

System testing 8

System test automation 8

Summary 8

Introduction
Software is now an integral part of
medical devices. In fact, we now have
Software as a Medical Device (SaMD)
in addition to being present in medical
devices (SiMD). Developing medical
device software demands rigor and is
subjected to regulatory approvals too.
Defective software leads to high costs
for the device manufacturers and even
device recalls.

This document, aimed at medical
application developers and medical
product designers, presents the
factors that must be considered
while developing software
for medical devices subject to
regulatory approvals.

It addresses architectural, design
and system test considerations and
shares best practices. The document
also touches upon the UI design
aspects as well as the traceability of
the artifacts generated during the
software development process. The
views are derived from the author’s

experience developing Class 3 medical
device software.

This document does not address the
following aspects.

• Aspects of documentation for
regulatory submissions.

• Any specific software development
life cycle models

• Any specific commercial tools/
operating systems used during
medical software development.

• Quality management process
or medical standards followed
in medical device software
development. The reader can refer
to Section 4.0 for more details on
the applicable standards.

Medical devices
software classification
Medical device software mandates
special software development
considerations to ensure safety.

There are three software safety classes
as defined by IEC 62304

• Class A: The software cannot cause
any harm

• Class B: The software can cause
minor harm such as injuries

• Class C: The software can cause
major harm, such as severe injuries
or even death

There are three safety classes as
defined by FDA based on their risks
and the regulatory controls necessary8

• Class 1: Lowest risk that presents
the minimal potential for harm

• Class 2: Moderate risk - higher
risk than Class 1. These require
premarket notification.

• Class 3: These devices sustain
or support life, are implanted or
present potential unreasonable
risk of illness or injury, and require
premarket approvals

Developing high-performing medical devices software – understanding what lies behind itExternal Document © 2022 Infosys Limited

Some standards used in
the medical domain
The section gives an overview of the
most used standards in the medical
device domain.1,2

ISO Standards

• ISO 13485 - Medical devices —
quality management systems
— requirements for regulatory
purposes

• ISO 14971 - Medical devices —
application of risk management to
medical devices

• ISO 12207 - Systems and software
engineering — software life cycle
processes

• ISO/IEC/IEEE 15288 - Systems and
software engineering — System life
cycle processes

US-FDA

• 21 CFR 820 – Quality System
Regulation

• 21 CFR Part 814 - Premarket
Approval (PMA)

• 21 CFR Part 11 - Electronic Records;
Electronic Signatures - Scope and
Application

Focus is on software
- defective software
emerging as a key
reason in medical device
recalls
As per the Sedgwick Q3 Recall
Index, medical device recalls for Q3
2021 increased nearly 36%. Figure 1
provides the details. This edition of
the Sedgwick Brand Protection Recall
Index focuses on U.S. product recall
data and regulatory developments.4

Typical components
used in medical device
software applications
Most medical device software has the
following key components - Operating
System (OS)

• OS or Platform API – may include
API for network programming, API
for concurrent programming, File
System API, Math API

• Tools or libraries used in
development – may include data
structure implementation, parsers

• Test infrastructure – may be
created by the medical device
software provider or by using
the platform/language provided
standard test infrastructure (NUnit,
JUnit)

• UI – HTML, JavaScript etc.

• Medical domain application
software

These components will need to be
assessed to be classified as non-
medical software, Class 1, Class 2, or
Class 3.

Figure 1 Medical device recalls - an overview

Software Concerns remained the
top cause FOR recalls 21 times
in the last 22 quarters. These 41
events accounted for 17.4% of
third QUARTER RECALLS.

Developing high-performing medical devices software – understanding what lies behind it External Document © 2022 Infosys Limited

0

10

20

30

40

50

Software Mislabeling Parts Issue Quality Safety

Number of recalls by reason

Key design
considerations for
medical device software
development
Since software remains a critical
component, it is necessary to design
the software based on the following
key principles.

Design with regulatory
classification in mind

Partition s software into functional
components. Then, based on the
functionality provided by these
components, they can receive different
regulatory classifications.

Design for software reliability

Using standard design and
architectural patterns or creating
proprietary design patterns can help
reduce software. Reusing these
components in a family of products
ensures that these patterns are well
tested, decreases the risks of errors in
the software and improves the system
reliability.

Software reviews will be more efficient
as the review teams will understand the
design or architectural patterns better.

Design for modularity

The software should be designed
to be modular, comprising different
components. Components should be
designed to be updated separately as
needed and reused across a family of
products. The typical method is to use
them as software libraries/binaries.
In addition, components designed
across a family of products bring down
development costs.

