
VIEW POINT

APPLICATION DESIGN
USING MICRO FRONTEND

1. Introduction

In recent years, microservices have grabbed attention of
organizations by overcoming limitations of large, monolithic
backends. Businesses with large web apps which are continuously
growing, it is difficult to maintain them in traditional monolithic
frontend style. With their monolith codebase it’s not easy to
integrate new features, flexibility to implement a feature in the
technology of choice and scaling separate component as they are
tightly coupled.

As organizations have solved monolithic issues in backend, they
are in a need of having the architectural pattern to avoid struggles

of monolithic frontend codebases. The architectural design which
avoids the issues of monolith frontend is Micro frontend.

Micro frontend Design

Micro frontend design is inspired from microservices which allows

loose coupling of components. This design decomposes the large

complex web application to smaller fragments which can be

developed, tested, and deployed independently but still can be

served as single product. Within this design, teams are vertically

grouped to serve a particular feature.

Fig. Micro frontends (source: medium)

External Document © 2023 Infosys Limited

Micro Frontends

External Document © 2023 Infosys Limited

Micro Frontend Application workflow

When a user visits a web page which is implemented in micro frontend design, the browser sends request to the index.html of container
application then as per the browser request, container application renders the required micro frontend on the page.

• Be technology independent: Each team has the freedom
to choose any frontend technology stack facilitates no
coordination with other teams.

• Team’s code is isolated: Teams which are using same
framework will not share runtime facilitates no shared states or
use of global variables in the application.

• Robust web design: Application features must be usable even
though javascript is failed or yet to be executed. To improve
performance methodologies such as “Universal Rendering” and
“Progressive Enhancement” can be used.

Benefits of using micro frontend design

Better flexibility: Each micro frontend can be developed, tested,
deployed independently. So, if team A is working on bug fix and
team B wants to deploy their feature, team B does not need to wait
for team A to finish their work.

Freedom to choose technology: UI teams developing different
features can choose different technology stack as per business
requirements.

Multiple, smaller codebases: Each UI fragment’s team have their
own codebases which are small, manageable, involves simple
code reviews and only few developers will be a part of certain UI
fragment.

Easy scaling of micro apps: In monolithic frontend approach, if

a new feature is added, we have to scale the whole application.
But in micro frontend approach, each micro app can be scaled
independently which results in less time to market than
monolithic frontend.

Autonomous teams and systems: Each team can work on their
feature with minimal dependency on other teams so that if other
components are down still it can function.

Easy to get started: Micro frontend is easy to understand and
manage than monolithic frontend thereby new developers don’t
need to spend a lot of time to understand the codebase before
adding value to the project.

Business use cases where we can think of micro frontend as a good
idea

• Scenarios of having more developers working for a large
business domain, planning to reduce complexity by splitting
the whole application into multiple subdomains and want to
deploy each feature of the entire application independently
with no overloaded coordination and communication between
subdomains.

• Use cases like building innovative, responsive, and scalable
digital applications.

• To improve overall productivity or productivity focused project,
micro frontend approach can be a good idea.

The core ideas of Micro frontend design are,

Fig. Micro frontend application workflow (source: medium)

External Document © 2023 Infosys Limited

2. Implementation Techniques

Before moving to implementation options of micro frontend, we
have to decide how UI has to be split.

Basically, there are two ways to split application frontend which
are,

Horizontal split: The horizontal split splits an interface into

multiple parts, assign them to different teams.

Vertical split: Here in vertical split, based on business domain
priority, each domain will be assigned to different teams.

There are multiple ways to implement micro frontend design
pattern based on where and how different micro frontends are
composed.

Server-side composition

In this approach, as the name says different views composition happens at server level. The server calls micro frontends, composes the view,
and organizes different components of the page before it serves. And also we can always load the base component on server, avoids blank
screen or unnecessary loading time to users. Eg. Nginx, Podium, Tailor.

External Document © 2023 Infosys Limited

Build-time integration

Composing components at build-time can be implemented by
stating micro frontend components as npm dependencies in a
package.json file. This approach facilitates easy deployment but
the major drawback of this approach is that increased dependency

between different micro frontends makes it difficult to have
independent pipelines, results in same bottlenecks of monolithic
frontend. Businesses still use this approach as per their use cases.
Eg. Shared libraries, SSG Fragments, Bit.

Edge-Side Composition

In this approach, micro frontends are composed at edge layer,
such as CDN.

The below given implementation techniques are client side
integration, follow the fundamental principle of client side

integration where different micro frontends are delivered to the
browser. Once sourced, these micro frontends can be placed and
organized in multiple ways as per the following:

External Document © 2023 Infosys Limited

Run-time via iframes

This integration technique serves principles of micro frontend
design, easy to deploy and also enables isolation between parent
application and micro frontends. But this technique limits UX
experience to iframe boundaries also adds more complexity while
building responsive page.

Run-time via JavaScript

JavaScript overcomes the limitations of iframes. With client side
composition, we can easily find what are the required micro
frontends and when and where it should be rendered.

Run-time via web components

This technique is slightly different from the above techniques.
Here, Web components refer to micro frontends whereas in
above techniques they are referred as bundles. So these web
components can respond to URL routing and can render micro
frontends as per other run time integration techniques.

There are many frameworks available to implement micro
frontend. The most popular framework is Webpack Module
Federation Plugin (Client-Side composition).

3. Module Federation based Integration

Various integration approaches are given to fulfill different
requirements, but if we see from the benefits and flexibility
perspective Module Federation based integration is widely
accepted to share code and libraries between applications.

With module federation, any JavaScript code, such as business
logic or libraries, and state management code can be shared

between applications. It can make multiple micro frontend apps
work together as if you develop a monolith app. The purpose
of module federation is to share JavaScript code between
applications, not UI. So, the shared code can be used in an app.

With module federation we can avoid code duplication and
provide shared UI components across the entire app.

External Document © 2023 Infosys Limited

4. Deep Dive into Module Federation based Integration
Before starting to integrate the projects, our apps (host app as well as remote apps) require some setup to be aware about other projects.

We need to create a “webpack.config.js” file at the root of host/ :

External Document © 2023 Infosys Limited

• entry: this defines which file to target when project is started

• mode: this decides which environment file to load.

• devServer: this contains the port number for the project

• ModuleFederationPlugin: this allows us to combine the
applications at runtime in the client’s browsers.

o name: it is used to distinguish between the modules. It is not
important in this example as we are not exposing this anything
in this project, but it is necessary for our Remote projects.

o remotes: it is where we define the federated modules we
want to consume in this app. You’ll notice we specify Remote
as the internal name so we can load the components using
import(“Remote/<component>”). But we also define the
location where the remote’s module definition is hosted:

“Remote@http://localhost:4000/appEntry.js”. This URL tells us
three important things. The module’s name is Remote, it is
hosted on localhost:4000, and its module definition is appEntry.
js.

o shared: this is how we share dependencies between modules.
This is very important for React because it has a global state,
meaning you should only ever run one instance of React and
ReactDOM in any given app. To achieve this in our architecture,
we are telling webpack to treat React and ReactDOM as
singletons, so the first version loaded from any modules is used
for the entire app, if it satisfies the requiredVersion we define.
To minimize the number of duplicate dependencies between
our modules we are also importing all our dependencies from
package.json and include them here.

Now we will start configuring our remote apps, for that we will create webpack.config.js file in the root of remote1/ and remote2/:

External Document © 2023 Infosys Limited

• Our webpack dev server runs at localhost: 4000

• The remote module’s name is Remote

• The filename is moduleEntry.js

Combining these will allow our host to find the remote code at “Remote1@http://localhost:4000/appEntry.js”

• Exposes: it is where we define the code we want to share in the appEntry.js file. Here we are exposing: <App />.

*We will do the same thing for Remote2

Now we are done with the configuration, we can start our projects
by performing npm start inside each individual project directories,

i.e., host, remote1 and remote2, all projects will start working on
their assigned ports.

Now to use remote project inside the component of our host project, we will import the remote project in the file with:

and use with:

For handling navigation based on any event from remote app, we have created a event listener inside in our host app and navigate according
to the data passed:

The useEffect Hook allows you to perform side effects in your components. Some examples of side effects are: fetching data, directly
updating the DOM, and timers. useEffect accepts two arguments. The second argument is optional. useEffect(<function>, <dependency>).

5. Challenges Faced
Faced challenges in integrating search auto complete and
navigation triggered from remote apps.

We resolved search auto complete by using the package ‘react-
search-autocomplete’, but the package was firing search function
instantly as the user typed so to overcome this we created custom

input debounce function so that before calling the search function
it will wait for given amount of time.

And, to resolve the navigation triggered from remote apps we
used the javascript based event bus which will listen to certain
event and will perform the action accordingly.

External Document © 2023 Infosys Limited

External Document © 2023 Infosys Limited

Business use cases where micro frontends are the right choice:

• Scenarios of having more developers working for a large
business domain, planning to reduce complexity by splitting
the whole application into multiple subdomains and want to
deploy each feature of the entire application independently
with no overloaded coordination and communication between
subdomains.

• Use cases like building innovative, responsive, and scalable
digital applications.

• To improve overall productivity or productivity focused project,
micro frontend approach can be a good idea

6. Conclusion

© 2023 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

Authors

• https://martinfowler.com/articles/micro-frontends.html

• https://medium.com/frontend-at-scale/an-introduction-to-micro-frontends-1a43edb4c38e

• https://dev.to/okmttdhr/micro-frontends-patterns-11-23h0

8. References

Aman Srivastava Vellimani M

Sachin Girijashankar Agrawal

Specialist Programmer Digital Specialist Engineer

Lead Architect

Mentor

https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
mailto:askus%40infosys.com?subject=
mailto:aman.srivastava09%40infosys.com?subject=
mailto:Sachin_agrawal03%40infosys.com?subject=
mailto:Vellimani.m%40infosys.com?subject=
https://www.linkedin.com/in/aman-srivastava-973297199
https://www.linkedin.com/in/sachingagrawal
https://martinfowler.com/articles/micro-frontends.html
https://medium.com/frontend-at-scale/an-introduction-to-micro-frontends-1a43edb4c38e
https://dev.to/okmttdhr/micro-frontends-patterns-11-23h0

