Char 1900 190 book भारतीय डाक

Judia Float RMX99855691IN IVR:8278099855691 AL CACHINOR 1 S.O (500032) Counter No:1.14/05/2019.12:05 TO: HIG REDDY IFS, ADDITIONAL FRINC PIH:600034. Mungambakkam HDO From:RAJASYEKAR RAD B.INFOSYS LTD #t:980%s Ant: 45,00(Cash) (Track on www.indiagost.nov.in)

a rint

000

By. Regd. Post Ack. Due

May 14, 2019

Control

IL-SEZ/HYD/FAC-PER/140519

Dr. MRG Reddy, IFS, Additional Principal Chief Conservator of Forests (c), Ministry of Environment, Forest and Climate Change Regional Office (SEZ), Ist and IInd Floor, Handloom Export Promotion Council, 34, Cathedral Garden Road, Nungambakkam Chennai - 600 034

Dear Sir,

Half Yearly Compliance Details - October - 2018 to March - 2019 - M/s. Infosys Ltd. (IT SEZ Project), Sy. No. 44 & 45 (part), 48, 49, 50 (part), 51 and 54, Pocharam (v), Ghatkesar (M), Medchal - Malkajgiri District (formerly Rangareddy Dist), Hyderabad - 500 088 Telangana State.

With reference to the above subject cited, as per the Environmental Conditions (EC) of Part-B (iv), we are furnishing the compliance details for the period of October - 18 to March - 2019.

Thanking you,

Yours sincerely, for Infosys bimited

(Dags Gunalan)

Associate Vice President & Regional Head - Facilities

Compliance details

CC: Environmental Engineer Regional Office -1, Telangana State Pollution Control Board Ward No.91, 2nd Floor, H-No.6-3-1219, Block C, Backside of country club, Kundanbagh, Umanagar, Begumpet, Hyderabad

INFOSYS LIMITED

SEZ Survey No. 41 (pt) 50 (pt) Pocharam Village, Singapore Township PO Ghatkesar Mandal, Rangareddy (Dist.) Hyderabad 500 088, India T 91 40 4060 0000 F 91 40 6634 1356

Corporate Office: CIN: L85110KA1981PLC013115 44, Infosys Avenue Electronics City, Hosur Road Bengaluru 560 100, India T 91 80 2852 0261 F 91 80 2852 0362 askus@infosys.com www.infosys.com

COMPLIANCE OF ENVIRONMENTAL CLEARANCE CONDITIONS

FOR THE PERIOD: OCTOBER 2018 TO MARCH 2019

Ref: Order No. SEIAA/A/AP/RRD-75/2008 - 298 dated 08.06.2009

Submitted by

Infosys Limited (IT SEZ Project)

44 & 45(part), 48, 49, 50(part), 51 and 54
Pocharam (V), Ghatkesar (M), Rangareddy (D).
TELANGANA.

PART A: Specific Conditions 1. Construction Phase:

