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SYSTEMATIC APPROACH AND 
BEST PRACTICES IN PREDICTIVE 
MAINTENANCE



Predictive maintenance is an innovative 
strategy aimed at performing maintenance 
on equipment only when it is predicted 
to fail instead of reacting to failures, 
thereby reducing maintenance spend 
and unplanned operational disruptions. 
The Predictive maintenance solution is 
built by using data analytics and machine 
learning techniques applied to equipment-
related historical data combined with an 
understanding of underlying engineering. 
The effectiveness and reliability of the 
solution depend on how accurately and 
efficiently the prediction models capture 
the trends and signatures in data that 
are associated with impending failures. 
This white paper provides an overview of 
the systematic process required to build 
these prediction models, and the rigorous 
analysis and validation needed at each 
step. It also outlines best practices one 
should follow and discusses functional 
architecture aspects that need to be 
considered in solution deployment.

Executive Summary
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In asset-intensive industries such as 
manufacturing, mining and oil and gas, 
critical equipment must be available 
without breakdowns in the middle of 
production cycles. The cost of unexpected 
breakdowns and accompanying 
disruptions to production continues to be 
a real problem for companies. Traditionally, 
companies have adopted a planned 
maintenance strategy to mitigate the 
chances of unplanned equipment failures 
by undertaking periodic maintenance 
or replacing components irrespective of 
the equipment’s condition. However, this 
approach makes maintenance costly. 

Several data elements as listed below 
are considered to develop a predictive 
maintenance solution; however, not all the 
data may be available in every scenario. 
The sensor or alarm data and the failures 
information are required at minimum to 
build the solution.

i.	� Sensor data: Time-series data from 
various equipment sensor readings such 
as temperature, pressure and vibration 
saved in historians or a similar database 
system 

ii.	 �Alarm data: Alarms from equipment 
component systems programmed at the 
hardware level to capture out-of-normal 
events such as low/high pump pressure, 
unresponsive sensor, abnormal operator 
behavior (in an attempt to counter an 
underlying problem)

iii.	�Oil analysis data:  Historical data of 
the analyses of oil samples collected 
from various components of the 
equipment. These measurements show 
the amount of wear metals, additives 
and contaminants in the lubricating oil 
around the components

iv.	�Equipment status data:  Real-time 
status update of the equipment 
(operational or down), duration of 
status, planned/unplanned downtime, 

Predictive maintenance is a next-level 
strategy that is more mature. It aims 
to perform maintenance on a piece of 
equipment only if a failure is predicted 
when monitoring the operational data. 
Predictive maintenance is an artificial 
intelligence (AI) and machine learning 
(ML) based solution to optimize a fleet of 
equipment to improve availability, reduce 
unplanned downtime and increase the 
mean time between failures. Though the 
concept of conditional monitoring and 
the use of AI and ML technologies are not 
new, developing an end-to-end predictive 
maintenance solution is a complex task 
involving an in-depth analysis and a 

and further details on the reason for the 
downtime and the maintenance activity 
performed

v.	 �Work order data: Work order data with 
details on repair work and component 
replacements on the equipment, the 
start and finish dates of the work orders, 
and details of parts inventory

strong understanding of the underlying 
engineering. The challenges are both 
domain-specific and company-specific, 
so every problem needs a tailor-made 
solution. 

This whitepaper provides an overview and 
best practices in developing a Predictive 
Maintenance solution. The paper describes 
the various possible data sources, 
univariate and multivariate techniques for 
analyzing the data for identifying potential 
model precursors, the process of building 
robust predictive models, validating the 
models against production data and 
deployment of the models.

vi.	�Maintenance log (unstructured) 
data: The technician’s notes on the 
equipment’s condition and any 
maintenance or repair work performed

vii. �Other sources: Any data available 
through reliability studies such as 
root cause analysis, cause-effect 
relationships and failure mode effect 
analysis.

1. Introduction

2. Overview of the data
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The process of transforming raw data into a predictive model is an involved scientific process. 

Figure 1 outlines the main steps involved in the process, which are data understanding and preparation, exploratory analysis, predictive 
analytics, and model deployment and maintenance.

3. Overall Methodology

•	 �Import data from 
different systems: sensor 
data, alarm data, oil 
sample analysis, work 
orders, and maintenance 
records

•	 �Identify key tables and 
their relationships for 
linking

•	 �Cleanse and prepare data 
for further analysis

•	 �Perform trend analysis on 
equipment parameters 
such as availability, usage,  
downtime, overall health, 
additive/ contaminant in 
oil samples, and alarms

•	 �Analyze work-order data 
by duration, count, and 
type

•	 �Derive insights into key 
statistics on failure count, 
failure modes, downtime 
duration, etc.

