
WHITE PAPER

GETTING STARTED WITH
CONTINUOUS INTEGRATION
IN SOFTWARE DEVELOPMENT
Amruta Kumbhar, Madhavi Shailaja & Ravi
Shankar Anupindi

Introduction

DevOps culture is gaining rapid
momentum in the IT industry as
it enables business to adopt agile
software delivery methodologies
like Continuous Integration
(henceforth referred to as CI) &
Continuous Delivery (henceforth
referred to as CD) .These
methodologies enable quicker
issue resolution, instant feedback
loops, improved software quality
and cost saving to meet the ever-
increasing demand to deliver
better software faster. It would
not be wrong to say that CI-CD
practices will soon become the de-
facto software delivery standards
across the industry.

Though both these methodologies (CI and CD)

complement each other, CI is the pre-requisite

phase for enabling CD as the latter is built on

top of the former. The primary goal of CI is

not only to enable build automation through

continuous test and quality checks but also to

provide project insights through reports and

dashboards. Since this phase is all about tools,

it imposes various integration challenges.

Having a good knowledge of the tools

involved, their integration aspects and the

best practices to follow, will definitely enable

their smoother adoption and rollout across

enterprises looking to adopt CI practices.

This article compiles insights gained from

our practical experiences across various CI

enablement programs which we have been

associated with.

Some of these experiences might vary

depending on the choice of tools,

infrastructure setup, organization policies

and project requirements. In spite of the

differences, we hope, this article will act as

a helping guide to all those planning for CI

setup in their projects.

This article is organized into different sections

as below –

Gartner says “By 2016,
DevOps will evolve
from a niche to a
mainstream strategy
employed by 25
Percent of global 2000
organizations”

Section 2 talks
about the

various tools
being used to

achieve CI.

Section 1
shows the CI

setup which we
have been

using.

Section 3
discusses the

challenges
faced and the

solution
approaches we

used.

Section 4
includes some

of the best
practices that

can be adopted
for CI

Section 5
enumerates
some of the

bene�ts
obtained
from CI

Section 6
shows the

deployment
topology for
the CI setup

And we �nally
summarize our

�ndings in
Section 7.

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Continuous Integration Setup

The below diagram illustrates the end to

end Continuous Integration (CI) setup

which we have been following across

projects. As seen below, the main actors

include the Development team, the Source

Control Server and the Continuous

Integration server. Developers check-in

the code into source control server which

is integrated with CI server. For each build,

CI server is configured to run the JUnit test

cases, Selenium based functional test cases,

code quality checks and provide

notifications for any failure scenario

which enables the development team to

take immediate action. This continuous

automation chain helps in reducing

the overall defect density and thereby

improving the code quality.

Tools Adoption

CI depends mostly on adopting the

correct set of tools and their proper

usage. The selection of tools is

generally driven by various IT policies

in the organization, existing technology

landscape, current infrastructure setup,

and other considerations. It is therefore

Continuous Integration
Server

1

2

3

4 5

6

Source Control Server

Various stakeholders Developer 1 Developer 2

Fetch Changes

Check in ChangesNotify Success or Failure

Failure or Success

Build

Test

recommended that every organization

must do proper due diligence in evaluating

different toolsets and choosing the

appropriate ones suitable for their

requirements.

The diagram below shows the toolsets

(phase wise) which we have been using

successfully across various projects for CI

enablement. As seen, we have adopted

Jenkins as the continuous integration

platform but there are other CI platforms

(Bamboo, TeamCity etc.) to choose from.

The same case holds good for other

toolsets also.

01Develop Build Test Deploy

Continuous Integration • Open Source
• Widely used in industry
• Provides varied plugins

• Open Source
• Widely used in industry
• Jenkins integration

• Open Source
• Widely used in industry
• Jenkins compatible

• Integrated test cases
• Code quality dashboard
• Jenkins integration

• Widely used in industry
• Ease of con�guration
• Jenkins integration

Version Control Build Automation Code Quality Analysis Artifact Management

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Challenges Faced
We faced a few challenges during our CI journey and some of the major challenges encountered are
explained below.