Robust data structure design

The software should ensure that the
application data only has relevant
values. Best practices for this are:

• Define data types with an upper
limit and a lower limit or a set of
values relevant to the application.

• Define data types to have an
initial value

• If a particular data value is
dependent on another data value,
then enforce the inter-dependency.

• Define invalid state as yet another
part of the data value set.

• Use circular buffers to store
large amounts of in-memory
application data.

Design to abstract

This is a key architectural concept used
in medical software development.
We recommend adopting a layered
architecture, with each layer
performing a specific function or a set
of functions

Some of the examples that could be
followed are

• Communication Layer – Responsible
for data communication with the
external system

• Protocol Exchange Layer –
Responsible for translating the data
exchange protocols transmitted
across systems

• View layer – Responsible for
presentation to the external user of
the system

• Software Update Layer -Responsible
for secure software updates

• Save Context Layer -Responsible
for saving the user session context
and is useful in understanding user
settings and triage of any issues

• Business Logic Layer – Responsible
for implementing the business logic
specific to a product.

Design for secure software

It is important to design the software
such that the IP of the medical device
vendor is well-protected and ensure

that the software is not tampered with
to compromise the medical device.
In addition, if the medical device
software connects to an external
network, cybersecurity aspects will
need to be considered.

Design for Code level security

Medical device software that runs
in untrusted environments such as
customer devices should incorporate
application shielding. Application
shielding includes application
hardening and anti-tampering. While
application hardening techniques
include code obfuscation and
encryption. Anti-tampering techniques
include debugging detection or
emulation.3

Design for network security

If the medical device software is
connected to the network or the
cloud, it is important to consider cyber
security. Some of the good practices to
follow are -

• Unauthorized medical device
access over the network – The
medical device communication
can be designed such that the
device will connect only to a known
Edge gateway. The details of the
communication link to the Edge
gateway can be provided over an
out of band close range wireless
communication link like NFC.

• Data transfer security over the
network – A secure data transfer
strategy must be adopted such that
data encryption is done both at the
network and application layers. An
out of band communication link,
such as NFC, inductive telemetry
must be used to transfer the
encryption keys. Wireless standard
bodies, e.g., Bluetooth SIG in the
Bluetooth Core Specification,
recommend encryption keys of at
least seven octets.8

• Data integrity checks when sent
over the network - Data should
always be encapsulated into

Developing high-performing medical devices software – understanding what lies behind itExternal Document © 2022 Infosys Limited

packets with a cyclic redundancy
check (CRC). The receiver should
then evaluate the CRC for validity.

• Malicious attacks on the medical
device - The medical device could
be subject to malicious attacks. One
way to mitigate an attack is for the
medical device to discard the data
when it finds the received data is
invalid when opening a connection.
The termination of the connection
could be done based on repeated
receipt of invalid data.

• Vulnerabilities in cybersecurity may
present a risk to the safe operation
of networked medical devices
using OTS software. A well-defined
mechanism should be in place to
apply the OTS software vendor
provided software patches in a
timely manner.7

UI design to minimize user error
and aid the user to provide
correct inputs

Some of the good practices are -

• Design the UI such that it is not
confusing to the user.

• Design the UI to prevent an action
that the user cannot perform.

• Design UI to allow only permitted
values for data to be entered by
the user.

• Understand the environment in
which the software is to be used
and the workflow that a medical
practitioner follows when using the
software before designing the UI.

• Harness existing popular paradigms
of UI design. For example, touch
and swipe gestures prevalent in
smartphones.

• Design the UI to provide sufficient
messages to guide the correct data
input intuitively.

• Design the UI to present key
application errors or warnings that
impact patient health.

Software traceability
and software
documentation.
Software traceability and code
level documentation are critical

components for medical device
software development.

Medical device manufacturers typically
use tools covering all aspects of
the software development process,
including source code management
and integrating the source code
developed with the unit tests
performed. The source code developed
should be traceable to the design
inputs or the software requirements.
Likewise, verification or system tests
should have traceability to design
inputs or software requirements.

Defect tracking tools will need to be
used to track and trace them to the
software fixes applied to resolve them.

There should be a specific repository
to cover field issues and track their
resolution.

Code level documentation assumes
significance; further, complex software
implementations and algorithms
should be described in detail in
the code

Developing high-performing medical devices software – understanding what lies behind it External Document © 2022 Infosys Limited

Software validation
In medical device software
development, the length of the
validation phase is significant and
could account for as much as 40% of
the software development lifecycle.