•	 �Identify critical failures 
using Pareto analysis

•	 �Establish correlations 
between failures and 
precursors

•	 �Develop anomaly 
detection and failure 
prediction models 
using Machine Learning 
techniques

•	 �Test and validate models 
from Statistical and 
Engineering perspective

•	 �Deploy model into 
production

•	 �Monitor model 
for accuracy and 
update as needed

Data Understanding and 
Preparation

Descriptive / Exploratory 
Analytics

Predictive Analytics

Figure 1. Schematic of stages involved in building predictive maintenance solution

Figure 2. Pareto Analysis of failures to identify critical ones for modeling

a.	Exploratory analytics
Exploratory analytics helps in framing 
the problem appropriately and steering 
towards the solution. Pareto Analysis is 
used to identify the failures to focus on in 
the solution. Techniques such as temporal 
data analysis, univariate and multivariate 

analysis are used to confirm if the failures 
have precursors in the data and if it is 
worthwhile to continue with solution 
development.

I.	 Pareto Analysis

Typically, there are many ways equipment 
can fail. Often, it is not feasible to model 

every type of failure because some 
may be infrequent and not provide 
sufficient failure data or do not justify any 
investment in the analysis. Figure 2 shows 
a Pareto analysis, which is used to identify 
failures that are critical enough (by count, 
downtime duration, and cost) to warrant 
further analysis and model building.

4. Data Analytics and machine learning techniques
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II.	 Temporal data analysis

Temporal data analysis aims to capture 
trends or signatures representing early 
indicators of impending failures into 
discrete variables, which can then be used 
in modeling. Figure 3 shows an example 
of a trend/ signature. The first step in 
the precursor analysis normalizes and 
aggregates the data at a granular level, e.g., 
days or weeks. From this, one can extract 
events or significant variations in statistical 
parameters (mean, variance, range) in 
the analysis window. The events could be 
outliers that are above or below the control 
limits or other complex patterns that are 
consistent and repetitive and are just not 
random occurrences. 

Temporal data can also be analyzed sometimes for changes in frequencies using the spectral analysis. For example, it is relevant when 
working with vibrational data from sensors.

III.	Univariate analysis

Univariate analysis is used to explore 
if there is a correlation between the 
dependent variables (alarms, events) 
and the predicted variables (failure or 
no-failure). Only confirmed precursors 
are used in modeling to avoid overfitting.  
Statistical tools such as density charts 
and box plots are some of the useful 
techniques to establish correlations 
between dependent and predicted 
variables, as illustrated in Figure 4.  The 
results from the analysis should further 
be validated by domain experts to ensure 
that the identified dependency makes 
theoretical sense and is not a statistical 
artifact.

Figure 3. An example pattern/ signature indicative of impending failure

Figure 4. Analysis showing good and bad precursors of a failure using density charts
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IV.	Multivariate analysis

A dependent variable, in some cases, may 
not be a good precursor by itself, but 
when combined with other variables turns 
into a strong precursor. The associated 
multivariate analysis can be quite complex, 
and techniques that can be used include 
clustering, dimensionality reduction, 
tree-based algorithms, association rules, 
and subset selection. However, there is 
no single technique that works efficiently 
across all scenarios. 

The challenges with clustering include 
determining the optimal number of 
clusters and difficulty in visualization and 
interpretation in higher dimensions. When 
reducing the dimensions, the features from 
the reduced dimension do not have any 
physical meaning, making interpretation 
difficult. A tree-based approach is a greedy 
algorithm intended for regression or 
classification of the predicted variable, so 
finding dependent variable relationships 
becomes secondary. The challenge with 

association rules and subset selection is the 
large number of combinatorial possibilities 
that need to be investigated for potential 
correlations with failures. 

Nonetheless, by systematic analysis 
combined with domain insights, we can 
find the hidden precursors that could be 
used when building robust and accurate 
predictive models. 

b.	Modeling and Validation
I.	 Model Building

Failure prediction is usually framed as a 
classification problem in machine learning. 
For the generation of the train or test 
datasets, a sample of the historical timeline 

At each sampled point, appropriately 
designed engineered variables are used 
to represent cumulative events or alarms 
or other variable statistics in a preselected 
historical time interval or lookback period. 
Multiple lookback periods to capture 

of each equipment is used to label a ‘failure’ 
if it is within a preselected time interval 
before a failure event or labeled as a 
‘non-failure’ if it is before the time interval 
start date (the time interval is an x-day 
period which is also the time horizon for 
failure prediction). We suggest discarding 

trends and dynamics in the variables 
can also be used. If there are additional 
interactions between variables identified 
from multivariate analysis, the engineered 
variables can be designed to capture those 
effects.

data points associated with an unrelated 
failure or planned maintenance, or regions 
immediately after a failure, as shown in 
Figure 5 – this eliminates other patterns 
in predictor variables separate from the 
failure of interest and thereby minimizes 
their interference in the modeling. 

