
WHITE PAPER

RECIPES FOR SUCCESSFUL LEGACY
TRANSFORMATION TO CLOUD

External Document © 2023 Infosys Limited

Moving to the cloud is a mandate for enterprises big and small

to stay competitive and relevant and reap both business and

technical benefits of agility, scalability as digital transformation

is enabled, and growth. This journey to the cloud will go

through different routes and pitstops depending on the size

and composition of the current IT estate and the stability that's

expected due to business and regulatory needs during a major

technical revamp and migration before finally reaching an end

state that's stable enough to consider decommissioning of the

legacy landscape. In this case study, we share our experiences and

learnings from a large modernization and transformation of the

core PLM portfolio of one of the largest retailers worldwide.

Context and business scenario

The landscape to be transformed was a custom PLM stack

built in the late 1990s and early 2000s. It encompassed the

key business and engineering functions of a new product

launch, packaging and R&D required for their product to be

created end-to-end from conceptualization to market launch.

The kind of apps and technologies were typical of that period

for core engineering apps, i.e., desktop/thick client VB backed

by 2 Oracle databases, each having over 5 TB of data. There

were also a few apps on .Net, SharePoint and Crystal Reports,

though the majority was in VB. Overall, there were around 40

apps of varied sizes, from some having a couple of screens

with a handful of users and others with over 500 screens

and 5K varied users ranging from product managers and

packaging developers to chemists and R&D scientists. So, the

customer needed clear business and technical objectives to

achieve this transformation.

Business and technical objectives
• Resolve the technical risks associated with EOL and

unsupported technologies and platforms

• Gain user productivity efficiency by using modern

technologies

• Reduce new product launch time

• Reduce TCO

• Use scalable architecture to support future business

expansion

External Document © 2023 Infosys Limited

Solution approach

An extensive assessment of the existing landscape from the

business process, technology, architecture, data, users, and

operations point of view was done to arrive at the solution

recommendations. It was found that almost 90% of the apps

needed a full re-architecture and rewrite to a microservices based

cloud-native tech stack. However, the remaining 10% could be

migrated using a combination of lift and shift and re-platforming.

This included the database, which had most of the business logic

embedded within views, stored procedures and other DB objects.

This decision was taken because EOL technologies had to be

eliminated while keeping core logic and feature parity intact with

no risk to the business processes.

The transformation was planned in two phases. The first

phase focused on as-is migration with a modern tech stack

and architecture as a foundation. The second phase involved

transforming business processes and eliminating any technology

debt.

Figure 1 shows the simplified view of the legacy and target

architectures.

Figure 1 Legacy and target architectures

Responsive web
app

GraphQL gateway

MS 1 MS 2 MS N

Kafka

Oracle 18c

…..

Azure

Thick client App
(Forms,

Controls)

Oracle 11g

Web app
(Server-side

pages)
Citrix

Visual Basic 6 Classic ASP

On-premise

• 2-tier architecture
• Thick client apps installed locally or accessed via Citrix
• Web apps usable only on desktop with limited interactivity
• Oracle DB user-based credentials and roles
• Limited tools for troubleshooting, support and operations
• Complex manual build/deployment process

• N-tier horizontally scalable architecture on cloud
• Responsive web app with intuitive and consistent UI/UX

across platform, hosted on Azure cloud
• SSO with AD credentials and well-de�ned roles framework
• Distributed logging and tracing with automated alerts
• Fully DevSecOps build and deployment pipelines

External Document © 2023 Infosys Limited

As part of the initial assessment based on available product

documentation, discussions with subject matter experts (SME)

and product owners and high-level code and app flow analysis,

it emerged that most of the smaller apps had a unique role in

the overall business process and hence represented a single

business capability. We identified the functionalities within

these as candidates for separate microservices. However, the

larger ones were true monoliths that served several functions

for multiple user groups. The data used was also spread across

with upstream/downstream dependencies on the smaller

The following sections discuss key challenges encountered, architecture and design considerations, and solutions.

