
WHITE PAPER

ARCHITECTURE GUIDANCE ON
CONTAINERS

Abstract

Containers are rapidly becoming the platform of choice across the industry
for hosting modern applications and services. According to Cloud Native
Computing Foundation, Containers exemplifies the approach to build and run
scalable applications in modern, dynamic environments such as public, private,
and hybrid clouds.

Container programs provide a robust Container Hosting Platform which is
inherently more resilient, secure, and operationally viable compared to the
previous generation of hosting platforms.

External Document © 2022 Infosys Limited

Abstract ..1

Introduction ..4

Drive into the world of containers ..4

Factors driving containers adoption in Financial Industry/Securities4

 Business drivers ... 4

 Application Modernization ... 4

 Operational risk factors ... 4

How to accelerate container adoption in Enterprises ...5

 Platform Provider .. 5

 Platform Consumer .. 5

Platform Options ..6

Providers available in Market ...6

How to Integrate Container Platforms into Enterprise ...7

Architectural Patterns for Building Applications with Containers7

Benefits of Containers in Financial Services ..9

Best Practices for Operating a Container Platform ..9

 State Management ... 9

 Configuration Management ... 9

 Logging .. 9

 Image Management ..10

 Monitoring ..10

Table of Contents

External Document © 2022 Infosys Limited

 Secret Management...11

 Security ...11

 Microservice Implementation ..11

Advantages and Limitations of Container Platforms ... 12

 Advantages: ..12

 Limitation: ..12

Case Study #1: Selection of Container Platform .. 13

 Background ...13

 Problem Statement ..13

 Resolution ..13

 Findings: ...13

 Outcome ..13

Case Study#2: Modernization of monolithic application .. 14

 Background: ..14

 Problem statement: ..14

 Resolution ..14

 Benefit: ..14

Conclusion .. 15

Author Profile ... 16

References... 16

External Document © 2022 Infosys Limited

Introduction

• Containers are software packages
which consist of necessary elements
which are required to run an
application in any given environment.
They are a form of operating system
virtualization which can run anything
from a small microservices or software

process to a large application.

• Kubernetes is an open-source
container orchestration system. It
helps in scaling, automating software
deployment and management of
environments.

• Containerization helps provide three
key technical advantages with the
potential to benefit to the business.
These are - increased predictability and
dependability, increased speed from
development to deployment, increased
operational velocity.

Drive into the world of containers

• Industries are driving goals looking
for IT cost optimization through
innovation with an intention of
achieving digital transformation across
the enterprise.

• The terms Container and Kubernetes
are the new buzzwords in the IT world.
Companies that adopt the technology see
themselves as innovators in the field and
hope to position themselves as highly

competitive amongst their peers. It helps
built container capabilities and realize
the value of containers and Kubernetes
platform through orchestration of early
adopter applications.

Factors driving containers adoption in Financial Industry/Securities

Business drivers

The business landscape is becoming more
competitive as the securities markets are
going through major advancements and
modernization. This, coupled with additional
challenges such as cost pressures and cyber
security threats, is mandating a paradigm
shift on the financial services and regulatory
businesses.

Application Modernization

Containers focuses on a very secured,
identical, stable, and speedy delivery,
these features help close gaps between

business and technical architecture
to help support financial markets
achieve and realize modernization
goals. It progresses at application
modernization holistically across the
Core Clearing, Risk and Solutions
businesses. If we look at the core
business functionalities such as
data ingestion, data transformation,
matching, clearing, data reporting
etc. the core application component
of all technical stack can use
containerization approach and benefit
from its capabilities such as ubiquitous
deployment, inherent security, and
speed of delivery.

Operational risk factors

Every organization have a huge legacy code base
which supports their business in a most efficient
manner and runs on a highly available platform.
However, we have the same challenges of
people, processes, and technology as prevalent
in our industry. It has built quite a sizable amount
of technical debt over time, which adds to the
risk of legacy systems. We need to aggressively
identify end of life technologies and processes
and gaps in skillsets of our people.

