
VIEW POINT

MYTH VS. REALITY: HOW QUALITY
ENGINEERING FUELS FASTER, SAFER
SOFTWARE DEPLOYMENTS

In today’s hyper-connected digital landscape, poor software
quality can be catastrophic for businesses. Imagine a scenario
where a critical system failure halts operations, causing financial
losses to skyrocket while teams scramble to recover. Unfortunately,
this isn’t just hypothetical.

A 2022 report by the Consortium for Information & Software Quality
(CISQ) revealed that the cost of poor software quality in the U.S.
alone had surpassed $2.41 trillion.1 To put it in perspective, large
organizations lose an average of $9,000 per minute during downtime,
with sectors like finance and healthcare suffering losses up to a
staggering $5 million per hour, excluding potential fines or penalties.2

Real-world examples paint an even grimmer picture. A CrowdStrike
update once caused an IT outage paralyzing millions of Windows
systems and costing U.S. Fortune 500 companies an estimated
$5.4 billion.3 Similarly, on September 8, contactless payment
provider Square experienced an 18.5-hour disruption due to
backend connectivity issues, crippling businesses worldwide from
processing transactions.4

These are not isolated incidents. Software failures arise from

a myriad of factors, including coding errors, ambiguous
requirements, complex legacy systems, security vulnerabilities,
inadequate maintenance, a shortage of resources and third-party
dependencies.

Yet, amid these challenges, one key element acts as insurance
against disaster: Quality Engineering (QE). QE is not just
a process—it’s a business-critical enabler, identifying and
eliminating defects before they evolve into costly, business-
threatening failures. Simply put, it is an indispensable safeguard.

While QE is crucial, it is often criticized for delaying the software
development process. The typical QE phase can last five to
six weeks and involves various types of testing to ensure the
software’s safety, security and quality. For example, executing just
system integration testing (SIT) can take over 40 days.

However, this paper argues that the delay isn’t inherently caused
by QE but by multiple factors that organizations must address.
Organizations can significantly reduce testing time while
maintaining high-quality standards by understanding these
factors and implementing effective strategies.

Quality engineering: the insurance every business needs

1. cpsq-report-nov-22-1.pdf (synopsys.com)

2. The True Cost Of Downtime (And How To Avoid It) (forbes.com)

3. CrowdStrike outage explained: What caused it and what’s next (techtarget.com)

4. The Top Internet Outages of 2023: Analyses and Takeaways (thousandeyes.com)

External Document © 2025 Infosys Limited

https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/cpsq-report-nov-22-1.pdf
https://www.forbes.com/councils/forbestechcouncil/2024/04/10/the-true-cost-of-downtime-and-how-to-avoid-it/
https://www.techtarget.com/whatis/feature/Explaining-the-largest-IT-outage-in-history-and-whats-next
https://www.thousandeyes.com/blog/top-internet-outages-2023

Myth in the software industry: QE extends the software lifecycle—even in Agile environments designed to expedite delivery. The reality
is quite different. QE doesn’t inherently cause delays. Instead, various dependencies and system bottlenecks can protract the QE phase.
Ideally, when development flows seamlessly, QE progresses as planned without causing delays. But that’s rarely the case.

Let’s delve into some of the factors that contribute to the perceived delays in QE:

Separating the myth from the reality in QE

The bottleneck effect:

Complex software systems: Integration issues:

Data issues:

Inadequate early involvement:

Insufficient investment
in QE environments:

Manual testing and
limited automation:

Insufficient collaboration
between developers

and testers:

Late-stage defect
identification causes teams

to backtrack, delaying
releases. QE, being the final

gatekeeper, is frequently
seen as the bottleneck.

However, the real cause of
delays typically stems from

upstream issues, such as
design flaws or incomplete

requirements.

Comprehensive testing
that covers functional,
regression, integration,

performance and security
aspects is essential but time-
intensive. As the complexity

of software increases, so
does the testing workload.

Testing becomes more
complicated when

compatibility problems
exist between different
software components.

Delays in integrating these
components necessitate

additional rounds of
testing and debugging,

contributing to bottlenecks.

Complex software systems
often require intricate test

data that is difficult to
generate and synchronize.
Manual data generation or

dependencies on batch jobs
from legacy systems can
significantly slow testing,
making it challenging to

deliver on schedule.

When QE is not integrated
early in the development

cycle, the “end-of-pipeline”
involvement leads to a

flood of defects discovered
in later stages, resulting in
rework, which slows down

the overall process.

In many cases, QE teams
are forced to work with

inadequate testing
environments that don’t

accurately mirror production
systems. While complex

provisioning and maintaining
these environments is critical

for effective testing. When
environments aren’t available

on time or lack the proper
setup, QE faces delays often
misattributed to the testing

process itself.

A lack of investment in
test automation results in

more manual testing, which
is time-consuming and

labor-intensive. End-to-end
automation is crucial for
running tests faster and

more efficiently, yet many
organizations still rely heavily

on manual processes.

A lack of seamless
communication between

development and
QE teams can lead to
misunderstandings,

inefficient handovers and
delays in addressing defects.
When collaboration falters,

it’s easy to see how timelines
extend beyond what was

initially expected.