Providing Granular Level Access
In Jenkins

Regular Build Failures Builds Waiting for
Node Executor

GIT Repository Integration

1 2 3 4
Providing individual level access was
a redundant and time consuming
task

Most common issue faced. Jobs were
failing because of perm gen space
issue. Memory consumption on slave
nodes was high due to Jenkins job
workspace and generated artifacts

Due to node dependency, projects
were waiting in the queue even if
idle executors were available on
other nodes. Builds were waiting for
executor due to heavy build load

Issue while creating a trusted link
between GIT and Jenkins server

Solution Approach Solution Approach Solution Approach Solution Approach

We came up with the role based
access solution approach. This
approach helped to provide
access to roles rather than
individual level

To solve this issue, cron scripts
were created to clean up the job
workspace and artifacts once a
week, in order to release the
memory

Even Scheduler plugin was used
to ensure that load distribution
was happening evenly across all
nodes

Trust was created between GIT
and Jenkins using public and
private keys of Jenkins server

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Best Practices Followed

After having worked on multiple CI

enablement projects we have condensed

together the set of best practices which

we have learnt/followed. Most of these

practices have been standardized and

published as CI guidelines for internal usage

across teams. In this section we highlight

some of the best practices which we follow

and would like to share with others.

Benefits Realized

Following are some of the benefits which we have realized by CI enablement across projects.

Build Automation Code Stability Analytics CD Enablement

Faster Releases Cost Savings Improved Productivity Improved Code Quality

Builds were automated
by using the Poll SCM
feature of Jenkins. This
not only enabled faster
builds but also helped
to eliminate manual
build e�ort

CI enabled faster release
cycles with stable code

Many projects cut down
on the cost to maintain
separate build teams
after build automation.
This resulted into
signi�cant cost savings
for them

CI-enablement helped
increase development
team productivity by
relieving them from
build related aspects
with complete focus on
their core development
activities

CI-enablement helped
increase development
team productivity by
relieving them from
build related aspects
with complete focus on
their core development
activities

Noti�cation feature
enabled development
team to respond quickly
to the build failure
scenarios. This helped in
quicker resolution of code
issues and ultimately led
to stable code base

Sonar dashboard
provided centralized view
of code quality issues and
dashboards created
leveraging Jenkins APIs,
provided complete build
information. This enabled
project teams to take
timely corrective steps

Work�ow con�guration
on Jenkins enabled auto
deployment of
application artifacts
(EAR/WAR �les) on the
required application
server whenever a new
snapshot version of the
artifact was available

100%

50%

30% 30%
25%

100% 100% 100%

Note: The above mentioned quantitative improvements are the average % improvements which have been observed across various projects.

Role Based Access
Providing individual level access is always
a cumbersome task and therefore it is
recommended to provide Role-Based access

Regular cleanup of
workspace & artifacts

Cron scripts were created to clean up the job
workspace and artifacts once a week, in order
to ,release the memory and thereby avoid
memory leak issues

Even distribution of
workload across nodes
(Even Scheduler plugin)

To overcome the default behavior of Jenkins
in terms of node picking job, Even Scheduling
plugin was used which ensuresd even
distribution of work load across nodes

Template based centralization of common properties
across projects

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Topology and Deployment
view

Below is the high-level topology of the

CI platform which we have been using.

The key benefits of this topology are high

availability and scalability. To achieve high

scalability and distributed build system we

have set up dedicated build nodes that run

separately from the Jenkins master. This

frees up resources for the master server to

improve its scheduling performance.

Moreover, executing jobs on the master’s

executors can introduce a security issue.