• Container’s capabilities built thus far is well
positioned to overcome challenges and
become integral part of the foundational
capabilities to drive digital transformation.

External Document © 2022 Infosys Limited

How to accelerate container adoption in Enterprises
Container capabilities can be viewed from two different perspectives namely, Platform Provider and Platform Consumer view.

Platform Provider

Provider creates a strategic roadmap to
adopt, develop and enhance container
platform capabilities and support
the growth of containers across IT
organization for an enterprise

Typically - providers offer a central
Container-as-a-service (CaaS)
environment for use by taking care of

a) Cluster administration: Kubernetes
Cluster consist of various factors
which help manage environment.
There are various factors which cater
them are Admin role, Manage CPU
and memory.

b) Certificate management: Kubernetes
provide an API which lets provision
of TLS certificate signed by Certificate
Authority (CA). These certificates
can be used by your workloads to
establish trust.

c) Namespace RBAC: In Kubernetes,
Cluster Roles and Roles define the
actions a user can perform within a
cluster. Roles and Role Bindings are
placed inside of and grant access to
a specific namespace, while cluster
roles and cluster role bindings do not
belong to a namespace and grant
access across the entire cluster. or
namespace, respectively.

d) Health checks: Kubernetes consist
of two kinds of health checks viz the
Readiness Probe and the Liveness
Probe.

 Both use the below types of probes -

I. TCP

II. HTTP

III. command execution

Platform Consumer

Consumer develops, configures, and
enhances application services to support
high availability deployments for business
functions using container capabilities.

Consumer focus on on-boarding
applications onto an existing Container-as-
a-service CaaS environment by leveraging
container and Kubernetes features. For
instance,

a) ReplicaSet: It maintains a stable set of
replica Pods running at any given time.
It mainly guarantees the availability of a
specific number of identical pods.

b) Scale a StatefulSet: It manages scaling
of containers, increasing or decreasing
replicas

c) Persistent volumes (PV) storage: A
Persistent Volume is a piece of storage
in the cluster. It can be provisioned
by either by an administrator or by
dynamically using Storage Classes.

d) Autoscaling:

 Scaling talks about automatically
increasing or decreasing our application
based on workload.

I. Horizontal Pod Autoscaling

 Horizontal scaling means that the
response to increased load is to
deploy more Pods. A Horizontal Pod
Autoscaler automatically updates
a workload resource (such as a
Deployment or StatefulSet), with
the aim of automatically scaling the
workload to match demand.

II. Cluster Scaling

 Cluster scaling involves dynamically
adjustment of the number of nodes

and pods to scale as per demand
of the user. Along with Horizontal
Pod, Cluster scaling can be handled
automatically. The Autoscaler
automatically adds new nodes in the
cluster if there is requirement for a
new node and it finds pending pods
waiting. Similarly, in case it identifies
there are unused nodes waiting for a
definite amount , it will reduce them.
This helps to reduce cost of the user
and you pay as per requirement only.

e) Liveness and Readiness Probe

 Liveness and Readiness probes are used
to control the health of an application
running inside a Pod’s container.
Liveness probes determines when it is
in need to restart a container. Readiness
probes determines the availability of a
container to accept request.

f) CronJobs

 A CronJob object is just like an entry
in crontab in Unix/Linux. It runs a job
periodically on a given schedule.

 To meet business requirements of
clients in most efficient and timely
manner, it is critical to create standard
implementation patterns and promote
the culture of reusability.

External Document © 2022 Infosys Limited

Platform Options

Container is the common system component
on which applications can be layered on and
deployed on top of underlying private or
public cloud infrastructure.

CaaS provides services that manage
containers at larger scale including
scaling, starting, stopping, and organizing
containerized workload.

Memory, CPU and API Resource
Management:

a) Limits on Namespace with Default
Memory Requests Configuration

 We should specify a default memory
resource limit for a namespace. This
ensures every new Pod in namespace has
a memory resource limit configured.

b) Limits on Namespace with Default
CPU Requests Configuration

 Always determine default CPU
resource limits for a namespace.
This will ensure that every new
Pod in namespace has a CPU
resource limit configured.

c) Define Memory Constraints for
Namespace

 Always determine range of
valid memory resource limits
- Maximum and Minimum, for
namespace. This will ensure that
every new Pod in namespace
is within the specified range
configured.

d) Define CPU Constraints for Namespace

 Always determine range of valid CPU
resource limits - Maximum and Minimum,
for namespace. This will ensure that every
new Pod in that namespace is within the
specified range configured.

e) Define Memory Quotas for a Namespace

 Define overall memory limits for a
namespace.

f) Define CPU Quotas for a Namespace

 Define overall CPU resource limits for a
namespace.

g) Define a Pod Quota for a Namespace

 Restrict how many Pods you are allowed
create within a namespace.

Providers available in Market

Kubernetes has become the open source industry standard for container orchestration. Apart from Vanilla Kubernetes, there are various
Kubernetes products for managing containers, including OpenShift, Tanzu.

OpenShift

OpenShift is a software product developed by Red Hat. Kubernetes incorporates Linux containers which
are orchestrated and also managed by them. OpenShift provides a Console which has developer and
administrator-oriented views. It also provides CLIP that supports superset of actions that the Kubernetes
CLI provides. Its platform to provide CaaS services in most secured and resilient way to inherit. Container
platform is fully deployed in Active-Active configurations across regional data centers. Each platform has
High Availability (HA) configuration for local availability within a region.

VMware Tanzu

VMware Tanzu is built for enterprises that must deploy and manage applications at scale. It is not a single
product, but rather a suite designed to modernize infrastructure on which they run. It is a VMware product.
It thus keeps strong connection to the VMware virtualization portfolio.

External Document © 2022 Infosys Limited

How to Integrate Container Platforms into Enterprise

By integrating container platform with common services, we can optimize cost with improve value. There are various services available to
optimize features like monitoring, security, storage, build pipelines and so forth.

Following are some common services Container platforms can integrate to achieve operational excellence:

Feature Common services to be integrated

Secrets Management Vault

Vulnerability scanning AquaSec, Trivy, Clair, Kube hunter

Alerting/Monitoring ServiceNow, Kubelet, cAdvisor, Prometheus, Jaeger,
Kubewatch

Performance monitoring AppDynamics

Operations Manager Micro Focus

Logging Splunk, Loki, Zebrium, ELK Stack, Fluentd

Security logging Qradar

Build and deploy Jenkins

Persistent Storage File / Block / S3 compatible Object storage services

Architectural Patterns for Building Applications with Containers

As we modernize our application portfolio
and decompose monolithic applications
into loosely coupled services, we need to
evaluate and develop new design patterns
for application functionalities.

We need to create new design patterns
focused on communication mechanisms
and interactions between the container
pods and managing platform.

Majority of applications could have a need
for such distinct patterns, some of which
are mentioned below:

1. Work Queue Design Pattern

 Work queue pattern propose that you
divide a large task into minor tasks to
minimize running time and complexity.
This patter is ideal for a container that
run as a batch service until completion
or scheduled to run periodically.

2. Singleton Design Pattern

 There could be a singleton service
which ensures only one instances of
service is active at a time and still need
to be highly available. In this case, we
use a single-containerized structure

Work
Coordinator

Container

Container 1

Container .. n
Persistence

which expose a HTTP service. It is
thus a good option when containers
are expected to solve only one given
problem statement.

3. Multiple pods behind load balanced end
point

 Typical Web service design pattern
where multiple stateless containers run
simultaneously behind a load balanced
service end point. Platform manages
discovery and routing of the service
requests.

External Document © 2022 Infosys Limited

4. Sidecar Design Pattern

 Sidecar pattern emphasizes on
extending the behavior of a container.
With sidecar pattern, we are decoupling
out system in different parts. Here, each
part has its own task, and each part
solves a unique different issue.