Microservices as core and business capabilities

apps. The identification of services corresponding to these

was based on domain driven design with one service built

around a core domain object like Product, Formula and Bill

Of Material (BOM). Apart from business capabilities, the

core services required for user management, master data

handling, and messaging were also developed. Figure 2

shows how apps could leverage these core and business

services for their realization. Some of these services didn't

have an exact match in the legacy world but were needed for

the new microservices based design paradigm.

Figure 2 Microservices landscape

In this first phase, once the services were identified, the

migration approach comprised the following key steps:

• Extract business logic from the legacy code and database,

and move it to the new stack service layer, leaving the DB

as a pure data store only.

• Retain the logic within the DB (stored procedures) for

cases that involved complex calculations and nested data

retrievals involving 1000s of DB queries to process a single

API call to keep performance intact. This transformation

was planned in phase 2 of the initiative to remove all

technical debt.

• Perform analysis of complex screens that required data from

multiple sources and the service API design such that they

could be rendered from a single API or within two to three calls

in the worst case.

• Conduct tradeoff analysis and proof of concepts on UI/gateway

aggregation of multiple API responses vs. data aggregation

at a single service backend. We chose the latter based on

performance SLA considerations.

• Keep the cross-service communication asynchronous using

Kafka and avoid chaining of calls.

• Perform load tests at 10x the expected user load for critical user

flows to ensure performance is within acceptable limits.

Messaging Pro�le Ref data User

App 1 App 2

Product Supplier BOM Pricing

Core services Domain services

External Document © 2023 Infosys Limited

Co-existence and data migration

A key requirement for this transformation was to have real-time

bidirectional data synchronization. It was needed since the apps

and users would be migrated to the new platform incrementally,

and the data flow would happen from both platforms during

the transition phase. A few use cases had been performed (from

the same user role or different use role) to complete some of the

business processes and workflows, ensuring data sync in real-time

in both systems. This was referred to as co-existence and had

a major impact on the logical and physical data models for the

microservices. The key design and implementation approaches for

data modeling and synchronization included:

• The data partitioning was done based on schema per service,

with each service owning the writes to its schema, while reads

could be done across schemas using cross-schema views. The

big legacy schemas (Schema1, Schema2) with up to 500 tables

were split into smaller schemas (S1, S2 etc. in in Figure 3) based

on the domain model, having 20 to 50 tables each.

• Data synchronization was done using Oracle Golden Gate

(OGG), and configurations (source<-> target table mappings)

were carefully analyzed and grouped to keep dependent tables

together and have maximum parallelism for high performance.

• Keeping the table structures similar between both DBs

helped to simplify the OGG configurations and keep the data

corrections minimal in cases where OGG couldn't replicate due

to network issues or conflicts.

• The data synchronization was continuously monitored using

custom scripts that compared data to the column level values,

and mismatches were reported and corrected.

Figure 3 Schema partitioning and data replication

The data migration was done in phases along with the respective

application releases, and OGG sync was set up for the migrated

tables in line with the migration. After every migration, a

comprehensive data validation report was generated to ensure

the data consistency was maintained, and any delta generated

during the release window was manually synced.

Schema 1

Schema 2

S1

S2

S3

S4

S5

S7

S6

S8

Cloud DB On-premise DB

OGG components
(Extract, Replicat etc.)Schema partitioning and data replication

External Document © 2023 Infosys Limited

User experience revamp

A unified user experience across the applications was a key

guiding principle for the transformation. The existing apps

were mostly thick client based and installed on the user's

machine or accessed via Citrix. Each app had its own login;

in some cases, the same user had multiple credentials per

app based on the role they represented. As part of the UX

revamp, a single landing page was created, which listed

all the apps the user had access to, their key action items,

stats and preferences. To enable this, a user management

data model and service was created, which mapped all the

multiple identities in the legacy system to a single user ID and

migrated the required attributes from all the disparate user

data sources into the new data model. This included their roles

and permissions, which were handled using custom Oracle

roles in the existing system. In addition, the user ID was linked

with SSO, resulting in a seamless login and access experience

across apps.

Moving from thick client windows based apps to web

apps were the other major shift in terms of UX and UI

implementation. A few best practices followed were:

• The legacy apps had features using keyboard shortcuts,

drag and drop across windows and tight integration with

other apps like Outlook and Excel. These were redesigned

considering the browser experience with appropriate

menus, controls and forms.

