
Agentic AI:
From expectations

to execution BUILDING AUTONOMOUS,
RESILIENT AND INTELLIGENT
AGENTIC AI SYSTEMS

Credits & Acknowledgements

Edition: 1.0 (2025)
Publication Date: Sep 2025

Primary Authors & Contributors

Primary Authors

Chetana Amancharla | Leader, Emerging Technologies
Shreshta Shyamsundar | Distinguished Technologist
Subramanian Radhakrishnan | Distinguished
Technologist
Uday Gupta | Distinguished Technologist

Contributors

Praveen Kumar Kalapatapu | Sr. Principal Technology
Architecture
Ullas Krishnan | Sr. Product Engineering Manager
Madhan Karthikeyan Anbalagan | Senior Industrial
Principal Pankaj Grover | Senior Data Scientist
Ravi Joshi | Sr. Principal Technology Architecture

Reviewers

Internal

Syed Ahmed | AVP & Head of Responsible AI
Sreekanth SS | AVP & Unit Technology Officer
Dr Ravi Kumar G. V. V | VP & Unit Technology Officer
Ramanath Shanbhag | AVP & Unit Technology Officer
Kannan Narayanan | AVP & Unit Technology Officer
Charudatta Joshi | AVP & Unit Technology Officer

External

Boris Bolliet | University of Cambridge & Infosys
Cambridge AI Centre

Sponsor & Mentor

Mohammed Rafee Tarafdar | EVP & Chief Technology Officer
Shyamkumar Doddavula | VP & Head, Emerging Technologies