Any Jenkins’s user with full permissions

can play havoc with the system as they will

have direct access to private information

whose integrity and privacy could not be,

thus, guaranteed. We leveraged the Jenkins

supported “master/slave” mode, where the

workload of building projects is delegated

to multiple slave nodes.

If you notice we have enabled Jenkins

master to only handle HTTP requests and

manage the build environment. Actual

execution of builds will be delegated to the

slaves. With this configuration it is possible

to horizontally scale the architecture.

Fig 2. Continuous integration topology view

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

Component Key Characteristics

1 Master and Backup Server To avoid a single point of failure and support high availability we have the master slave configuration
setup. In case the master goes down, a slave node can provide the continuity

2 NAS Storage Responsible for sharing $JENKINS_HOME directory for all Jenkins Master VMs

3 Jenkins Slave Nodes

A slave node is a machine set up to offload build projects from the master node. Actual execution of the
build happens on the slave node. The method for scheduling builds depends on the configuration given
to a specific project. Some projects may be configured to only use a specific slave node while others can
freely pick up a slave nodes from among the pool of slave nodes assigned to the master

4 Jenkins Executors Responsible for concurrent builds on slave nodes. If a slave node consists of 4 executors , concurrently 4
jobs can be built on that node

5 Reverse Proxy Server Responsible to ping all nodes in the cluster via a health check URL and uses their return codes to
determine which node is the primary/active master

Conclusion

We believe that Continuous Integration is

at the core of DevOps and needs proper

planning. Since it is all about tools and their

integration aspects, making appropriate

choices based on various considerations

is very important. Building good expertise

on the tools involved, their integration

aspects and other best practices, helps,

avoid common pitfalls and helps speed up

CI adoption.

In spite of knowing and following all the

best practices, there will always be some or

other challenges faced during CI adoption

but the final benefits realized far outweigh

these initial hiccups. We hope this article

might have helped you in some way or the

other and we would love to hear from you.

References

1. Gartner Says By 2016, DevOps Will Evolve From a Niche to a Mainstream Strategy Employed by 25 Percent of Global 2000

Organizations- http://www.gartner.com/newsroom/id/2999017

2. Distributed builds using Jenkins : https://wiki.jenkins-ci.org/display/JENKINS/Distributed+builds

External Document © 2018 Infosys Limited External Document © 2018 Infosys Limited

http://www.gartner.com/newsroom/id/2999017
https://wiki.jenkins-ci.org/display/JENKINS/Distributed%2Bbuilds

About the Team

Amruta Kumbhar

Technology Lead

Amruta Kumbhar is a Product Technical

Lead in Infosys. She has strong expertise

on Java technologies and database

technologies (Oracle, DB2, MongoDB).

She also has very good expertise related

to various CI aspects - build management

using Maven and SonarQube plugin

creation. She can be reached at Amruta_

Kumbhar@infosys.com

Madhavi Shailaja

Technology Architect

Madhavi is a Technology Architect in

Infosys. She has strong expertise on Java

technologies. She also has very good

expertise related to various CI aspects -

build management using Maven and Ant.

She can be reached at Madhavi_Katakam@

infosys.com

Ravi Shankar Anupindi

Sr. Technology Architect

Ravi is a Senior Technology Architect in
Infosys. Ravi has strong expertise on Java
technologies and leads the Performance
Engineering COE in one of the business
verticals. His areas of interest include
exploring latest technologies and looking
at ways to adopt them to derive significant
business benefits. He has been actively
involved in DevOps initiatives for various
clients. He can be reached at Ravi_
Anupindi@infosys.com

© 2018 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

mailto:%20Amruta_Kumbhar%40infosys.com
mailto:%20Amruta_Kumbhar%40infosys.com
mailto:%20Madhavi_Katakam%40infosys.com
mailto:%20Madhavi_Katakam%40infosys.com
mailto:%20Ravi_Anupindi%40infosys.com
mailto:%20Ravi_Anupindi%40infosys.com
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
https://www.slideshare.net/infosys
https://www.infosys.com/