6. Adapter Design Pattern

 Adapter pattern manages communication between containers. It defines a standard for communicating with a definite set of contracts
manages to make request in same way always. This also helps to predict the response, as its always in same format. With this structure,
you can replace an existing consumer or client, without any prior notice since the response is always the same, only the implementation is
different. We can also reuse this configuration anywhere without worrying about managing other application logs.

7. Leader election Design Pattern

 In leader election design, customers that required highly available system is granted with redundancy of containers. Such patterns can be
observed in tools such as Elastic search.

Core Primary
A

Side Car Container

Reliable and Secure

Instances

Core Primary
A

Proxy Ambassador
Proxy request to

5. Ambassador Design Pattern

 By selecting ambassador pattern, you are determining proxy for different sections of system. This patter talks about transferring the
responsibility to divide the load of network, reattempts, or monitoring checks. A container should have one simple responsibility. For
containers, the connection with external system will be an endpoint. It won’t know (or care) if what’s out there is a set of servers or just one
server. This patter is best suitable for microservice based architecture.

8. Scatter / Gather Design Pattern

 This pattern is like work queue pattern
as it also talks about splitting bigger
task into smaller ones. But has one main
difference. Containers are requested
to give response back to the consumer
immediately. Thus, we need not launch
series of tasks and distract from the
required response. This pattern overall
combines the response to give one
response. Best example of this pattern is
MapReduce algorithm.

9. Self-Awareness Design Pattern

 This pattern manages itself by
introspecting and getting metadata
about itself and its environment while
its executing. Best scenario of this
implementation is cases where we need
applications metadata and environment
variables impacting itself runtime.

Query Response

Merge Response

Work
Coordinator

Container

Container 1

Container .. n Container

Query

Response

containers API Server

External Document © 2022 Infosys Limited

Benefits of Containers in Financial Services

Financial Industry and banks were among
the first and most enthusiastic supporters
of Docker containers.

Goldman Sachs invested $95 million in
Docker in 2015.

Bank of America has its enormous
17,500-person development team running
thousands of containers.

Why are Containers so preferred in
Financial Services?

• Containers take care of the biggest
Challenges faced in financial sector i.e.:
Security and Compliance with help of
its basic features like easy to deploy
templates, automation, monitoring,
incident reporting and patching.

• It provides an optimal path for services
seeking to decrease risk, improve
developer efficiency, deliver cost savings
through increased agility and time from
idea to production.

• An orchestrated container architecture
can reduce complexity, offer higher
application reliability, and result in more
flexible horizontal scalability across
the entire back-end infrastructure of
financial system.

• Containers and orchestration platforms
can help financial institutions get
ahead of the competition and deliver
disruption to the industry using its
strategy.

• Containers promotes microservice
architecture which increases data
traffic and network, access control
and services complications.

• Data Integrity is managed securely
in containers. Container systems
have incorporated an infrastructure
which allow authorized users and
admin to sign container images,
this helps prevent untrusted or
unapproved containers from being
deployed.

• To summarize, it helps financial
industry to get lower capital costs,
greater security, and increased ease
of administration.

Best Practices for Operating
a Container Platform
Containers have proven to be an
ideal platform for microservice-based
application architecture. They provide
tremendous benefits to the developer
community to improve time-to-market
agility for application modernization
efforts. Financial sector is thus more
inclined towards containerization
approach.

Below are the guidelines and best
practices for using containers for
application hosting.

State Management

Immutable and Stateless Kubernetes
manages the lifecycle creating and
terminating instances based on
requirement.

Statelessness is achieved by storing any
state of the instance outside the container

platform. With a condition of not running
within a container, we can configure
various type of external storages like
Cloud Storage, Persistent Volume, Redis,
Cloud SQL, or managed database on
premises.

Immutability is achieved in container
by not modifying it during its lifetime.
By modifying it implies no update or
patch or configuration modification. If
any update is required in the application
code, it is advised to build a new image
(preferably with a new version) and
deploy it. It is also recommended to
externalize the configuration within a
container in Secrets and Config Maps.

Configuration Management

Configuration management in Containers
are best done using Config Maps. We
inject environment variables into the
application using this strategy. We can

trigger auto deployment of application
whenever the configMaps are changed
thus makes changes deployed of
application faster.

Logging

Use native logging container mechanisms
to write your logs to stdout and stderr.
They will be automatically shipped,
stored, and indexed.

Kubernetes uses Stackdriver logging by
default.

You can write your logs in JSON format,
which enables to seamlessly add
metadat. You can then use the metadata
to search through your logs in Stackdriver
Logging.

OpenShift is bundled with the open-
source tools Elasticsearch, Fluentd, and
Kibana (EFK) stack. Fluentd collects the
data from stdout and stderr and securely
forwards it to Elasticsearch (or Splunk).

https://www.cnbc.com/2015/04/14/goldman-sachs-invests-95-million-in-docker.html
https://www.networkworld.com/article/3013474/cloud-computing/how-goldman-sachs-and-bank-of-america-use-the-cloud-and-containers.html
https://www.networkworld.com/article/3013474/cloud-computing/how-goldman-sachs-and-bank-of-america-use-the-cloud-and-containers.html

External Document © 2022 Infosys Limited

Image Management

• Do NOT use privileged containers.

 It is advised not to use privileged
containers for the same reason that
is for not to run applications as root.
In case we need to modify settings
on the host, provide the specific
capabilities through the security
Context to the container. In addition,
inside the container avoid executing
application as root. As in if a hacker
get remote control and finds a
vulnerable code which is running
as root user, he can then escape the
container and have access on host as
root.

• Keep one-to-one mapping for
between a process/service and
container Pod.

 This mapping makes it easy to
monitor the container for failure and
take corrective action. In addition, it
makes the overall system scalable at
process or service level.

• Image Registry

 A container registry is a repository—
or collection of repositories—used to
store and access container images.
It can be a public or private registry.
Docker hub is most popular public
image registry available. It is possible
that identical image have different
versions but they are always unique
by their tags. We can trigger auto
deployment of application whenever
image is updated on image registry.

• Vulnerability Scanning

 Vulnerability Scanning is an
automated process of proactively
identifying network, application, and
security vulnerabilities. Organization
use third-part security provider to
perform the scanning. Various tools
available for vulnerability scanning
are

a. Trivy

 Trivy is a simple and comprehensive
scanner for vulnerabilities in
container images, file systems, and
Git repositories, and configuration
issues. It detects vulnerabilities
of OS packages and language-
specific packages. In addition, it
scans Infrastructure as Code (IaC)
files such as Terraform, DockerFile
and Kubernetes, to detect potential
configuration issues that expose your
deployments to the risk of attack.

b. Clair

 Clair is an open-source project for
the static analysis of vulnerabilities
in application containers. Clair scans
docker images by doing static analysis,
which means it analyzes images
without a need to run their docker
container.

Monitoring

• Monitor your containers.

 As with logging, monitoring is also
an important part of application
management.

• Expose and monitor health

 K8s consist of two types of health
checks: liveness and readiness probes.

 Liveness probe – If the application on
the containers is running successfully
and all its required dependencies are
met, application should expose a HTTP
endpoint. This endpoint should return
“200 OK” response

 Readiness probe – If the containers
is healthy, initialization is successful,
valid request are met, application
should expose a different HTTP
endpoint. This endpoint should also
return “200 OK” response.

 Kubernetes will then start sending
traffic to containers.

External Document © 2022 Infosys Limited

Secret Management

• Sensitive Data should never be stored
in a Docker build file or in Docker
images.

 Sensitive data, such as username,
password, and token string need
to be handled carefully and should
always be passed on runtime as
an environment variable when the
Docker image is run. All such data
must be stored in a Secrets store.
Secret store act as a secured gateway
to store data. We can store data on
Kubernetes secret as well, however
this data is visible to Admin, thus
external storage is advised wherever
we want to store secret data which
should not be visible to anyone.
Data best store using secret store
are passwords, confidential data,
credentials, database connection
strings or access keys to running pods.

Security

Kubernetes Namespaces Are Not Fully
Secured. The usage of namespaces
in Kubernetes significantly simplifies

the management of a Kubernetes
cluster. However, managing multiple
microservices on the same cluster
comes with a security cost when not
planned correctly. By applying security
and segregation with Namespace and
Cluster Role, the required security can
be achieved. An RBAC Role or Cluster
Role contains rules that represent a set
of permissions. Permissions are additive
in nature. When a role is created, its
always sets the permissions within the
namespace.

Microservice Implementation

Microservices architectures are inherently
distributed. Building Microservices
always bring in the most challenging
problems, such as resilient service
invocation, distributed transactions,
on-demand scaling, and exactly once
processing of messages.

So, developers remain searching for a
portable runtime to build distributed,
scalable, and event driven Microservices.

• Use Service Mesh Architecture
alongside Sidecar pattern

 A Service mesh is specific
infrastructure layer that manages
service-to-service communication
over the network. This structure
enables different parts of the
application to communicate. It
helps you to observe, secure and
connect microservices. It helps
implement cross-cutting concerns
like Externalize configuration,
Distributed tracing, Logging, Metrics,
Health checks.

 A service mesh is often implemented
using Sidecar container architecture
pattern. As explained above, sidecar
pattern implies expanding the
nature of container. With sidecar
pattern, we can decouple our system
in different parts. Here, each part has
its own responsibilities, and each
part solves a different problem.

In this type of architecture, requests are
usually routed between microservices
using proxies in their infrastructure
layer. Thus, individual proxies that
define a service mesh are signifying
“sidecars,” as they are running alongside
each service, and not within them.

External Document © 2022 Infosys Limited

Dapr

Dapr is using Kubernetes as the
primary hosting environment
to run production applications,
though Dapr end users aren’t tied
to using Kubernetes. An open-
source project to make it easier to
build microservices.

Istio

Istio is an open source service mesh that
layers transparently onto existing distributed
applications. It addresses the challenges
developers and operators face with a
distributed or microservices architecture.
Istio is the path to load balancing, service-
to-service authentication, and monitoring –
with few or no service code changes.

LinkerD

It is an open-source service mesh designed
to be deployed into a variety of container
schedulers and frameworks such as
Kubernetes. It results in running services
relaxed and protected by providing runtime
debug facility, reliability, vulnerability,
observability, and security, with no
requirement of any changes in your code.

Advantages and Limitations of Container Platforms

Containers are efficient, lightweight, and definite way for applications to exist between environments and run independently. Apart from
shared Operating system, everything required to run the application is packaged inside the container object: code, run time, system tools,
libraries, and dependencies.

It is also best applied when we need to run multiple instances of a single application.

Advantages:

• Security management using OAuth.

• Managing various deployments across
public, private and hybrid cloud
environments made easy.

• Cluster management.

• Console is user-friendly.

• Automated deployments possible for
different requirements.

• Managing Images, Routes, Services, pods
made easy.

• Patching the environment can be
controlled easily.

Limitation:

• Configuration management requires
more time.

• Costly when many microservice
architecture is involved.

• Log management is challenging in case of
cluster environment

• Cluster management is complex, which
makes learning curve steep

• OS available by provider can only be used.

• Debugging is complex.

External Document © 2022 Infosys Limited

Case Study #1: Selection of Container Platform

Background

Selecting best suitable Container platform
for containerization of application.

Problem Statement

There are many approaches available
once we decide to containerize a project.
Selecting the best approach is very
important when you migrate.

While proposing containerization to our
client, Infosys did a comparative study of
various approach against multiple features.

Resolution

Below is the metric created which helped
us choose and design the best approach for
the client.

This metrics is created using features which

were specific to a case study. The metrics
talks about three container platform: Plain
Vanilla, OpenShift 4.X, VMware Tanzu.

Each platform is evaluated against key
features namely Installation. Security,
Storage, Resiliency, Logging, Monitoring,
Ease to use and manage, etc. They
are then categorized as Very High,
High, Medium, Low depending on its
complexity.