• There was no limit on the amount of data a table

could hold in the legacy world, which was replaced

with paginated grids and lazy loading/infinite scroll

experiences. In addition, some screens and flows were

entirely revamped in consultation with the end users to

simplify the business process.

• Better data integration enabled improved user productivity

by eliminating the need to copy/paste data between apps,

replacing it with a simple lookup or auto population based

on context.

• A common component library and style guide definition

ensured a consistent look and feel across the apps while

enhancing developer productivity. However, there

were certain cases where licensed UI libraries had to be

used to meet the business-specific UI and data loading

requirements.

Extensive documentation and training videos were created

to help transition users to the new system. The user feedback

was excellent, and the transformation eliminated their UX pain

points with the old system.

External Document © 2023 Infosys Limited

Development and release strategy
A strong DevOps culture and release process was built in from the

start, with refinements done along the way. The project team was

over 300 strong at its peak, spread across multiple locations and

time zones with UI, backend, database and QA skills. They were

augmented with a cross-functional team of architects, business

analysts, DevOps engineers and program leads. There was a high

level of automation in the build, deployment, and regression

testing suites. Code quality gates were set up and regularly

monitored for compliance. The branching/merge strategy had

rules to ensure all merges to the deployable branches were done

through approved pull requests only. A stable build was deployed

to the QA environment for functional validation at logical points in

time. This involved manual testing to compare the apps between

the legacy and rewrite versions to ensure they match functionality

and do not have any response time degradation in the new apps.

Each production release was meticulously tracked with a cutover

plan that listed each team's activities and duration. Then, the same

was validated with a dry-run in a production-like environment.

Key learnings and best practices
During this major transformation journey, there were many

learnings from people, process and technology aspects.

Appropriate course corrections were done to ensure it was on

track and culminated successfully. A few key ones are summarized

below

• The documentation gives a start for legacy apps, but a

thorough analysis of the app, its flows (beyond the happy

path) and integrations are necessary to understand its true

complexity. This may not always be evident from a black box

view, and source code analysis is the only way to identify

potential issues and dependencies related to its migration.

• Discuss with the SMEs and product owners the features that are

really needed in the new version, since the legacy app could

have obsolete features that are still reachable. In addition,

a prioritized product backlog needs to be created before

commencing the migration.

• Demo UI and UX change early to the users for early feedback,

even though it's built based on signed-off specs and

wireframes.

• Identify each app's top performance critical scenarios and

establish response time baselines using data volumes similar to

that used in Production. Then, validate that the same or better

metrics are achieved in the new system using manual and load

testing with the expected concurrent user load.

• Set up a robust logging, monitoring and alerting framework

and ensure the services and endpoints send the required logs

and traces to this system and review them for usefulness. Use

an Application Performance Monitoring (APM) tool to generate

the performance profile and identify /resolve issues during the

development/QA phase.

• Perform data validation and comparison frequently to ensure

replication works as expected. Lay out a plan to identify and

rectify data issues.

• Keep track of the dependencies of the new platform on the

existing one and design such that the former can function with

minimal/no changes once the legacy system is ready to be

decommissioned after full cutover. This will help in a smooth

decommissioning phase rather than requiring a full-blown

system analysis/assessment again.

© 2023 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

About the Authors
Joseph Alex
Principal Technology Architect, Infosys

Krishna Markande
Associate Vice President, Senior Principal Technology Architect, Infosys

Conclusion

Cloud transformation programs that require a complete re-
architecture must consider multiple system design, process
aspects, and weigh their pros and cons before taking a path
forward. It becomes even more challenging when there's a
need for a legacy system to continue with partial use cases
along with the new system. The strategy to be applied and
the robustness of the overall transformation approach
and release process is critical for success. Also, a phased

approach by segregating technology transformation along with
long-term architecture and business process transformation
makes better sense in such large transformations. This helps in
de-risking EOL unsupported technologies much faster. Special
attention should be paid to data migration, user migration,
training and support related areas apart from technical
transformation. Organization level change management also
plays a crucial role in such transformations.

https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys

