
WHITE PAPER

BACKEND FOR FRONTEND: TAILORING
BACKEND SERVICES FOR ENHANCED
FRONTEND EXPERIENCE IN TELCOS

Abstract
Business strategies today aim to provide a consistent buying experience
across all channels. Salesforce Communication Cloud is no exception,
serving as a backend application programming interface (API) for various
non-native channels. In an omnichannel interaction, having one common
backend API adds to the overhead on the backend APIs and the channels.
This overhead arises from large payloads required to support all channels
with their data presentation requirements, based on screen types and
capabilities. Further, the common backend API becomes challenging to
maintain, as it must handle the logic of all channel-specific requirements.
This can potentially lead to decreased performance. Therefore, there is a
need for separate backends for mobile and web. This requirement has led
to the development of the backend for frontend (BFF) pattern, also known
as headless architecture. This paper examines the business challenges
that the BFF pattern helps resolve, making it easier for business readers
to comprehend and implement. It also discusses the pros and cons of this
pattern, enabling technical and business consultants from information
technology (IT) teams to make informed recommendations based on
specific needs.

External Document © 2023 Infosys Limited

1. Abstract...1

2. Introduction: What is Backend for Frontend?...2

3. Why is BFF Required?..3

4. Implementation Considerations...3

 Scope of the BFF..3

 Number of BFFs...3

5. High-level Architecture..4

 Channels using general-purpose APIs..4

 Channels using dedicated BFFs...4

6. Common Use Cases..5

 Measuring BFF..5

 Scenarios for General Purpose Backend APIs; Unsuited for BFF Pattern..5

7. Comparing Microservices, BFF, and Headless APIs..6

8. Collaborative Support from an Expert Partner..6

9. Summary...6

10. Acknowledgements..6

11. Acronyms..7

12. References...8

Contents

Introduction: What is Backend for Frontend?
Backend for frontend (BFF)1 is a solution of patterns that addresses the exclusive requirements of a wide range of client platforms such
as web, mobile, among others. It is used to effectively build composable architectures in software development while preserving the
advantages of microservices. It provides seamless and smooth user interaction independent of the front-end application platform2.
To avoid the need for customizing a single backend for multiple interfaces, it is advisable to create different backend services for
distinct frontend applications or interfaces. This approach, initially introduced by Sam Newman3, can begin with a single server-side
BFF per user interface. However, as new requirements emerge, necessitating differentiated handling for each channel, the decision to
have separate BFFs can be considered.

External Document © 2023 Infosys Limited

Why is BFF Required?

Multiple factors drive the need for BFF in the communication
cloud, each warranting more exploration.

First, the telecom industry has witnessed stiff competition in the
past two decades. With numerous players in the market, consistent
revenue growth for telecom companies hinges on selling as
many services as possible to customers. This has led to worldwide
internet penetration and a high demand for Generation Z’s favored
over-the-top (OTT) packaged as part of telecom offerings. Offered
as a large catalog to channels in payloads, they become an
additional overhead for front-end channels. This underscores the
need for a BFF pattern, enabling channels to focus on presentation
and user experience, while a backend translates simple channel
input into a communication cloud-specific payload.

Secondly, communication service providers (CSPs) must be
available across platforms – mobile, self-service portals, partner
channels, and wholesaler portals. While having an omnichannel
approach is critical for CSPs, it may not always be feasible. Each
channel offers distinct user journeys and experiences as well
as features, and capabilities. Implementing a backend layer
customized to each channel allows frontend channels to prioritize
user experience. Initially backends can be shared between similar
sets of channels, one for web and other for mobile channels.

Further, telecom CSPs always strive to outpace their competitors
while enhancing customer self-service. They may offer
competitive pricing for OTT and other services, with perpetual
or limited-time discounts for each service line item. However,
considering the sheer volume of discounts for each channel,
a backend becomes imperative to display the final discounted
prices, primarily for the following reasons:

•	 The process can be time-consuming

•	 Multiple offers may necessitate middleware for numerous,
cumbersome API invocations

•	 Caching APIs is feasible only to a limited extent when dealing
with offer combinations. Moreover, caching itself is a time-
consuming endeavor that leads to the deterioration of API
performance

To address these challenges, the recommended approach is to
calculate and display the discounted price using the BFF pattern.
This enables digital commerce APIs or the configure, price, quote
(CPQ) pricing engine to operate asynchronously, resulting in a
smoother and faster process.

Implementation Considerations
Implementing BFFs calls for planning, design, and consideration
of various requirements. We explore two important considerations
in BFF implementation: the scope of implementation and the
number of BFFs required.

Scope of the BFF

When designing the BFF pattern, it is crucial to carefully evaluate
the scope of implementation. The key factors for evaluating the
scope include:

•	 Performance: Assess the impact on backend performance in
the communication cloud and across channels, considering
the capabilities of relevant systems. For instance, handling
synchronous complex pricing and discounts may take a
considerable amount of time in the communication cloud. To
enhance the user experience, consider caching discounted
prices for various combinations closer to the channel

•	 Platform limits: It is crucial to recognize the platform limits of
the BFF, communication cloud, and channels, particularly in
the context of cloud-based systems

•	 Time-to-market: Evaluate the time-to-market when comparing
various BFF options with differing scopes

•	 Configurability: Ensure that the BFF and its scope can be
configured to support the frequent introduction of new
devices, plans, and value-added services (VAS) required by
finance. Supporting product lifecycle management (PLM)
systems is pivotal when assessing the scope of the BFF

Number of BFFs

After determining the scope, evaluate the required number of
BFFs. The key considerations are:

•	 Categorization: Group different channels based on shared
features and the type of clients they serve. It is recommended
to create a common BFF for each category and assess its
compatibility with other factors

•	 User journey: Ensure a seamless user journey across channels
by verifying if the categories are sufficient for having a common
API for each channel in the category

•	 Payload standardization: Confirm that the channels in each
category can manage a similar payload for the operation. While
the BFF will use a standardized payload for communication
cloud interaction, the payload between channels and the BFF
should be straightforward and uniform for all channels

External Document © 2023 Infosys Limited

High-level Architecture
There are two key ways in which frontend channels interact with
backend APIs. These are:

1.	Channels using general-purpose APIs

2.	Channels using dedicated BFFs

Let us look at each in more detail.

Channels using general-purpose APIs

In this architectural pattern, all channels interact with the same
backend APIs, resulting in additional overhead for both the
channels and the backend. This approach is suited to specific
scenarios and use cases, detailed in the next section. Figure 1
illustrates the architecture for channels using general-purpose
APIs.

Fig 1: Architecture for channels using general-purpose APIs

Channels using dedicated BFFs

In the BFF architecture pattern, each channel category interacts
with its dedicated BFF. The BFFs then interact with common
communication cloud APIs. This pattern is explored in the
next section, where we discuss the use cases, benefits, and
recommendations. Figure 2 depicts the BFF architecture pattern. Fig 2: Architecture for channels using dedicated BFFs.

Mobile
Client

Mobile
Client

Desktop Client

Desktop Client

General purpose APIs

Communication Cloud

Communication Cloud

General purpose APIs

Mobile Client BFF Desktop client BFF

External Document © 2023 Infosys Limited

Common Use Cases
The BFF layer offers substantial benefits by streamlining common
use cases. It assists with abstracting runtime discount evaluation
rules, determining voucher application order and eligibility, and
preventing frequent API calls to the communication cloud for
runtime evaluation. These tasks, which are potentially complex
and time-consuming, can be achieved with greater ease and
efficiency by using the BFF layer.

Measuring BFF

When assessing the adoption of the BFF pattern for telecom
companies, it is essential to conduct a thorough evaluation of the
advantages and disadvantages of this approach to make informed
decisions.

Identifying and addressing specific business challenges that CSPs
encounter is crucial. A proof of concept (POC) serves as a valuable
tool for gauging how the BFF pattern can help mitigate these
challenges. For example, a POC can be used to evaluate how the
BFF pattern can:

•	 Increase the number of discounts offered in a competitive
pricing landscape

•	 Enhance the range of offers and services that can be bundled
into a single order, thereby boosting revenue

•	 Improve overall performance and reduce abandonment rates

A typical POC involves developing and testing a prototype
of the BFF layer, one of the channels or test clients, and the
communication cloud. This approach allows for measuring
the effectiveness of the new strategy using key performance
indicators (KPIs). It enables an assessment of whether
implementing the BFF pattern will effectively resolve existing
challenges and achieve desired outcomes. Carefully evaluating the
pros and cons of this approach and monitoring its impact on the
KPIs can enable informed decisions that lead to increased revenue
and customer satisfaction.

Scenarios for General Purpose Backend APIs; Unsuited
for BFF Pattern

The BFF architectural pattern involves adding a single backend
layer for each channel or category of channels. This can increase
maintenance costs and demand additional resources, making
it unsuitable for small telecom implementations operating with
limited resources and budgets.

New telecom companies offering a limited number of products
and services with simple order-level discounts and channels, and
capable of managing the required payload, may not need a BFF. In
such cases, common communication cloud APIs can be leveraged
for all channels.

Telecom companies operating exclusively through their native
Salesforce platform channel do not require the BFF architectural

pattern. They can rely on unguided or guided order capture
journeys depending on whether the users are internal or external.

Companies where performance is not a key parameter, such as
those that have orders placed by internal agents on behalf of
customers, may delay BFF implementation until they reach a scale
where agent performance becomes significant.

External Document © 2023 Infosys Limited

Let us compare microservices, BFFs, and headless APIs, as they
serve distinct but interconnected roles in backend architecture.
Microservices architecture decomposes a large application into
smaller, standalone services that can be deployed independently
and communicate with each other through APIs.

BFF is a design pattern that involves creating a dedicated backend
service for a specific user interface or client type.
Headless APIs facilitate content retrieval and delivery to various
frontend applications or channels such as websites, mobile apps,
or Internet of Things (IoT) devices.
While these concepts are related to backend architecture and API
design, they are not interchangeable.

Collaborative Support from an Expert Partner
Implementing the BFF pattern can boost customer satisfaction,
optimize omnichannel experiences, and expand the range of
available discounts and products. These advantages have the
potential to generate increased revenues, particularly in highly
competitive markets with lower compound annual growth rates
(CAGRs). Telecom service providers acknowledge that they use
the BFF pattern to offer atomic and stackable discounts on each
of their products, achieving greater flexibility. It is evident that
the pattern improves performance and reduces abandon rates
significantly, providing a significant edge in a competitive market.

A reliable and experienced partner is critical for successful BFF
pattern implementation. Along with General purpose APIs
implementations, Infosys also has implementation expertise
in native and non-Native BFFs. With successful BFF pattern
implementation in multiple rollouts, we have helped organizations
manage complex catalog and discount structures. Our support
includes a dedicated telecom lab, an array of solutions, digital
platform expertise, proven partner ecosystem, pragmatic
operating model, and a team of seasoned technical, functional,
and business consultants.

Summary
When considering the implementation of a separate BFF
between Salesforce communication clouds and channels, a
thorough examination of the benefits and drawbacks of this
approach is vital. The BFF pattern is particularly well-suited for
telecom companies that prioritize performance and offer an
extensive catalog of products with various discounts. While this
paper covers the complexity and need for Telco BFF, this will fit for
other industry including energy.

Acknowledgements
We extend our sincere gratitude to the communication cloud
subject matter experts and thought leaders from Infosys, Dr
Thejasvi Nagaraju, Industry Principal, and Mr Deepak Kumar
Jha, Industry Principal, for their invaluable guidance, inputs,
and meticulous reviews. We also appreciate the encouragement
and feedback from our colleagues at Infosys, Mr Sushil Hinduja,
Industry Principal, Mr Pratyush Anand, Senior Technology
Architect, and Ms Surbhi Sharma, Senior Consultant, which greatly
contributed to the depth and development of this white paper.

Comparing Microservices, BFF, and Headless APIs

Microservices represent a broad architectural approach. BFF and
headless APIs are specific design patterns or components within
a broader architecture. BFF is often used with microservices to
customize backend services for specific frontends.

Headless APIs are general purpose APIs that provides backend
services (or data) to presentation layer , front end usually is the
content management system.

In summary, microservices provide an architectural approach,
whereas BFF and headless APIs are patterns and components used
within specific contexts to optimize backend/frontend interactions
and content management, respectively.

External Document © 2023 Infosys Limited

Acronyms

API

BFF

CAGR

COM

CMS

CPQ

CSPs

DC

IOT

ISP

KPI

MVNO

OTT

PLM

POC

TMF

SOM

VAS

Application programming interface

Backend for frontend

Compounded annual growth rate

Customer order management

Content management system

Configure price quote

Communication service providers

Digital commerce

Internet of Things

Internet service provider

Key performance indicators

Mobile virtual network operator

Over-the-top

Product lifecycle management

Proof of concept

Telecommunications Management Forum

Service order management

Value-added services

© 2023 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

Authors

Mansimar Singh brings over 12 years of experience in designing and developing transformative enterprise solutions in
the telecommunications, manufacturing, and retail domains. As a Salesforce Solution Architect, he specializes in digital
transformation of order-to-care and customer service landscapes, particularly Salesforce industry-specific platforms like
Salesforce Communications Cloud. His focus is on providing platform advisory services and designing solutions that
streamline processes with the objective of delivering significant tangible and intangible benefits to businesses.

Hitesh Kumar Vyas, Salesforce Solution Architect, has more than 16 years of IT experience in the telecommunications,
insurance, and CRM domains. With a versatile skillset, he adeptly manages multiple projects leveraging his extensive
experience in software engineering , IT solution architecture, and business analysis. He has successfully handled large
transformation programs in operations support systems (OSS) and business support systems (BSS). His areas of expertise
are consulting, solution design, estimation, telecom order management, configure-price-quote (CPQ), designing and
deploying fully integrated and automated BSS architecture, establishing end-to-end enterprise architecture IT solutions,
and interface definition.

Infosys Cobalt is a set of services, solutions and platforms for enterprises to accelerate their cloud journey. It o�ers over 35,000 cloud assets, over 300 industry cloud solution blueprints and a thriving
community of cloud business and technology practitioners to drive increased business value. With Infosys Cobalt, regulatory and security compliance, along with technical and �nancial governance comes
baked into every solution delivered.

References
1. Backend for Frontend

2. A Deep Dive into the Back-End for Front-End Pattern

3. Pattern: Backends for Frontends

4. Market Insights > Technology > Communication Services - Europe

5. Market Insights > Technology > Communication Services - United Kingdom

6. Market Insights > Technology > Communication Services - United States

7. Guided Competition in Singapore's Telecommunications Industry

8. Singapore Telecom Market Size & Share Analysis - Growth Trends & Forecasts (2023 - 2028)

9. Everything You Need To Know About Headless Commerce

10. Backends for Frontends pattern - Azure Architecture Center

https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
https://www.infosys.com/
mailto:askus%40infosys.com?subject=
https://www.infosys.com/services/cloud-cobalt.html
https://www.infosys.com/services/cloud-cobalt.html
https://bff-patterns.com/
https://www.codemag.com/Article/2203081/A-Deep-Dive-into-the-Back-End-for-Front-End-Pattern
https://samnewman.io/patterns/architectural/bff/
https://www.statista.com/outlook/tmo/communication-services/europe#:~:text=Revenue%20is%20expected%20to%20show,US%24358.40bn%20by%202028
https://www.statista.com/outlook/tmo/communication-services/united-kingdom
https://www.statista.com/outlook/tmo/communication-services/united-states
https://www.researchgate.net/publication/5212769_Guided_Competition_in_Singapore's_Telecommunications_Industry
https://www.mordorintelligence.com/industry-reports/singapore-telecom-market
https://www.salesforce.com/blog/define-headless-commerce/#:~:text=In%20its%20simplest%20form%2C%20headless,to%20enrich%20the%20customer%20experience
https://learn.microsoft.com/en-us/azure/architecture/patterns/backends-for-frontends