Since the software can come from
different sources, the validation
aspects should cover the software
from all the sources. The resultant
software validation process should
be commensurate with the safety
risk associated with these software
components. Regardless of the
source of components, the software
developer and device manufacturer
retain the responsibility for valid
software.6

• In-house developed software:
This component is completely
under the control of the medical
device software vendor and can be
managed better. Validation best
practices discussed in this paper can
be adopted.

• Off-the-Shelf Software [OTS]
(compilers/debuggers/operating
systems/tools): It is good to
maintain formal business
relationships with the OTS software
vendors, thus ensuring timely
receipt of information about quality
problems and recommended
corrective and preventive actions.5

Unit testing

Unit Testing plays a key role in medical
device software development. During
development, software tools should
help in code coverage and static
analysis. Therefore, unit tests should, at
a minimum, follow these guidelines.

• Statement coverage: All statements
in the code will need to be exercised
by the unit test cases.

• Multi-condition coverage: All
possible conditions in the software’s
decision making must be exercised
by the unit test cases. Typically, this
is achieved through “Truth Tables.”

• Loop coverage: Unit tests should
cover all aspects of the execution
of the program loop from zero
iteration to maximum iteration. Unit
tests should check for scenarios
where the software may not exit
the loop resulting in a critical
software issue.

Unit test automation

Unit test automation wide use in
medical device software development
has become a norm. It can
incrementally verify that existing
functionality is not broken as software
features are added.

• It is good to use unit test
frameworks specific to the language
in which the software is developed,
e.g., NUnit for C#.

• Many medical device manufacturers
invest in building custom unit
test frameworks that help them
significantly reduce the cost and
time of software development.

System testing

As most medical device software is
developed for a family of devices,
software maintenance can represent
a very large percentage of the total
cost of software over the product
life cycle. As a result, an established
comprehensive software validation
process can reduce the long-term cost
of software by reducing the cost of
validation for each subsequent release
of the software. In addition, many
established medical device vendors
are automating at least 98% of system
automation tests.

System test automation

Existing automation tools that can
automate user actions on the UI, such
as touch and other gestures, must be
utilized. These test tools also compare
the resulting screen transitions and
verify whether the transitions are as
expected, thus significantly reducing
manual testing.

Automation tools can also help
monitor the system’s CPU usage and
memory while executing the tests and
detect any memory issues that the
software may be causing.

Summary
Some of the best practices addressed
in the document are -

• Design with regulatory classification
in mind.

• Design for reliability using standard
design and architectural patterns or
create proprietary design patterns.

• Medical device software that
runs in untrusted environments
such as customer devices should
incorporate application shielding.

• Enforce application data validity
through the data structure design.

• If the medical device software
is connected to the network or
cloud, it is important to consider
cybersecurity aspects such as
data encryption, CRC checks
and authentication of network
connections.

• All complex software
implementation should be
documented well in the code.

• Develop automated unit and
system level tests

Medical device software can transform
medical products and drive innovation
in medical devices. But medical
software must be safe and reliable.
It can be achieved through careful
design of software and comprehensive
validation of the software, using best
practices followed by industry leaders
in this domain.

Developing high-performing medical devices software – understanding what lies behind itExternal Document © 2022 Infosys Limited

Developing high-performing medical devices software – understanding what lies behind it External Document © 2022 Infosys Limited

References:
1. https://www.fda.gov/regulatory-information

2. https://www.iso.org/standards.html

3. https://digital.ai/application-protection

4. https://www.sedgwick.com (RECALL INDEX 2021 Edition 3. Product Recall United States Edition)

5. https://www.fda.gov/media/71794/download (Guidance for Industry, FDA Reviewers and Compliance on Off-the-Shelf Software Use
in Medical Devices)

6. https://www.fda.gov/media/73141/download (General Principles of Software Validation; Final Guidance for Industry and FDA Staff)

7. https://www.fda.gov/media/72154/download (Guidance for Industry -Cybersecurity for Networked Medical Devices Containing Off
the-Shelf (OTS) Software)

8. https://www.bluetooth.com/specifications/bluetooth-core-specification/

Developing high-performing medical devices software – understanding what lies behind itExternal Document © 2022 Infosys Limited

Author

Balaji Lakshmi Narasimhan
Senior Principal Technology Architect,
Infosys

https://www.fda.gov/regulatory-information
https://www.iso.org/standards.html
https://digital.ai/application-protection
https://www.sedgwick.com
https://www.fda.gov/media/71794/download
https://www.fda.gov/media/73141/download
https://www.fda.gov/media/72154/download
https://www.bluetooth.com/specifications/bluetooth-core-specification/

© 2022 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

Stay ConnectedInfosys.com | NYSE : INFY

For more information, contact askus@infosys.com

https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
www.infosys.com
mailto:askus%40infosys.com?subject=