Findings:

Option 1: Plain Vanilla

This platform is most complex in
implementation and lacks most on
Security, Storage and Easy

Option 2: OpenShift 4.X

This platform has high performance and
scores highest on Security, Storage and
Easy. OpenShift has Very high Security
layer available which enhances the
security of the entire cluster environment.
OpenShift enables efficient container
orchestration, allowing rapid container
provisioning, deploying, scaling, and
management. The tool enhances the

DevOps process by streamlining and
automating the container management
process.

In case the existing applications are on
VMWare, this solution will enforce to
deprecate them and rely on OpenShift
provided environments only.

Option 3: VMware Tanzu

This platform has high performance
and scores moderately high on Security,
Storage and Easy. Tanzu is easiest to install.
It is supported by various tools like Helm
chart for its build and deployment. It
creates application templates with baked-
in security and compliance guardrails.
Build containers with secure components

and helps maintain them automatically.
Connect and protect your apps in
production.

Outcome

Since client had 130 + existing applications
which were all using VMWare currently
– Tanzu approach is best suitable. With
Tanzu approach, we could use existing
VMWare environment and enhance to as a
Tanzu cluster environment with minimum
cost. Tanzu has easiest installation and has
good logging, monitoring and security.
It enables you to build software more
securely and continuously, reducing risk in
production.

Case Study#2: Modernization of monolithic application

Background:

Current application is a standard
monolithic application. Clients want
to modernize it to a Containerization
approach and deploy on OpenShift
platform.

The Standard architecture pattern consists
of following areas:

· A Java 8 Enterprise application (UI and
back end).

· A database system.

· A Node.js application (User interface).

· A web server (a load balancer).

Problem statement:

The monolithic application is a legacy
application deployed on on-Premises
server. With modernization approach,
client wants to migrate the entire
application to Openshift. We need to
identify various stages and areas that will
need updating.

Resolution

The deployment team followed below task
to containerize the application.

· Created required namespace in
OpenShift (version 3.11) and K8s (1.11)
on the administrative workstation node.

· Used existing on-Prem DB. Opened
firewall for same.

· Build a Docker image for the application
component both server and UI.

· Maintain docker image in Nexus
repository.

· Build a network which allows direct
communication within containers.

· Execute containers for each Docker
image that is built.

· Configure Route for appropriately
routing traffic using ping integration to
the containers.

· Created HashiCorp Vault for storing
secure data. Configured application to
connect vault security.

· Create Venafi certificate to enable
ping setup using JWT token.

Benefit:

Containers require less system
resources than traditional or hardware
virtual machine environments
because they don’t include operating
system images. Applications running
in containers can be deployed easily
to multiple different operating
systems and hardware platforms.

Post migration, deployment of images
is easy and managed by environment
itself. Also, deployment of application
on various environment like test,
pre-Prod and Prod are managed
efficiently and accurately. Image
repository maintains the application
image and can be used easily to
deploy anytime anywhere.

External Document © 2022 Infosys Limited

Conclusion
Containerizations benefits makes
it imperative for any organization
looking for edge over market.

Even for large well-equipped cloud
enterprise architecture, adding
container can maximize its results.

On other side for small business, it
gives minimum resource usage and
maximum productivity.

With best architecture and services,
a complete and secure solution is
possible using Containerization
approach.

External Document © 2022 Infosys Limited

© 2022 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

References
· https://www.cnbc.com/2015/04/14/goldman-sachs-invests-95-million-in-docker.html

· https://www.networkworld.com/article/3013474/cloud-computing/how-goldman-sachs-and-bank-of-america-use-the-cloud-and-
containers.html

· https://techbeacon.com/enterprise-it/7-container-design-patterns-you-need-know

· https://kubernetes.io/docs

About the Author
Jyoti Sharma
Technology Architect

mailto:jyoti.sharma06@infosys.com
http://www.linkedin.com/in/jyotijoshisharma
https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys