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | ii

Contents

I Foundations of Agentic AI Systems 1

1 Agentic AI & Core Classifications 2

1.1 What are Agentic AI Systems? . 2

1.2 Evolution from Automation to Autonomy . 3

1.3 Agent Taxonomy . 4

1.4 When Not to Use Agents . 4

1.5 Enterprise-Grade Imperatives for Agentic AI Systems . 5

2 Fundamental operational framework of agentic AI 7

2.1 The Agent Loop . 7

2.2 Core System Components . 8

3 Agent Development Lifecycle Overview (ADLC) 13

3.1 Why a Structured ADLC is Needed . 13

3.2 The Stage-Gate Process Flow . 13

3.3 AgentOps . 14

II Designing & Building Agents 16

4 Strategic Design for Agentic Systems 17

4.1 Workflows vs. Agents . 17

4.2 Design Principles for Agentic Systems . 17

4.3 Agentic System Layers . 18

4.4 Single-Agent vs. Multi-Agent Architectures . 19

4.5 Collaboration . 20

4.5.1 Design Patterns for Collaboration . 20

4.5.2 Communication Protocols and Interfaces . 20

iii | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

4.5.3 Governance, Security, and Observability . 22

4.5.4 Multi-Agent Deployment Architectures . 23

4.5.5 Standardizing Lifecycle Artifacts: Ensuring Portability and Governance 23

4.5.6 Guidance for Adoption . 23

5 Human Oversight and Responsible Control 25

5.1 Why Human Oversight Matters . 25

5.2 Oversight Spectrum: Human Interaction Patterns . 25

5.2.1 Human-in-the-Loop (HITL) . 26

5.2.2 Human-on-the-Loop (HOTL) . 27

5.2.3 Human-out-of-the-Loop (HOOTL) . 27

5.3 Observability and Improvement Loop . 28

5.4 Managing Agent Autonomy . 28

5.4.1 Autonomy Levels Taxonomy and Worked Examples . 28

5.4.2 Code-Based Autonomy Assessment . 30

5.4.3 Balancing Autonomy and Determinism . 30

5.5 Guardrails: Preventive, Detective, Corrective Controls . 30

5.6 Human Oversight and Intervention: The “Big Red Button” . 31

5.7 Governance and Accountability . 31

5.8 Responsible and Ethical AI in Practice . 31

6 Frameworks, Tools & Methodologies for Agent Development 33

6.1 Core Implementation Stages . 33

6.2 Agent Development Frameworks . 34

6.3 Comparing Framework Features . 35

6.4 Prompt Engineering for Agents and Tools . 38

6.4.1 Tool Utilization: The Criticality of Tool Documentation . 38

6.4.2 Overall Prompts, Instructions, and Safe Execution Models . 38

6.4.3 Prompting Techniques Based on Agent Context . 39

6.5 Data Integration and Management . 39

6.6 Quality Engineering & Quality Assurance Guide . 39

6.6.1 Tool Usage . 40

6.6.2 Tool Correctness . 40

6.6.3 Tool Argument Accuracy . 41

6.6.4 Tool Efficiency and Execution Reliability . 41

6.6.5 Task Completion Efficacy . 41

6.6.6 Reasoning Evaluation . 41

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | iv

6.6.7 Memory Usage . 42

6.6.8 Agent Planning . 42

6.6.9 Agent Routing & Decision Making Evaluation . 42

6.6.10 Agent Orchestration . 42

6.6.11 Agent Safety: Policy Compliance . 43

6.6.12 Performance Metrics . 43

6.6.13 Agent Performance Metrics . 43

6.6.14 LLM Performance Metrics . 43

6.6.15 LLM Metrics . 43

6.6.16 Red Teaming . 44

7 Agentic Platform Offerings 45

7.1 Commercial Agentic Platforms . 46

7.2 Hyperscaler Agentic Platforms . 47

7.3 Vertically Integrated Platforms . 48

7.4 Agent Builder Platforms . 50

III Enterprise Readiness & Governance 51

8 Foundational & Strategic Readiness 52

8.1 Executive Alignment and Goals . 52

8.2 Prioritized Value Streams & Use-Case Portfolio . 52

8.3 Readiness Baselines . 53

8.4 Operating Model & Center of Excellence (CoE) . 53

8.5 Change Management and Skills Development . 53

8.6 External Ecosystem and Vendor Management . 53

8.7 Change Fatigue and Cultural Transformation . 53

8.8 Continuous Learning and Post-Adoption Evolution . 54

8.9 Alignment with Business Continuity and Disaster Recovery . 54

8.10 Financial Modeling and ROI Realization . 54

8.11 Executive Checklist . 54

9 Governance, Risk, and Compliance (GRC) 55

9.1 Governance Frameworks . 55

9.2 Risk-Aware Governance and Compliance Review . 55

9.2.1 Scope of Governance & Compliance Evaluations . 55

9.3 Technical Implementation Guide . 56

v | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

9.4 High-Level Workflow Example . 57

9.5 Enforcement Controls . 57

9.6 Standards & Frameworks for Threat & Governance . 58

9.7 Risk Identification and Mitigation . 58

9.8 Financial Planning and Lifecycle Budgeting . 58

9.9 Regulatory Landscape . 58

9.10 Data Sovereignty, Privacy & IP Protection . 59

9.11 Compliance Monitoring & Reporting . 59

9.11.1 Scope of Compliance Monitoring & Reporting . 59

9.12 Technical Implementation Guide . 60

9.13 Enforcement Controls . 61

9.14 Telemetry and Audit Assurance . 61

9.14.1 Scope of Telemetry & Audit Assurance . 62

9.15 Technical Implementation Guide . 63

9.16 Enforcement Controls . 64

10 Technical Readiness 65

10.1 Enterprise AI Infrastructure . 65

10.2 Agent-Specific Tooling . 65

10.3 AI/Agent Specialized Roles . 66

10.4 Agent Development - CI/CD Pipelines . 66

10.5 Continuous Improvement via AgentOps . 66

10.6 Technical Capabilities Mapped to Hyperscaler Services . 68

10.7 Security Considerations in Agentic AI . 72

11 FinOps 75

11.1 FinOps: Financial Management for Agentic AI . 75

11.2 Process Integration into Business Workflows . 76

11.3 Understanding Enterprise Workflows and Challenges . 76

11.4 Identifying High-Value Use Cases for ROI . 76

11.5 Case Studies in Enterprise Adoption . 76

IV Scaling, Performance & Quality 78

12 AgentOps (Agentic Lifecycle Management) 79

12.1 AgentOps as Specialized DevOps . 79

12.2 AgentOps Lifecycle Phases . 79

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | vi

12.2.1 Reliability Solutions Playbook . 81

12.3 Tools and Frameworks for AgentOps . 82

13 Evaluating Agent Performance & Quality 84

13.1 Success Metrics & KPIs . 84

13.2 Evaluation Methodologies . 86

13.3 Observability, Traceability, and Debuggability . 86

13.4 Integrating Human Feedback . 86

14 Troubleshooting & Performance Tuning 87

14.1 Development-Related Considerations . 87

14.2 LLM-Specific Considerations . 88

14.3 Production-Related Considerations . 88

14.4 Strategies for Resilience & Continuous Improvement . 88

V Future Outlook 90

15 The Internet of Agents and Emerging Trends 91

15.1 Vision of the Internet of Agents . 91

15.2 Evolution to AGI and Superintelligence . 92

15.3 Advanced Research Techniques . 92

15.4 Future of AgentOps . 92

15.5 Standardized Protocols and Interoperability . 93

16 Navigating the Future of Agentic AI 94

16.1 Addressing Persistent Gaps . 94

16.2 Governance Frameworks and Ethical Alignment . 95

16.3 The Road Ahead for Enterprise Adoption . 95

vii | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

Part I

Foundations of Agentic AI
Systems

1 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

1 Agentic AI & Core Classifications

1.1 What are Agentic AI Systems?

Agentic AI systems represent a fundamental evolution in artificial intelligence architecture, functioning
as autonomous computational entities that leverage Large Language Models (LLMs) to independently
execute complex task sequences and operational workflows. These systems embody the most sophisticated
implementation of AI technology, defined by their capacity to pursue intricate, multi-step objectives with minimal
human supervision through advanced planning and execution capabilities.

To grasp their significance, it is crucial to differentiate between three key AI paradigmsGenerative AI, AI Agents, and
Agentic AI systems [1].

• Generative AI operates through reactive content creation, producing outputs such as text, images, code, or
multimedia in response to specific user prompts. These systems excel at pattern recognition and statistical
prediction but remain fundamentally passive, requiring continuous human input for each piece of content. Their
primary focus is creation, delivering outputs that inform or inspire rather than independently executing tasks.

• AI Agents are typically designed as single-entity systems that perform goal-directed tasks by invoking external
tools, applying sequential reasoning, and integrating real-time information to completewell-defined functions[1].
Single-agent AI systems combine LLMs with external tools and APIs to execute narrowly scoped operations,
such as responding to customer queries, document retrieval, or managing schedules. However, their sufficiency
diminishes as use cases demand context retention, task interdependence, and adaptability across dynamic
environments. An AI agent, as a comprehensive autonomous architecture, continuously perceives its
environment, processes information through cognitive functions, makes context-aware decisions, and executes
actions to achieve predefined objectives. This enables LLMs to dynamically direct their own processes and tool
usage, maintaining autonomous control without predetermined execution paths.

• Agentic AI systems, in contrast, are composed of multiple, specialized agents that coordinate, communicate, and
dynamically allocate subtasks within a broader workflow. While generative AI creates content and individual AI
agents perform specific tasks, agentic AI systems manage complex ecosystems of interconnected agents, tools,
and processes. These systems implement a sense-plan-act-learn cycle [2, 3], where they continuously monitor
their operational environment, formulate strategic execution plans, autonomously orchestrate task completion
across multiple agents, and incorporate feedback to refine future decision-making processes.

The fundamental distinction lies in their operational approach: Generative AI creates, AI Agents act, and Agentic
AI systems orchestrate. In enterprise contexts, Agentic AI systems function as Intelligent Orchestration Layers that
coordinatemultiple AImodels, external data sources, and execution frameworks to handle complexworkflows. This
progression from reactive content generation to proactive autonomous operationmarks the evolution of AI from a
mere tool to an autonomous partner in complex problem-solving endeavors.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 2

1.2 Evolution from Automation to Autonomy

The trajectory of Agentic AI systems signifies a fundamental paradigm shift from Deterministic Automation
to Cognitive Autonomy. Traditional automation architectures relied on rule-based logic, search algorithms,
planning heuristics, and reinforcement learning within narrowly defined domains. These systems performed
well in structured environments through predefined decision trees and explicit reasoning frameworks but lacked
adaptability beyond their programmed parameters.

The advent of Large Language Models (LLMs) has catalyzed a transformative evolution in Agentic AI systems,
enabling Dynamic Adaptability in open-ended environments without relying on exhaustive rule sets or
costly exploration phases. LLMs serve as sophisticated cognitive engines, providing Agentic AI systems with
contextual understanding, natural language processing capabilities, and emergent reasoning abilities that enable
generalization across novel task domains and multi-agent coordination.

Figure 1.1: Agentic AI Maturity

The need for categorizing agent maturity levels arises from the goal of deploying reliable, capable AI agents in
production environments while balancing operational risk and complexity. By defining these stages, organizations
can systematically evaluate an agent’s decision-making patterns, autonomy, and consistency, ensuring that the
chosen agent type aligns with both business requirements and acceptable risk thresholds.

Lower maturity levels (Levels 1–2) offer high reliability with simple, predictable operations, making them suitable
for critical applicationswhere consistency is paramount. As complexity increases (Levels 3–4), agents becomemore
dynamic and versatile, but require greater oversight and have somewhat lower reliability, striking a balance needed
for enterprise deployment. Higher levels (Levels 5–6) represent aspirational stages, featuring advanced autonomy
and self-improvement, yet lack sufficient reliability for mainstream use, thus remaining limited to research and
experimentation.

This framework enables enterprises to select the most suitable agent type for their current needs, prioritize safety
and stability, andplangradual adoptionof increasingly advancedAI systemsas reliability andoversightmechanisms
improve.

3 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

1.3 Agent Taxonomy

Agentic AI systems necessitate an understanding of how agents with diverse capabilities, architectural roles, and
functional specializations collaborate to create emergent intelligence that surpasses individual components. This
taxonomy addresses three critical dimensions: the capability spectrum defining individual agent functionality,
architectural patterns determining agent collaboration, and functional roles enabling autonomous operation
across complex enterprise workflows. The figure 1.2 illustrates this comprehensive taxonomy of agent types across
these dimensions.

Fixed automation
Predetermined rules

LLM-enhanced
NLP & context

ReAct
Reason + act

RAG + ReAct
Retrieval aided

Tool-enhanced
Meta-evaluate

Memory-enhanced
Persistent context

Capability-Based

Single-agent
Independent

Multi-agent
Specialists

Hierarchical
Supervisor & workers

Horizontal
Peer-to-peer

Hybrid
Mixed adaptable

Architecture-Based

Perception
Sense & interpret

Cognition
Plan & reason

Action
Execute tasks

Coordination
Orchestrate agents

Functional Roles

Software-only
Digital

Physical
Real world

Hybrid
Digital + physical

Environmental Interaction

Figure 1.2: Agent Taxonomy

This environmental classification is particularly important for enterprise agentic AI systems thatmust operate across
hybrid digital-physical environments, enabling seamless integration between software automation and real-world
operations.

1.4 When Not to Use Agents

While agentic AI systems offer powerful capabilities for automation and autonomy, they are not the ideal solution
for every situation. It’s often important to carefully evaluate the context and requirements before deciding to
deploy agents. Below are key considerations, including but not limited to, that can help determine when agents
are appropriate—and when alternative approaches may be better suited:

• Simple or Rare Tasks: For tasks that are straightforward, occur infrequently, or require minimal automation,
deploying agents can introduce unnecessary complexity and expenses without proportional benefits.

• Adequate Existing Solutions: When conventional software or traditional tools already handle tasks efficiently,
introducing agent-based systems may not provide substantial added value.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 4

• Tasks Requiring SpecializedExpertise: Operations involving complex legal,medical, or other high-stakesdecisions
demand professional judgment and nuanced understanding that agents cannot reliably replicate.

• Human-Centric Domains: Certain areas—such as psychotherapy, counseling, and creative writing—depend
heavily on human empathy, emotional intelligence, and creativity, where current agent capabilities remain
limited.

• High Development andMaintenance Costs: Designing, building, andmaintaining agent systems typically require
considerable time, resources, and specializedexpertise,making them lesspractical for small businessesorprojects
with tight budgets.

• Regulatory and Compliance Constraints: In industries with strict regulatory oversight, compliance, security, and
data privacy requirements may pose significant barriers or complications to agent deployment.

By weighing these factors carefully, organizations can make informed decisions about where agentic AI systems
can deliver meaningful value—and where other solutions may be more effective.

1.5 Enterprise-Grade Imperatives for Agentic AI Systems

As Agentic AI systems become increasingly integrated into critical business processes, they require reliability,
security, and high performance to maintain organizational trust and operational efficiency. The following
imperatives provide a comprehensive framework for building enterprise-grade Agentic AI systems that can deliver
transformative business value while maintaining the trust, security, and reliability that enterprise environments
demand.

Figure 1.3: Enterprise Agentic AI Framework: Key Pillars for Scalable, Secure, and Efficient Systems

• Operational Excellence:

– Continuous Monitoring and Improvement: Requires comprehensive observability across all agents and
workflows, with OpenTelemetry-based tracing, custom dashboards for metrics, and A/B Testing frameworks
for continuous enhancement. Includes automated lifecycle management and traceability.

– Automated Operations and Standardization: Defines standards for agent development, deployment, and
management; CI/CD Pipelines; standardized prompt templates; and automated responses to operational
events.

– Business Alignment and Insights: Ensures meaningful business outcomes through data-driven practices,
aligning AI goals with objectives, ML problem framing, and feedback loops.

• Security:

5 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

– Identity and Access Management (IAM): Foundation of security, implementing robust authentication and
authorization, managed identities, on-behalf-of authentication, and least privilege principles.

– Data Governance and Privacy: Safeguards sensitive information, requiring encryption, secure connections, and
Data Governance across collaborations.

– Threat Detection and Response: Deploys multiple security controls, content filters, Prompt Shields, detection
controls, and automated security incident responses.

• Reliability:

– Fault Tolerance and Recovery: Ensures graceful failure handling, durable workflows, error handling, and
redundant pathways for critical operations.

– Scalability and Performance Consistency: Handles varying loads with predictable performance, Auto-Scaling,
regional deployments, and throughput management.

– Component Communication Reliability: Maintains stable communication across distributed agents through
reliable protocols, API versioning, and graceful degradation.

• Performance Efficiency:

– Resource Optimization: Structured allocation of compute resources, model/task alignment, and efficient data
retrieval.

– Model Evaluation Management: Continuous performance improvement, monitoring, and prompt
optimization.

– Infrastructure Efficiency: Optimal utilization of cloud resources, Serverless Architecture, Vector Stores, and
Workflow Execution patterns.

• Cost Optimization:

– Model Selection and Usage Optimization: Cost-optimized model choice, token minimization, and model
selection policies. Organizations must balance cost and performance of Inference Operations, implement
efficient Prompt Engineering strategies tominimize Token Usage, and establish propermodel selection criteria
based on task complexity and cost constraints.

– Resource Management and Scaling: Efficient resource allocation, scaling policies, storage optimization, and
spend monitoring.

– WorkflowOptimization: Streamlined agent operations, collaboration efficiency, caching, andvalue-maximizing
workflow design.

• Sustainability:

– Environmental Impact Minimization: Reduces computational footprint, resource needs for training, data
processing/storage, and leverages Model Quantization.

– Resource Efficiency: Maximizes resource utilization, Serverless Architecture that scale to zero when not in use,
workflow and data management efficiency.

– Sustainable Architecture Design: Modular, incrementally updatable systems; efficient Model Versioning;
continuous improvement.

These imperatives form the comprehensive foundation for secure, reliable, performant, cost-effective, operationally
excellent, and sustainable implementations of agentic AI systems at enterprise scale.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 6

2 Fundamental operational framework of
agentic AI

This chapter delves into the fundamental operational framework of agentic AI systems—the Agent Loop—and
explores the core building blocks that enable sophisticated multi-agent coordination beyond the capabilities of
individual agents. Understanding these elements is crucial for designing and implementing effective enterprise-
grade agentic AI systems.

2.1 The Agent Loop

At the core of agentic AI architecture is the Agent Loop, which is the fundamental operational cycle that governs
how AI agents perceive, reason, and act within their environments [3]. This iterative process forms the basis of
agentic behavior, allowing agents to continuously adapt and improve their performance through repeated cycles
of observation, decision-making, and action execution.

The Agent Loop operates as a continuous cycle involving four fundamental steps:

The Agent Loop operates as a continuous cycle involving
four fundamental steps. The figure 2.1 illustrates this
process.
• Sense/Observe: The agent gathers information from its
environment through various inputs and sensors.

• Plan/Think/Reason: The agent processes the gathered
information, understands the context, and formulates
decisions on subsequent actions.

• Act: The agent executes the chosen actions,
interacting with its environment.

• Learn/Reflect: The agent evaluates the outcomes of its
actions and updates its knowledge base, refining
future decision-making processes.

Figure 2.1: Sense-Plan-Act-Learn loop

In enterprise contexts, it is important to recognize that the learning and reflection phase often occurs outside the
immediate transaction context of the agent’s Sense-Plan-Act cycle. Typically, a supervisory mechanism—either
another agent or a human reviewer (for example, an LLM acting as a judge or human reinforcement learning)—

7 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

analyzes the agent’s outputs. This external reviewer curates and updates the shared knowledge base, which in
turn acts as an important input to future planning cycles of the agent. Such supervisory flows augment the Agent
Loop by introducing layered oversight, feedback, and continuous knowledge curation critical to enterprise-scale
processes.

In agentic AI systems, this cycle functions simultaneously at multiple levels:

• Individual Agent Level: Each agent executes its own Agent Loop for specialized tasks, maintaining autonomous
decision-making within its specific domain of expertise.

• System-Level Coordination: A meta-cycle orchestrates the individual Agent Loops, facilitating coordinated
sensing across multiple agents, collaborative planning that leverages distributed expertise, synchronized action
execution, and collective learning that benefits the entire agentic system.

Continuous feedback integration is inherent to the Agent Loop, as it incorporates real-time feedback from both
individual agent performance and system-level outcomes. This enables dynamic adaptation and optimization of
multi-agent coordination strategies.