Machine learning techniques such as 
support vector machines, random forests, 
or extreme gradient boosting can be used 
for training the failure prediction model 
from the failure and non-failure datasets

Figure 5. Illustration of sampling for failure and non-failure datasets

Failure-1 Failure-2
Possible Interference 

(Planned Maintenance, 
Other Failure Types, etc.)

Equipment 
Timeline

Non-Failure 
Dataset (green)

Failure Dataset 
(orange)
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II.	 Evaluation and validation

 The metrics precision and recall can be used to measure the fitted model’s quality -

Precision=

Recall       =

(Number of true failures predicted by model) 

(Number of true failures and false failures predicted by model)

(Number of true failures predicted by model) 

(Number of actual failures)

A perfect model would have both 
precision and recall values of 1, but that 
is not possible in practice. They are both 
competing parameters, and any attempt 
to increase the precision value would 
result in a decrease in the recall value and 
vice versa, as shown in Figure 6. Domain 
experts may prefer higher precision or 
higher recall values depending on their 
business needs and constraints. Training a 
model for an optimal set of precision and 
recall values is done by varying the hyper-
parameters of the underlying machine 
learning algorithm.

A model is usually evaluated on a test set, 
which is randomly split (20% or 30%) from 
the original dataset, while the remaining 
dataset is used for training. But the model 
needs to be further validated in a period 
(preferably most recent), which has not 
been used in the training and testing. This 
process gives a more accurate picture 
of what to expect when the model is 
deployed.

Figure 6. Precision vs. Recall trend for a failure prediction model

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited



The predictive maintenance solution can 
be deployed on-premise or in the cloud, 
and continuous or batch mode depending 
on how critical and time-sensitive it is to 
predict and act on an impending failure. 
The deployment environment must 
consider scaling due to the size of data 
and computing requirements. For a batch 
mode scheduled to run periodically, 
some of these requirements may be less 
stringent.

The deployment architecture for a 
predictive maintenance solution should 
support an ELT/ETL pipeline (E: Extract, 
L: Load, T: Transform) like in any typical 

Microsoft Azure and Amazon AWS, both 
offer a wide range of tools customizable 
for effective deployment of a predictive 
maintenance solution. Azure provides tools 

Multiple Source 
Data Ingestion

analytical application. The first step in the 
deployment pipeline includes modules/
activities for importing data from multiple 
sources mentioned in the section 
‘Overview of the Data’. 

The next step in the pipeline is to perform 
a data quality check so that further 
processing is halted if there are any errors 
or gaps in the ingested data. Once the 
data quality check is passed, the module 
running the machine learning prediction 
code is executed; otherwise, an alert is 
triggered to notify the application support 
team on the data errors. 

such as Azure ML studio, DataBricks, and 
DataFactory to assist with model building 
and implementation of the data pipelines. 
AWS offers Sagemaker Studio that can be 

In the final step, after successful execution 
of the prediction code, a visualization 
dashboard can capture the model 
predictions, trends and overall health of 
the equipment and  email a prediction 
summary report to the business users. 
Figure 7 shows a schematic of the 
functional architecture of the solution.

The solution implementation should also 
ensure seamless integration into code 
repositories (e.g., Git, Azure Repo.) for 
code and model versioning and tracking, 
through the respective build and release 
pipelines.

utilized for the management of a complete 
machine learning lifecycle.

5. Solution Deployment

Equipment 
health data

Data Extraction

Data Quality Check

Prediction Output 
formatting

End user

Support 
Team

Data 
Scientist

Data/Model drift 
monitoring

Execution logs
AI/ML Engine

Alarm data

Work order 
data

Sensor data

Oil Analysis 
data

Maintenance 
Log Debugging & Troubleshooting UI Interface

Other 
sources

Data Wrangling & 
Transformation

Visualization/ 
Notifications

Figure 7. A functional architecture diagram for a Predictive Maintenance Solution

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited



Developing a predictive maintenance 
solution is a complex exercise. For a reliable 
and accurate solution, the necessary 
precautions and checks must be applied to 
navigate through common pitfalls. Some of 
the best practices we recommend are -

•	� The variables and events (e.g., failures) 
must be mapped accurately and 
unambiguously to handle the data from 
diverse sources. Any portion of data that 
cannot be mapped correctly should not 
be considered 

•	�� Only precursor variables validated from 
univariate/ multivariate analysis must be 
used in modeling to avoid overfitting. 
The modeling algorithms allow for 
hyperparameters to control overfitting, 
but they may not always exclude false 
precursors

•	� Domain experts must validate the 
precursor variables for their relevance to 
failure from a mechanical and systems 
engineering standpoint, in addition to a 
statistical confirmation

•	� When preparing test and train datasets 
for modeling, data points around other 
failure types or planned maintenance 
events should not be used for labeling 
failure/ non-failure classes. This practice 
avoids interference of any false or 
unrelated patterns in model training 

•	� The final predictive models after training 
and testing must further be validated on 
recent field data to ensure consistency 
of model accuracy in production. 
Improvements in the performance of 
recent data can be achieved by fine-
tuning the models if needed

6. Best practices in solution implementation
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Predictive maintenance strategy has 
the potential to significantly lower costs 
of repairs and operational disruptions. 
Yet, its adoption in the industry is slow 
mainly due to the novelty of the concept, 
challenges in harnessing a large amount 
of data from different sources and overall 
solution complexity. But the recent 
advances in cloud frameworks and AI/
ML tools have made it possible to ingest 
data from diverse sources into a data lake, 
link the data and contextualize from a 
business viewpoint, and build accurate 
predictive models with the data. Building 
accurate predictive models is a rigorous 
scientific process and requires a strong 
understanding of data science concepts 
and a good knowledge of the domain. 

This paper provides a streamlined 
overview of the complex process of 
building a predictive maintenance 
solution from ideation to successful 
implementation. Infosys has immense 
experience in applying AI and ML in many 
engineering domains (including reliability 
and maintenance). This experience has 
helped in developing a relevant solution. 
Streamlining the model development 
process and following the recommended 
best practices outlined in this paper can 
improve the ease of implementation 
and increase the adoption of predictive 
maintenance across the industry.

Conclusion

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited



About the Authors
Dr. Ravi Nandigam is a Principal Consultant in the Advanced Engineering Group at Infosys. He has 14 years of 
experience applying machine learning, statistical modeling, and software solution development in diverse domains 
such as oil and gas, chemical, pharmaceutical, manufacturing, and retail. Dr. Nandigam is an inventor of a patent and 
author of many technical articles in peer-reviewed international journals in computer-based modeling and analytics 
in Engineering. He holds a Ph.D. from Purdue University (USA) and a bachelor’s degree from I.I.T. Madras (India), both 
in Chemical Engineering.

Shamsher Singh Thind is an AI/ML Specialist Programmer at Strategic Technologies Group Autonomous Technologies 
(STGAT), Infosys. He has worked on the latest technological innovation projects related to machine learning, 
autonomous vehicle navigation, deep learning, computer vision and robotics. He has 11 years of experience in 
executing various software development projects across multiple industry domains. He holds a Bachelor’s in 
Electronics and Telecommunication Engineering from Pune (India) University and multiple certifications on machine 
learning and deep learning.

Sreedhar D.S. is a Principal Consultant in the Advanced Engineering Group at Infosys. He started his career as a 
scientist in the Structural Engineering Research lab belonging to the Indian Government lab and spent a decade 
there. In the next ten years, he was with the Ministry of Defense and worked on the design and development of 
fighter aircraft.  At Infosys in the last 12 years, he worked on mechanical product development, software engineering, 
big data concepts and AI & ML applications. He holds a Masters in Structural Engineering and a Bachelor’s in Civil 
Engineering from Mysore University (India).

Dr. Brian Gilson is a Principal Consultant in the Advanced Engineering Group at Infosys.  With a background in Quality 
Assurance and Reliability Engineering (CQE, CRE), Statistics, and Computer Science, he has extensive experience 
applying math, engineering and programming skills to utilize data to guide decisions, improve quality, optimize 
processes, manage risk and optimize customer relationships in multiple industries including HVAC, automotive 
airbags, electronic communication systems and Oil and Gas. He has a Doctorate in Computer Science (DCS) 
from Colorado Technical University, a Master of Statistics from the University of Utah, and a Bachelor’s in Quality 
Engineering from Brigham Young University.

Acknowledgment
We would like to thank Dr. Ravi Prakash and Dr. Ravi Kumar G.V.V. from the Advanced Engineering Group for their inputs and support on this paper.

External Document © 2020 Infosys Limited External Document © 2020 Infosys Limited



© 2020 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys 
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this 
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the 
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document. 

For more information, contact askus@infosys.com 

Infosys.com | NYSE: INFY Stay Connected

https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
https://www.infosys.com/