S.No	EC conditions	Compliance status		
	Provision shall be made for the housing of the construction labour within the site with all necessary infrastructure and facilities such as safe drinking water, fuel for cooking, mobile toilets, mobile STP, medical health care, crèche etc., The housing may be in the form of temporary structures to be removed after the completion of the project. The safe disposal of wastewater and solid wastes generated during the construction phase should be ensured	campus. Having semi temporary sheds for the 700 labor build in capacity for 1000nos and having 23 nos. of Toilet septic tank capacity 1Lakh liters is provided and disposing t authorized vendor, enough (10KL/Day) RO water provide for drinking purpose, First-aid center is provided both at sit and labor camp. Solid waste is disposed to authorize		
ii.	All the top soil excavated during construction activities should be stored for use in horticulture / landscape development within the project site	All the top soil is being stacked separately in order to use for landscape development within the project after completion of the construction activity.		
Disposal of muck during construction phase should not create any adverse effect on the neighboring of communities and be disposed taking the necessary procedure of the precautions for general safety and health aspects of the communities and the disposed taking the necessary procedure.		Muck and dust levels are much lower and addition precaution is we sprinkle water quite frequently to avoid dust rising high. The construction area has been barricade		
Î v	Soil and ground water samples will be tested to ascertain that there is no threat to ground water quality by leaching of heavy metals and other toxic contaminants	Regular monitoring of ground water samples is being carried out to check the levels of heavy metals etc.		
Construction spoils, including bituminous material and other hazardous materials, must not be allowed to contaminate watercourses and the dump sites for such material must be secured so that they should not leach into the ground water		Construction spoils are carted away and dumped in municipal authorized areas.		
Any hazardous waste including biomedical waste should hazardous waste and bio-medical to disposed of as post applicable Rules & porms with		Hazardous waste and bio-medical waste is being stored separately and disposed to authorized vendors of CPCB/TSPCB.		
vii	The diesel generator sets to be used during construction phase should be low sulphur diesel type and should confirm to E (P) Rules prescribed for air and noise emission standards	The DG sets are used with low Sulphur fuel and comply with CPCB guidelines for noise and emission norms.		

viii	Vehicles hired for bringing construction material to the site should be in good condition and should confirm to applicable air and noise emission standards and should be operated only during non-peak hours	Complied.
ix	Ambient noise levels should confirm to the residential standards both during day and night. Incremental pollution loads on the ambient air and noise quality should be closely monitored during construction phase. Adequate measure should be made to reduce ambient air and noise level during construction phase, so as to confirm to the stipulated standards by the CPCB	Regular air and noise monitoring is carried out during the construction period. Water spraying is done on the roads to avoid any dust emissions during the plying of vehicles. Construction equipment will be maintained and serviced regularly such that the emissions are under control. Construction activities are restricted to daytime only as much as possible to minimize disturbance during nighttime.
×	Ready mixed concrete must be used in building construction	Ready mix concrete is using for construction.
xi	Storm water control and its re-use as per CGWB and BIS standards for various applications	The storm water of the construction site is restricted to construction area and diverted to the storm water drainage network.
xii	Water demand during construction should be reduced by use of pre-mixed concrete, during agents and other best practices referred	Ready mix concrete is using for construction along with use popular additives to reduce water consumption.
xiii	Separation of grey and black water should be done by the use of dual plumbing line for separation of grey and black water	Temporary toilets are provided near the construction site. Dual plumbing is provided in the design of the buildings.
xiv	Treatment of 100% grey water should be done	An STP of adequate capacity is provided for treatment of grey water during the operation phase of the project
xv	Fixtures for showers, toilet flushing and drinking should be of low flow either by use of aerators or pressure reducing devices of sensor based control	All the CP fittings and showers are designed low flow and to save water.
xvi	Use of glass may be reduced by upto 40% to reduce the electricity consumption and load on air-conditioning. If necessary, use high quality double glass with special reflective coating in window	Glass would be used with light factors - reflection external-23, reflection internal-15 and solar energy UV - transmission (VLT) 60%, solar energy reflectance 13%, shading co-efficient 0.27 and summer 'U-value 1.3 W/sq.mt/kelvin, solar heat gains co-efficient 0.36., shading devices and low e-glazing have been introduced in the building. Glazing all around with open able windows have been proposed in the project for natural light and ventilation. Passive solar design refers to the use of the sun's energy for the heating and cooling of living spaces.
	Roof should meet prescriptive requirement as per	A mass roof with R-15 insulation (thermo seal) above the deck+ High Albedo paint on top to give overall U factor of
xvii	Energy Conservation Building Code by using appropriate thermal insulation material to fulfill requirement	0.06 BTU/Hr/sq.ft The ECBC guidelines have been adopted for the design of building envelope.

xviii	Adequate measures to reduce air and noise pollution during construction keeping in mind CPCB norms on noise limits	The construction area is barricaded with metal sheet partitions to control fugitive dust emissions. Sprinkling of water in the construction area and unpaved roads is done to control fugitive dust emissions. By Restricting vehicle speed on construction roads and ensure vehicles use only dedicated construction roads and access points.
xix	Opaque wall should meet prescriptive requirement as per Energy Conservation Building Code which is proposed to be mandatory for all air-conditioned spaces while it is aspirational for non-air conditioned spaces by use of appropriate thermal insulation material to fulfill requirement	100 mm block work+ R13 insulation + 100 mm block work and the project is planned with Green Building Concept. The Leadership in Energy and Environmental Design (LEED) Green Building Rating System for new construction is a set of performance criteria for certifying the sustainable design and construction of new buildings. It has been developed as part of the U.S. Green Building Council's (USGBC) ongoing effort to provide a national standard for what constitutes as a green building. The intent of which is to assist in the creation of high performance healthful, durable, affordable and environmentally sound buildings. The proposed project is aimed to be certified as the LEED rated building.

II. Occupational Phase:

S.No	EC conditions	Compliance status			
	The installation of the Sewage Treatment Plant (STP) should be certified by an independent expert and a report in this regard should be submitted to the SEIAA before the project is commissioned for operation. Discharge of treated sewage shall conform to the norms & standards of the Andhra Pradesh Pollution Board. The excess treated wastewater is to be allowed into a pond provided within the premises, which can be utilized for recreational purpose. Sewage Treatment Plant should be monitored on a regular basis. No waste water shall be discharged outside the premises	We are maintaining STP parameters as per norms prescribe by TSPCB. STP Outlet water using for landscaping and Partifor HVAC. The sample test report is enclosed as Annexure 1.			
	Rain water harvesting of roof run-off and surface run-off, as plan submitted should be implemented. Before recharging the surface run off, pre-treatment must be done to remove suspended matter, oil and grease	2. Rain water from roof ton from SDR 2.4 ECC Fast			
	The solid waste generated should be properly collected & segregated before disposal to the City Municipal Facility. The in-vessel bio-conversion technique should be used for composting the organic waste	the segregated biodegradable wastes will be accessed:			
iv	The D.G. Sets shall be provided with adequate stack height as per CPCB norms	In order to control emissions of particulates during operation of the DG sets, adequate stack height of 31.5-m is provided for wider dispersion into the atmosphere. 2000 KVA X 2 DG sets is attached with 1 chimney and it is operational. 3000 KVA X 2 DG sets is attached with 1 chimney is operational. The DG sets comply with CPCB norms for emission and noise. Newly added for phase-2 2000 KVA X 2 DG sets is attached with 1 chimney and it is operational.			
**************************************	Any hazardous waste including biomedical waste should be disposed of as per applicable Rules & norms with necessary approvals of the Andhra Pradesh Pollution Control Board.	We obtained Biomedical Waste Management Authorization from TSPCB vide order no. Lr. No.272/BMW/PCB/R.O.I-RRD/2018-2322 dated 19.06.2018 and it is valid for 5 years (19.06.2018 to 30.06.2023). Disposing to GJ Multiclaves. TSPCB consent order no-600/TSPCB/BMWM/CBMWTF/2011-3794 dated10.02.2018 The Hazardous waste is stored separately in a dedicated storage place and disposed to TSPCB authorized vendors.			

VI Use. The open spaces inside the nlot should be suitably b		Covered with a green belt 166,221.12 sq.mt and lung spac between buildings — 123,910.02 sq.mt. The ambient nois level of the project is enclosed as Annexure-3.			
vii	Incremental pollution loads on the ambient air quality, noise and water quality should be periodically monitored after commissioning of the project.	Monitoring for Air quality, Noise and water quality or periodic basics.			
VIII	Application of solar energy should be incorporated for illumination of common areas, lighting for gardens and street lighting in addition to provision for solar water heating. A hybrid system or fully solar system for a portion of the apartments should be provided.	✓ Solar LED Street lights of 85 W are installed (Total Nos. 615).			
ix	Funds allocated for providing the environmental protection measures shall be kept in a separate account and shall not be diverted to any other purposes.	The funds allocated for implementation of environmental protection measures is maintained separately and utilized for the same like greenbelt development, maintenance of pollution control equipment like STP, Organic waste convertor etc.			
×	Adequate number of parking spaces shall be provided for visitor vehicles, Rest room facilities should be provided for service population. The proponent shall provide public convenience facilities such as toilets, bathrooms, waiting rooms etc., for the drivers, workers etc., so as to maintain cleanness/hygienic conditions in the surroundings of the project.	 ✓ 50 bus parking space, which can be used for buses and cabs is provided. ✓ Separate parking for visitor vehicles have been provide at Multiple Level Parking ✓ Rest room facilities, waiting rooms, toilets, bathrooms for drivers & service population. 			
xi	The proponent shall comply with Energy efficient practices and energy audit practices. Wherever feasible, green building concepts shall be adapted.	SDB1, 2, 3 are certified for LEED platinum Rating from IGBC (Indian Green Building Council). SDB1,4,5 are certified for 5* Rating by GRIHA Obtained Vishwakarma award for SDB 4 and 5. The IGBC certificate is enclosed as Annexure-4.			

S.No	Part – B General Conditions:			
2940	EC conditions	Compliance status		
i	This order is valid for a period of 5 years	Noted.		
ii Andhra Pradesh Pollution Control Board before the start of any construction work at site.		CFE for the project has been received vide vide order no 294/PCB/CFE/R)-I-RRC/HO/2009 - 2287 dated 15.01.201 from APPCB, Hyderabad before the start of any construction at site.		
	Officials from the Regional Office of MoE&F, Bangalore who would be monitoring the implementation of environmental safeguards should be given full cooperation, facilities and documents/data by the project proponents during their inspection. A complete set of all the documents submitted to MoE&F should be forwarded to the CCF, Regional Office to MoEF, Bangalore.	Complied.		
iv	The proponent shall submit half-yearly compliance reports in respect of the terms and conditions stipulated in this order & monitoring reports in hard and soft copies to the SEIAA and Ministry's Regional office, Bangalore on 1st June and 1st December of each calendar year.	The half-yearly compliance reports are being submitted t the Ministry's Regional Office, Chennal and TSPCB.		
**************************************	In the case of any change (s) in the scope of the project, the project would require a fresh appraisal by this SEIAA.	Agreed. There is no change in the project design. In case of any change, the Project proponent will obtain the necessary amendments from the statutory authorities.		
vi	The SEIAA reserves the right to add additional safeguard measures subsequently, if found necessary, and to take action including revoking of the Environment Clearance under the provisions of the Environment (Protection) Act, 1986, to ensure effective implementation of the suggested safeguard measures in a time bound and satisfactory manner.	Agreed.		
vii	applicable by project proponents from the competent authorities.	The project has obtained all statutory clearances like building approvals from HMDA, Power sanction from TSCPDCL, Water supply from HMWS&SB, building height clearance from Airport Authorities, NOC from Fire Dept.,		

МIII	The project proponent should advertise in at least two local Newspapers widely circulated in the region, one of which shall be in the vernacular language informing that the project has been accorded environmental clearance and copies of clearance letters are available with the Andhra Pradesh Pollution Control Board. The advertisement should be made within 7 days from the day of issue of the clearance letter and a copy of the same should be forwarded to the Regional Office of this Ministry at Bangalore.	
ix	Concealing the factual data or failure to comply with any of the conditions mentioned above may result in withdrawal of this clearance and attract action under the provisions of Environment (Protection) Act, 1986 without any prior notice.	Noted.
×	These stipulations would be enforced among others under the provisions of Water (Prevention and Control of Pollution) Act, 1974, The Air (Prevention and Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986, the Public Liability (Insurance) Act, 1991 and EIA Notification, 2006.	The project has obtained a combined order of consents for air, water, and HMW management from TSPCB vide order no. TSPCB / 18150 / CFO / RO-RR-I / HO / 2015 - 2798 dated 23.12.2015.

LIST OF ANNEXURES

ANNEXURE NUMBER	DESCRIPITON		
ANNEXURE NO -1	Copy of the test report for STP treated waste water quality		
ANNEXURE NO -2	Photograph of the rainwater harvesting lakes/ponds		
ANNEXURE NO -3	Copy of the test Report showing the Ambient Noise level of the Project		
ANNEXURE NO -4	Copy of the IGBC Certificate		

vitro labs

AN ISO 3501-2568 200 CHSAS CERTIFIED COMPANY

2:2-64/7/03, 3rd Floor, Shivam Road, Hyderabad 500 013

Phone: 040-27421389, Fax: 040-27423532, E-mail: labsvitro@yañoo.com, vitrolabs@gmail.com

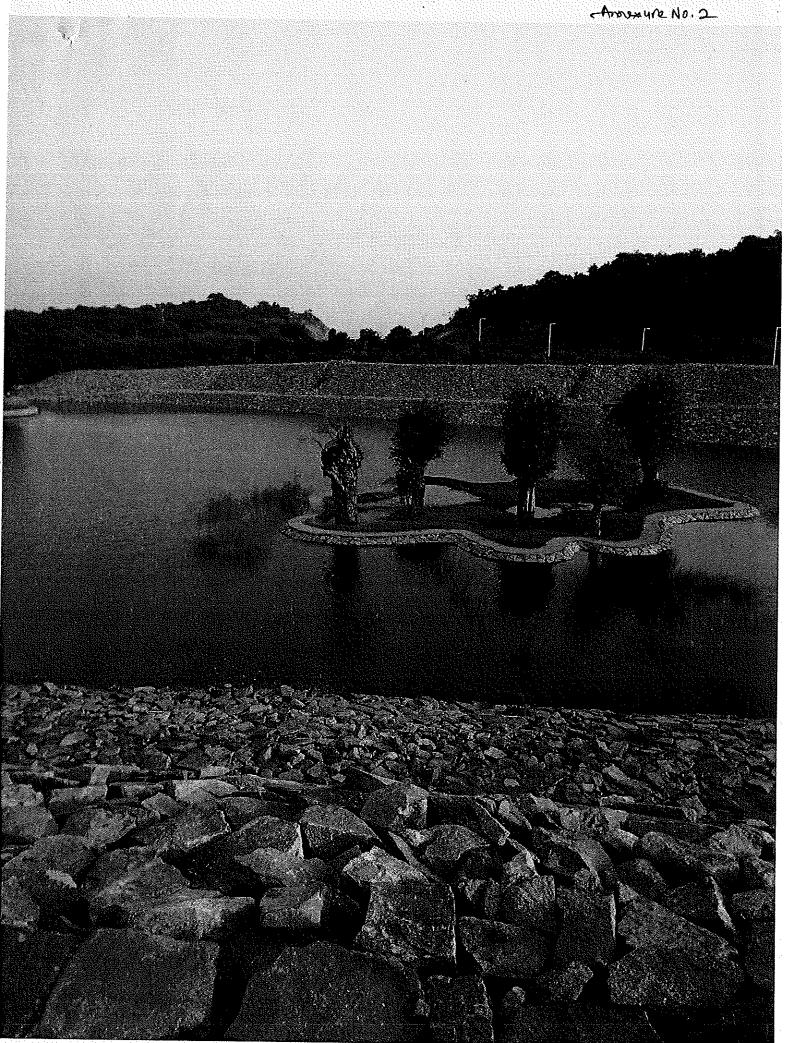
Web::www.vitrolabs.net, www.vitrolabsIndia.com

(Recognized by the Ministry of Environment & Forest, GOI)