External Document © 2025 Infosys Limited

An analysis of these issues shows that the solution goes far beyond the QE team in reducing QE cycle time. It must start with a shift in
mindset at the enterprise level. This means reexamining the QE process, reassigning responsibilities across teams, introducing technical
enablers like automation, and—most importantly—fostering a culture of collaboration. Closing the gap between developers and testers,
ensuring early involvement of QE and committing investment in environments and tools are critical steps toward optimizing the process.
With proper education, training and a commitment to change, businesses can streamline QE and speed up their software delivery without
compromising quality.

External Document © 2025 Infosys Limited

Infosys has developed an end-to-end quality engineering methodology that adds value to the software lifecycle while reducing the time
required. This approach has been successfully implemented in various projects, including the following examples:

A bank faced significant challenges with lengthy test cycles, particularly during the SIT and End-to-End (E2E) testing phases.
The test cycles involved:

• Implementation and system testing: 2 weeks.

• SIT and E2E testing: 24–43 days. This phase included pre-execution, build, deployment, and various SIT cycles (zero to three),
each adding to the timeline.

The test cycle was lengthy due to code reviews, shakeout testing, integration issues and stability problems.

Recognizing these were symptoms of deeper inefficiencies, Infosys conducted a time-motion study to analyze how time was
allocated across the testing process. By pinpointing manual tasks, automation bottlenecks, dependencies and wait times, we
identified ways to reduce testing time.

Infosys developed a solution to decrease the time spent on each testing activity. By carefully analyzing the nature of the work
involved, we identified opportunities for automation, AI and other techniques to streamline the process. This significantly reduced the
overall testing time by almost 60%, allowing the bank to accelerate its software development lifecycle.

Challenges

Solution

QE in action – Infosys shows how

Streamlining long test cycles for a bank

External Document © 2025 Infosys Limited

At a prominent telecom company, the end-to-end (E2E) testing cycle stretched to three to four months, delaying critical releases.
To identify the root causes, Infosys performed a time-motion study across every testing stage, uncovering several key issues contributing
to the lengthy process:

Infosys’ investigation found that almost 80% of the verification process was manual, resulting in extended waiting times and coordination
gaps. The manual verification process alone required eight days to complete. The actual test execution made up a smaller portion of the
overall timeline.

Infosys’ solution tackled these issues head-on by:

These measures significantly reduced the E2E testing cycle, allowing the telecom major to accelerate software development and time to
market while maintaining high quality standards.

Shorter E2E testing cycle for a telecom major

External Document © 2025 Infosys Limited

Empowering the System
Testing (ST) team to efficiently

validate integration points
during the ST phase and reduce
the reliance on E2E testing for

early defect detection.

Implementing tailored
solutions designed for speed

and accuracy, reducing
disruptions in both SIT and

E2E cycles.

Minimizing disruptions
and delays in the SIT phase
by preventing false starts
and maintaining better

coordination.

Most verification tasks
involved manual work,
creating bottlenecks.

A lack of streamlined
team coordination

resulted in frequent
delays.

Unavailable or
inadequate testing

environments further
slowed the process.

Emerging trends in QE

External Document © 2025 Infosys Limited

These trends are reshaping how organizations approach QE, enabling them to deliver higher quality software more efficiently.

Ephermal Test Environments:

On-demand environments that
represent production-like setup.

Service Virtualization:

Reduce dependency on the availability
of interfacing applications for
completion of testing.

AI-driven QE Life Cycle:

Leverage AI for test case generation,
test data creation and defect prediction
to allow QE engineers to focus on value-
added tasks.

Chaos Engineering:

Ensure applications meet performance
standards under various game day
conditions.

DORA Metrics:

AI for QE helps the customer
move towards parameters that matter
for business.

QE for AI-infused Applications:

We will increasingly see QE playing
a crucial role in ensuring that AI
applications align with AI goals.

Venkatesh Iyengar
With a career spanning across 2 decades in the quality engineering sector, Venkatesh possesses first-hand
experience navigating the ever-evolving technology landscape and its profound effect on enterprises. He enjoys
continuous learning, simplifying messages for stakeholders and exploring new technology and business ideas.
He also holds a patent in QE maturity model design. Outside of his professional life, he enjoys long hikes, long
distance runs and tennis.

About the Author

© 2025 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

QE is the ultimate insurance policy in a world where businesses rely on software to drive operations and innovation. The level of insurance
required depends on the manual interventions during the software life cycle. QE minimizes risks, prevents costly software failures, and
ensures business continuity. The focus must be on the time taken for QE, and the solution lies beyond just the QE team.

Organizations must adopt modern practices like automation, AI-driven testing and shift-left methodologies while fostering collaboration
across teams to accelerate delivery without sacrificing quality. Infosys’ approach shows that by addressing inefficiencies beyond the QE
phase, businesses can cut costs, reduce risks, and stay competitive in the digital landscape. Ultimately, QE is not just about preventing
failures—but enabling business success.

Conclusion

https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
https://www.infosys.com/