TEST CERTIFICATE

EFFLUENT ANALYSIS REPORT

O	ur Ref:	1541/ENV	
R	porting Date:	00.00.00.00	Issued To:
		19.03.2019	M/s. Infosys Limited,
Se		STP OUTLET WATER	S.No 41, 50, pocharam Village,
		OU COILE WATER	Sanskruthi Township (Post), Ghatkesar Mandal, R.R.Dist,
.			Hyderabad-500088


TEST RESULTS

SI.No	Parameters	Units	Result	84-1-1
01	PH		8.40	Standards
02	Oil & Grease	(mg/l)		6.0-9.0
03	Bio Chemical Oxygen Demand(BOD)		1.30	10 mg/l
04	Chemical Oxygen Demand(COD)	(mg/l)	7	<10 mg/l
05	Ammonical Nitrogen	(mg/l)	40	250 mg/l
06	Arsenic	(mg/l)	2.30	50 mg/l
07	Mercury	(mg/l)	BDL	0.2 mg/l
08	Lead	(mg/l)	BDL,	0.01 mg/l
09	Cadmium	(mg/l)	0.01	1.0 mg/l
10		(mg/l)	0.01	1.0 mg/l
11	Hexavalent Chromium	mg/l	BDL	2.0 mg/l
12	Total Chromium	(mg/l)	0.01	2.0 mg/l
	Zinc	(mg/l)	0.21	Control of the contro
13	Copper	(mg/l)	0.01	15 mg/l
14	Turbidity NTU	NTU	1.20	. 3.0 mg/l
15	Ecoil(MPN count/100ml)	(cfu/100ml)	Absent	≤2.0 NTU
16	Faecal Coliform	(cfu/100ml)		None
17	Residual Chlorine	(mg/l)	19	<100 -
		(iiiAii)	1.0	Preferably in the range of
8	Total Nitrogen	/ nv		1 mg/l 3 mg/l
9	Total Dissolved Solids	(mg/l)	2.85	
	Total Suspended Solids	(mg/i)	1490	
	DICATES: Below Detectable Limit < 0.0	(mg/l)	12	20

Note: The above parameters are tested as per IS: 3025 methods and the results are within the norms

Authorised Signatory

Environmental Studies like Compressed Air Quality Testing, Work Zone, Indoor Air Quality, Gravimetric Dust Sampling, Stack, AAQ Monitoring, Waste Water, Solid & Hazardous Waste Analysis and Analytical Services like Water, Ores, Minerals, Alloys, Petroleum Products, Food Materials, Solls, Poultry Feeds Etc.

AN ISO 9001-2008 and OHSAS CERTIFIED COMPANY

2-2-647/A/3, 3rd Floor, Shiyam Road, Hyderabad-500 013.

Phone : 040-27421389, Fax: 040-27423532, E-mail: labsvitro@yahoo.com, vitrolabs@gmail.com

Web : www.vitrolabs.net, www.vitrolabsindia.com

(Recognized by the Ministry of Environment & Forest, GOI)

TEST CERTIFIC PRE: VLITUNL/MAR/02/2019

M/s. Infosys Limited, S.No 41, 50, pocharam Village, Sanskruthi Township (Post), Ghatkesar Mandal, R.R.Dist,

Hyderabad-500088.

Date: 30.03.2019

Sample Details
DATE OF MONITORING Noise level monitoring 19.03.2019-20.03.2019 (24 HOURS) LOCATION NEAR MLPL UNITS dB(A)

	85	-	1	н		**	11	100		8
à	200	200	100	21.92	800	1893	9.50	200	Albin.	νê

<u>Sr. No</u>	Date	Time	Noise Level in dB(A)
_1	19.03.2019	10.00am	69.4
2	19.03.2019	11.00 am	68.1
3	19.03.2019	12.00 noon	71,5
4	19.03.2019	01.00pm	67.6
5	19.03.2019	02.00pm	64.2
6	19.03.2019	03.00pm	68.3
_7	19.03.2019	04,00pm	70.5
- 8	19.03.2019	05.00pm	71.7
9	19.03.2019	06.00pm	69.0
10	19.03.2019	07.00pm	62.7
11	19.03.2019	08.00pm	57.9
12	19.03.2019	09.00pm	53.7
13	19.03.2019	10.00pm	53.6
14	19.03.2019	11,00pm	52.4
15	19.03.2019	12,00am	52.2
16	20.03.2019	01.00am	51.8
_17	20.03.2019	02.00am	52.8
18	20.03.2019	03.00am	54.0
19	20.03.2019	04.00am	62,6
20	20.03.2019	05.00am	53.5
21	20.03.2019	06.00am	55.9
22	20.03.2019	07.00am	61.8
23	20.03.2019	08.00am	68.2
24	20,03,2019	09.00am	69.4

8		
1	Lday	69.7
	. Lnight	56.3
100	Ldn	66.7

NAIL E		A-A-1
MOISE E	xposure Limit(UPUB)
Area	Lim	its dB(A) Leq
	Day Time	Night Time
CONTRACTOR OF THE PROPERTY OF		
Industrial Area	75	70
Commercial Area	65	55
Residential Area	55	
	U U	45
Silence Area	50	40

Authorised Signatory

Environmental Studies like Compressed Air Quality Testing, Work Zone, Indoor Air Quality, Gravimetric Dust Sampling, Stack, AAQ Monitoring, Waste Water, Solid & Hazardous Waste Analysis and Analytical Services like Water, Ores, Minerals, Alloys, Petroleum Products, Food Materials, Soils, Poultry Feeds Etc.

vitro labs

AN 150 9001-2008 and OHSAS CERTIFIED COMPANY

2-2-647/A/3, 3rd Floor, Shivam Road, Hyderabad-500 013.

Phone: 040-27421389, Fax: 040-27423532, E-mail: labsvitro@yahoo.com, vitrolabs@gmail.com

Web: www.vitrolabs.net, www.vitrolabsindia.com

(Recognized by the Ministry of Environment & Forest, GOI)

Ms. Infosys Limited,

M/s. Infosys Limited,
S.No 41, 50, pocharam Village,
Sanskruthi Township (Post),

Ghatkesar Mandal, R.R.Dist, Hyderabad-500088, Rel VLITLINUMARIO3/2019

Date: 30.03.2019

Sample Details	Noise level monitoring
DATE OF MONITORING	19.03.2019 20.03.2019 (24 HOURS)
	NEAR STP
UNITS	dB(A)

TEST RESULTS

Sr. No	Date	Time	Noise Level in dB(A)
1	19.03.2019	10.00am	65.9
2	19.03.2019	11,00 am	63.1
3	19.03.2019	12.00 noon	67,2
4	19.03.2019	01.00pm	64.4
5	19.03.2019	02.00pm	65.5
- 8	19.03.2019	03.00pm	68.2
7	19.03.2019	Q4.00pm	70.7
8	19.03.2019	05.00pm	67.5
9	19.03.2019	08.00pm	66.0
10	19.03.2019	07.00pm	63,3
11	19.03.2019	08.00pm	60.0
12	19.03.2019	09.00pm	61,8
13	19.03.2019	10.00pm	60,2
14	19.03.2019	11.00pm	62.2
15	19.03,2019	12.00am	61,9
16	20.03.2019	01,00am	60.3
17	20.03.2019	02.00am	59.3
18	20.03.2019	03.00am	61.1
19	20.03.2019	04.00am	63.7
20	20,03,2019	05.00am	61.0
21	20.03.2019	06.00am	60.4
22	20.03.2019	07,00am	62.3
23	20.03.2019	08,00am	66.9
24	20.03.2019	09.00am	68.2

100		
(22)	Lday	
	LUAV	68.8
îlî.		VV.
	Lnight	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	62.7
111	44.7.3.1.1	The state of the s
N.		
	Ldn	67.0
		07.0
		The state of the s

Nois	e Exposure Limit(CF	rCB)
Area	Limits	dB(A) Leq
	Day Time	Night Time
Industrial Area	75	70
Commercial Area	65	55
Residential Area	55	45
Silence Area	50	40

Authorised Signatory

Environmental Studies like Compressed Air Quality Testing, Work Zone, Indoor Air Quality, Gravimetric Dust Sampling, Stack, AAQ Monitoring, Waste Water, Solid & Hazardous Waste Analysis and Analytical Services like Water, Ores, Minerals, Alloys, Petroleum Products, Food Materials, Soils, Poultry Feeds Etc.

963 96349 20849343333983

2-2-047-045. Tad Piece silection Paulo, Pytiarabed 509-013. Piecea : 948-27421353, Fax: 940-27423522, E-eisili, taksvipt ellipaliseskan, vitotatisel paulisese. Visb : www.edrotabs.net/eww.yitotabsingia.com

(Racognized by the Ministry of Environment & Forest, GOI)

M/s. Infosys Limited,
S.No 41, 50, pocharam Village,
Sanskruthi Township (Post),
Ghatkesar Mandal, R.R.Dist,
Hyderabad-500088.

TEST CERTIFICATE! VIJITUNUMAR/04/2019

Date: 30.03,2019

the state of the s
ive balant it to be at \$1
有是有效的表示的表现的。
·新月年和成五日建筑出土日
Section to the Fig.

TEST RESULTS

Sr. No Date 1 19 03 2010	Time	
	10.00am	Noise Level in dB(A)
	11.00 am	64.9
3 19.03.2019	12.00 noon	63.0
4 19.03.2019	01.00pm	64.1
5 19.03.2019	02.00pm	64.4
6 19,03.2019	03.00cm	62.9
7 19.03.2019	04.00pm	66.3
8 19.03.2019	05.00pm	54.8
9 19.03.2019	06.00pm	63.7
10 19.03.2019	07.00pm	62/9
11 19.03.2019	08.00pm	62/1
12 19.03.2019	09.00pm	60.5
13 19.03 2019	10.00pm	60.5
14 19.03.2019	11.00pm	60.2
15 19.03.2019	12,00am	59.3
16 20.03.2019	01.00am	59.5
17 20.03.2019	02.00am	59.3
18 20.03.2019	03.00am	58.1
19 20.03.2019	04.00am	58.3
20 20.03.2019	05.00am	59.5
21 20.03.2019	06,00am	58.2
22 20.03.2019	07.00am	59.1
23 20,03.2019	08.00am	57.6
24 20.03.2019	09 00am	62,5
		63.6

	Carter Calaboration and the Committee Committe		
	. Lday		68.8
	Lnight		
1			62,7
j	Lan	300	67.0
à		Section.	
-			化氯化物 化化物 化二甲基基磺胺 医克尔特氏 化甲基乙烯 化氯化物 医克尔特氏管 化氯化物 医氯化物

Noise	Exposure Limit(CPCB)	
Area	Limits dB(A) Leq	
	Day Time Night Time	
Industrial Area	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Commercial Area	<u> </u>	
Residential Area		
Silence Area	50 45	

Aithorised Signatory

Embroomental Studies like Compressed Air Quality Testing, Work Zone, Indoor Air Quality, Gravimenic Bust Sampling, Stack, AAQ Monitoring, Waste Water, Solid & Hazardous Waste Analysis and Analytical Services like Water, Dres, Minerals, Alloys, Petroleum Products, Food Materials, Solls, Poutry Feeds Etc.

Indian Green Building Council (IGBC)

hereby certifies that

Infosys SDB - 2 & 3

Pocharam, Eyderabad

the following level of certification under the Leadership in Energy and Environment Design has successfully achieved the Green Building Standards required for (LEED) for India Green Building Rating System

LEED India for New Construction Platinum December 2013

Chairman, LEED India C.N. Raghavendran

Dr Prem C Jain

S Raghupathy

Executive Director, CIL-Godrej GBC

Chairman, IGBC