Different AI frameworks implement the Agent Loop concept using their own terminology and architectural
approaches, but all adhere to this fundamental iterative cycle:

• Microsoft Semantic Kernel uses a Think-Act-Learn pattern, where agents examine goals and context (Think),
execute actions through tools (Act), and evaluate outcomes for continuous improvement (Learn).

• LangChain implements the Agent Loop through its AgentExecutor architecture with ReAct (Reasoning + Action)
Loops, involving iterative cycles of LLM reasoning, tool execution, and observation feedback.

• LangGraph models the Agent Loop using graph structures with Agent Nodes for reasoning, Tool Nodes for
execution, and Conditional Edges that determine loop continuation based on state machine logic.

• CrewAI employs a Role-Based Agent Loop within workflows where specialized agents collaborate through role
assignment, task delegation, and collaborative execution.

• AG2: Implements the Agent Loop as an explicit Plan � Execute � Reflect pipeline where a centralized planner
decomposes goals into executable subtasks, executor agents perform tool-invocations, and lightweight reviewer
agents (or an evaluator role) validate outputs for learning and replay. AG2 emphasizes modular agent roles, a
discoverable tool/extension registry, multi-tiermemory (working+persistent vector stores), and dynamic routing
for task allocation. Built-in primitives support RAG grounding before planning, schema-validated tool calls during
execution, and a reflection pass that generates labeled feedback for continuous improvement and retraining—
making AG2 suitable for scalable, production-oriented multi-agent workflows.

While continuous feedback and learning are central to the Agent Loop conceptually, many AI frameworks (e.g.,
Microsoft Semantic Kernel, LangChain) primarily provide flow management and orchestration capabilities without
intrinsic support for automatic learning or reflection. It is the responsibility of the designer or developer to explicitly
implement learning and reflection mechanisms by leveraging the flow control features these frameworks offer.
Thus, the learn/reflect stage must be understood as a functional layer built on top of generic flow control rather
than an automatic framework feature.

2.2 Core System Components

The core system is composed of five key components:

• Cognitive and Planning - Handles reasoning, decision-making, and strategic task planning.

• Action - Executes planned operations and interfaces with external systems or environments.

• Memory and Learning - Stores past experiences and continuously improves system performance through
adaptive learning.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 8

• Knowledge Access and Grounding (Enhanced RAG) - Retrieves, organizes, and contextualizes information to
ground reasoning in reliable knowledge.

• Multi-Agent Orchestration - Coordinates interactions among specialized agents to ensure efficient collaboration.

Enhanced RAG is a horizontal service available to all components. It provides grounded, governed, and evaluable
access to internal and external knowledge. Cognitive and Planning uses it for retrieval-aware reasoning and task
decomposition. Action uses it to select tools and verify results. Memory and Learning uses it to store and retrieve
information across agents, ensuring continuity and context-awareness in multi-agent interactions.Cognitive and
Planninguses it for retrieval-aware reasoningand taskdecomposition. Actionuses it to select tools andverify results.
Memory and Learning both feeds and consumes it to keep knowledge current.

Figure 2.2: Enterprise Agentic AI Framework: Key Pillars for Scalable, Secure, and Efficient Systems

Cognitive and Planning

Purpose — Acts as the distributed brain of the system. It decides, plans, and reasons across specialized agents to
achieve complex goals.

Core responsibilities

• Individual cognition (per agent): Represent goals and run planning algorithms; make decisions using domain-
specific LLMs or fine-tuned models; apply logical, probabilistic, and causal reasoning.

• Collaborative planning and reasoning (across agents): Distributed task decomposition; meta-planning to align
plans, resolve conflicts, and optimize shared resources; collaborative reasoning protocols (structured dialogue,
peer review, consensus); dynamic replanning based on context and performance.

9 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

Action

Purpose — Turns system-wide decisions into coordinated, concrete activities, ensuring correct, conflict-free use of
tools and systems.

Core responsibilities

• Tool orchestration: Coordinate access to tools and external systems; manage shared resources; prevent conflicts.

• Execution monitoring: Validate actions and track outcomes during distributed execution.

• Dynamic tool selection: Assign tools to the best-suited agents based on context and capability.

Memory and Learning

Purpose — Store, share, and learn from collective experience. It maintains short-term context and long-term
knowledge so agents can personalize, reason better, and improve over time.

Memory types in AI agents

• Short-term (working) memory: Holds recent, session-scoped context (conversation history, recent messages,
intermediate reasoning). In LLMs, this maps to the context window—the amount of past context the model can
access [4].

• Long-term (persistent)memory: Spans sessions and supports durable knowledgeandpersonalization, commonly
split into Semantic, Episodic, and Procedural [4].

– Semantic: Structured factual knowledge via KBs, symbolic AI, or vector embeddings for retrieval [4].

– Episodic: Records of past interactions and events to enable personalization [4].

– Procedural: Skills, rules, and learned behaviors for efficient, repeatable execution [4].

Common technologies and patterns

• Vector databases: Pinecone, Chroma, Weaviate, Qdrant for semantic storage and similarity search.

• Hybrid storage: relational/NoSQL for structured data plus vector stores for embeddings (exact + semantic search).

• Memory synchronization: Redis Streams, Apache Kafka, and event-driven architectures to keep distributed
memory consistent.

• Adaptive memory: summarization for compression, learned prioritization, and hybrid retrieval strategies.

Implementation across frameworks

• Microsoft Semantic Kernel: Short-termworkspaceandpersistent long-termmemory (episodic and semantic) [5, 6]

• LangChain: Working memory (e.g., ConversationBufferMemory) and long-term via DB backends; semantic via
VectorStore; episodic/procedural via LangMem [7].

• LangGraph: Short-term via thread-scoped state; long-term via cross-thread document stores [8].

• CrewAI: Role-based specialized memory; team-level episodic records across agent teams.

Knowledge Access and Grounding (Enhanced Agentic RAG)

Role in the core — A horizontal service used by Cognitive/Planning, Action, and Memory/Learning. It provides
grounded, secure, and evaluable access to knowledge, improving accuracy, adaptability, and governance in
complex tasks [9, 10].

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 10

Relation to traditional RAG — Traditional RAG grounds outputs with relevant external data [9]. Enhanced Agentic
RAG in agentic systems adds autonomy, tools, and multi-agent collaboration to support dynamic decision-making
and goal pursuit [9, 11, 12].

Core capabilities (as a shared service)

• Federated knowledge access: Concurrent access to diverse knowledge bases and tools (databases, search, other
agents) [13, 12]. Ecosystems like DAWN connect agents to global, proprietary resources [14, 15].

• Collaborative query processing: Multi-agent workflows for complex queries; supervisor/broker orchestration
patterns [16, 17].

• Dynamic knowledge routing: Route requests to the best agents/sources by context; LLMs can generate queries
and select tools [16, 18].

• Continuous knowledge integration: Agents contribute new knowledge; memory (short/long/entity) keeps
history and preferences; self-reflection improves reasoning; KBs update frequently [19, 2, 20, 21, 22].

• Ethical knowledge management: Guardrails filter inputs/outputs for safety, compliance, and relevance; APIs
provide governance for permissioned autonomy [23, 13, 20, 24, 25, 26].

• Multimodal integration: Support for text, images, audio, and video [27, 10, 28].

• Evaluation: Rigorous assessment, sometimes using an LLM “judge,” to measure context adherence, accuracy,
speed, and cost [29, 12, 20, 28, 2].

Multi-Agent Orchestration

Purpose — Coordinate multiple specialized agents so complex objectives are achieved reliably and efficiently. It
provides the system-wide “who does what, when, and with which context.”

Core responsibilities

– Specialized task distribution: Decompose complex objectives into subtasks and assign them to agents based
on their capabilities (e.g., NLP, data analysis, decision-making, external integrations).

– Unified coordination layer: Route tasks by type and context; maintain shared conversation and execution state
across interactions; enforce policies and priorities.

– Autonomous operation: Minimize manual intervention via learned policies and adaptive scheduling; support
self-healing and dynamic reallocation when agents or tools fail.

Interfaces with other core components

– Cognitive & Planning: Receives decomposition plans and schedules them across agents; feeds back execution
outcomes for replanning.

– Action: Sequences and supervises tool/API calls across agents; detects conflicts and rate limits; handles retries
and fallbacks.

– Memory & Learning: Reads and writes shared state (tasks, results, traces); uses episodic/semantic stores for
context carry-over and post-run learning.

– Knowledge Access & Grounding (Enhanced RAG): Uses grounded retrieval for informed routing, capability
lookup, and validation of intermediate results.

Operational concerns

– Observability: trace IDs, per-task logs, metrics (latency, cost, success rate).

– Safety & policy: guardrails, capability allowlists, data-access scopes.

– Performance: parallelism, batching, backpressure, rate-limit handling.

Touchpoints with core components

11 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

• Cognitive & Planning: Retrieval-aware reasoning and task decomposition.

• Action: Tool/API selection and result verification.

• Memory& Learning: Continuousupdates to knowledgebases; consumptionof persistentmemories for grounded
responses.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 12

3 Agent Development Lifecycle Overview
(ADLC)

3.1 Why a Structured ADLC is Needed

The development and deployment of agentic AI systems rely on a structured, iterative lifecycle. This structured
approach is crucial because agentic AI systems are complex, autonomous computational entities that leverage
Large Language Models (LLMs) to independently execute complex task sequences and operational workflows.
Unlike traditional enterprise systems that are often deterministic and follow set rules, AI agents dynamically
plan action sequences and adapt their behavior as inputs evolve, introducing an element of non-determinism
and unpredictability. This inherent dynamism can lead to varied outputs even with identical inputs, and their
operational pipelines are complex, integrating LLMswith various components and dynamically generating runtime
artifacts like goals and plans, which increases the risk of unintended behaviors.

A structured ADLC is needed to address these complexities and challenges, ensuring:

• Alignment with business objectives.

• Operational reliability and safety.

• The maximization of business value, reliability, and safety.

• The management of risks associated with agent behavior becoming unexpected.

• Discipline, transparency, and continual improvement at every stage of agent creation and operation.

• Optimal human-agent interaction to balance autonomy with effective oversight.

• Robust data and context management to ensure AI-ready data is available and appropriately utilized.

• End-to-end orchestration and tool management to harmonize complex workflows across diverse components
and external systems.

Without proper oversight and continuous evaluation, autonomous agents could deviate from their intended
goals, produce biased or incorrect outputs, or expose security vulnerabilities, leading to business or ethical
failures. Therefore, a comprehensive enterprise readiness strategy is critical for building and productionizing these
advanced AI systems.

3.2 The Stage-Gate Process Flow

The Agentic AI Development Lifecycle (ADLC) is structured as a stage-gate sequence that ensures disciplined
progress from initial definition through design, implementation, quality assurance, and operational deployment.
Each stage is intended to address key milestones for agent creation and validation, with explicit checkpoints for
feasibility, reliability, and business alignment.

13 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

The high-level workflow is illustrated in figure 3.1, which visually details the core stages and associated gate reviews
(G0–G6). This stage-gate approach enables teams to systematicallymanage complexity, enforce rigorous oversight,
and ensure that agentic AI systems are built and operated with transparency and continual improvement.

Refer to the diagram below for a comprehensive summary of the ADLC stages, principal activities, and gate
deliverables.

Figure 3.1: Agentic AI Development Lifecycle: Stage-gate process flow (new agent introduction)

3.3 AgentOps

Agentic LifecycleManagement (AgentOps) is a specialized discipline and framework crucial for the successful large-
scale deployment and management of autonomous intelligent agent systems in enterprises. It is defined as a
specialized DevOps paradigm specifically tailored for Large Language Model (LLM) agents.

AgentOps builds upon existing operational principles:

• DevSecOps: Incorporates integrated security into software development.

• MLOps: Manages the lifecycle of machine learning models.

• LLMOps: Addresses the operational complexities specific to large language models.

The shift from LLMOps to AgentOps expands the scope, complexity, and lifecycle imperatives, necessitating amore
comprehensive approach to management. This is because agentic systems incorporate planning, reasoning, and
autonomous decision-making, leveraging memory and contextual knowledge to navigate complex interactions.

The primary goal of AgentOps is to enable observability, providing stakeholders with actionable insights into
the internal workings of agents. This observability is essential for ensuring AI safety, allowing for proactive
understanding of agent behavior, detection of anomalies, and prevention of potential failures. AgentOps
integrates tools and governance measures to reflect these complexities, providing seamless management and
ensuring agents operate efficiently, adapt dynamically, and stay aligned with enterprise goals while maintaining
operational integrity.

The AgentOps framework encompasses the entire lifecycle of agentic systems, from conception to retirement,
streamlining the process and contributing to their scalability, transparency, and effective management. The

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 14

five-step ADLC framework explicitly culminates in “Step 5: Agent Operations and Continuous Improvement
(AgentOps)”, which ensures agents remain performant, safe, and aligned with enterprise goals through real-time
monitoring, continuous learning, and adaptation. This highlights AgentOps as the critical final phase of the ADLC,
emphasizing robust real-time monitoring, proactive threat detection, and automated pipelines for continuous
learning and retraining of agents.

15 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

Part II

Designing & Building
Agents

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 16

4 Strategic Design for Agentic Systems

4.1 Workflows vs. Agents

Designing effective agentic AI systems requires a crucial decision: choosing the right architecture, whether
based on workflows or autonomous agents. AI agents are software applications powered by Large Language
Models (LLMs) that autonomously perform specific tasks, embodying complex decision-making, autonomy, and
adaptability. They are particularly useful in dynamic environments requiring multiple steps or interactions that
can benefit from automation. The term “agent” can refer to systems ranging from fully autonomous entities using
various tools to more prescriptive implementations following predefined workflows.

In contrast, workflows are structured orchestration systems that coordinate Large Language Models and tools
through predefined code paths with fixed execution sequences. Workflows operate on deterministic logic and
explicit control flow, making them predictable and reliable for consistent, repeatable processes. They excel in
scenarios demanding standardized operations with known decision points, but they lack adaptability when
encountering unexpected situations or dynamic requirements.

The fundamental distinction lies in their operational approach: AI agents enable Large Language Models to
dynamically direct their ownprocesses and tool usage,maintaining autonomous control over task accomplishment
without predetermined execution paths. This allows agents to initiate and control their own actionswithin dynamic
environments.

When building applications with Large Language Models, it is recommended to start with the simplest solution
and only increase complexity when necessary. For many applications, optimizing single Large Language Model
calls with retrieval and in-context examples is often sufficient. However, if more complexity is warranted, the
choice between workflows and agents depends on whether the task requires predictable consistency (workflows)
or dynamic, model-driven flexibility (agents) at scale.

A key challenge is that Large Language Model-powered agents introduce an element of nondeterminism
compared to traditional deterministic enterprise systems. Unlike conventional software that follows set rules, AI
agents dynamically plan action sequences and adapt their behavior as inputs evolve. Balancing this inherent
flexibility with the need for consistent and reliable outcomes within standard operating procedures is critical
for enterprise adoption. Notably, Large Language Model-powered agents can generalize to new tasks, unlike
traditional agents that were often task-specific.

4.2 Design Principles for Agentic Systems

Effective agentic AI systems are built upon fundamental design principles that ensure their scalability, reliability,
and maintainability.

• Modularity: This principle involves breaking complex functions into specialized, independent modules. Each
agent or system component should have clearly defined responsibilities and interfaces. This approach enables

17 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

better maintainability, testing, and reusability, allowing for independent development and deployment while
maintaining overall system coherence.

• Scalability: Agentic systems must be designed to expand computational resources and agent networks as
complexity and demand increase. This includes horizontal scaling (adding more agents), vertical scaling
(enhancing existing agent capabilities), and elastic resource allocation based on workload demands.

• Interoperability: This principle emphasizes ensuring that diverse modules and systems can work together
seamlessly. It requires standardized communication protocols, data formats, and integration patterns, which
enables various technologies and services to integrate effortlessly, thereby maximizing operational efficiency
and reducing vendor lock-in.

• Continuous Learning and Adaptation: Implementing reinforcement learning mechanisms is crucial for agentic
systems to improve their performance. This involves adaptive learning from experience, feedback, and
environmental changes. This principle applies to both individual agent learning and system-level optimization
based on collective performance metrics.

4.3 Agentic System Layers

Effective design of agentic AI systems necessitates understanding their fundamental architecture. These systems
typically operate through a three-layer architecture: the Tool Layer, the Reasoning Layer, and the Action Layer.

• Tool Layer: This layer serves as the foundational interface between agentic systems and external data sources,
services, and APIs.

– Its primary function is data collection andpreprocessing, gathering information fromdiverse sources, including
databases, web services, IoT sensors, and enterprise applications.

– It manages the technical complexities of external integrations, providing standardized interfaces for higher
layers to access varied data and services.

– An important concept within this layer is the extension, which refers to agent-side tools that connect directly
to APIs or external services, enabling seamless, real-time interactions. Extensions are typically tightly coupled
with the agent’s core logic to facilitate more fluid workflows, unlike standalone tools that might be invoked as
needed. Examples include booking flights or processing secure transactions directly with external platforms.

• Reasoning Layer: Constituting the core intelligence of agentic systems, this layer processes retrieved information
using Large Language Models and specialized reasoning algorithms.

– It performs feature extraction, transforming raw data into structured formats suitable for decision-making.

– This layer implements various reasoning strategies, including logical reasoning, probabilistic inference, and
causal analysis, enabling agents to understand context, evaluate options, and make informed decisions based
on available information.

• Action Layer: This layer functions as the orchestration component that mediates interactions between the
reasoning layer and the external world.

– It is responsible for translating decisions into concrete actions, managing tool invocation, coordinating multi-
step workflows, and handling the execution of complex task sequences.

– Crucially, this layer ensures that agent decisions are properly implemented while strictly maintaining safety
constraints and operational boundaries.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 18

4.4 Single-Agent vs. Multi-Agent Architectures

Agentic systems can be configured in two fundamental ways: single-agent architectures and multi-agent
architectures. Both configurations utilize machine learning models and computational methods to execute the
sense-plan-act cycle.

• Single-Agent Architecture: This configuration is ideal for tasks that are simple, well-defined, and have predictable
inputs and outputs. It is suitable when the operation is limited in scope and does not require coordination
across different domains. Additionally, a single-agent architecture is a lightweight solution often preferred in
cost-sensitive environments or regulated industries where auditability and control are critical.

• Multi-Agent Architecture: This configuration is better suited for complex workflows that involve multiple steps
and necessitate coordination.

– It is particularly effective when the environment is dynamic, requiring real-time adaptation, or when the task
demands specialized expertise across different domains.

– Multi-agent systems leverage the collective intelligence and specialized profiles and skills of multiple agents.
Research suggests that these systems are generally more effective when the roles of the individual agents are
clearly defined.

– They are recommended for operating at an enterprise scale where automation needs to be combined with
robust governance.

Choosing Between Single-Agent andMulti-Agent AI Systems The choice between a single-agent and amulti-agent
AI system depends on the nature of the task and environment.

Use a Single Agent When:

• The task is simple, well-defined, and has predictable inputs and outputs.

• The operation is limited in scope and does not require coordination across domains.

• You are working in a cost-sensitive environment and need a lightweight solution.

• You are in a regulated industry where auditability and control are critical.

Use a Multi-Agent System When:

• The workflow is complex, involves multiple steps, and needs coordination.

• The environment is dynamic, requiring real-time adaptation.

• The task demands specialized expertise across different domains.

• You are operating at enterprise scale and need automation with governance.

While multi-agent systems leverage collective intelligence and specialized skills, they introduce several technical
challenges, including context andmemorymanagement, communication overhead, increased computational cost,
difficulty in enforcing correct execution reliability, and greater surface area for security vulnerabilities. Scalability
can also be a concern as the number of agents grows, making discovery, connection, and task assignment
challenging. Addressing these issues requires a reliable platform to support agent collaboration.

19 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

4.5 Collaboration

Effective collaboration amongmultiple agents and the ability to break down complex tasks into manageable steps
are foundational capabilities for agentic AI systems. Various frameworks such as MetaGPT, AutoGen, Semantic
Kernel, and CrewAI provide diverse collaboration patterns enabling agents to work together efficiently toward
complex goals.

4.5.1 Design Patterns for Collaboration

The operational effectiveness of agentic AI systems is fundamentally shaped by the communication patterns that
govern how agents interact. These patterns define the structural and behavioral modalities through which agents
exchange information, delegate tasks, and synthesize collective intelligence. The table 4.2 summarizes the key
collaboration patterns, their properties, and suitable scenarios.

Pattern Key Property Functioning Best Suited Scenario Example

Supervisor Pattern Hierarchical Central orchestrating agent. Key function is
to decompose goals into sub-tasks and
delegate to specialized agents. Manages
sequencing, aggregates results, and enforces
policies.

Predictable, high-risk, or safety-critical
workflows requiring procedural
integrity, auditability, and strict
governance.

Conversational agents
correlating data from
multiple systems.

Blackboard Pattern Collaborative Group of expert agents incrementally
contribute knowledge and partial solutions
to a shared workspace. Agents monitor the
blackboard for changes and build upon
others’ contributions.

Complex, ill-defined problems where
the solution path is unknown.
Requires synthesis of diverse expertise.

Network fault
management agents
involving multiple
domains.

Swarm Pattern Decentralized Decentralized, peer-level agents coordinate
indirectly through environmental signals
(stigmergy). Each agent operates on local
rules and observations, leading to emergent
solutions.

Scenarios demanding rapid response,
scalability, and robustness against
single points of failure.

Resource optimization
agents in edge
computing scenarios.

Market-Based
Pattern

Negotiation Agents use economic principles to negotiate,
bid, or auction for tasks and resources.
Manager agents broadcast calls for proposals;
contractor agents submit bids.

Optimizing distributed resource
management, balancing competing
objectives, and enabling dynamic
adaptation to changing operational
contexts.

Agents running heavy
AI models requiring
extreme compute
resources.

Table 4.2: Agentic AI Patterns and Their Properties

Beyond these core patterns, systems may also employ peer-to-peer communication for decentralized negotiation
and consensus-building, and hybrid patterns which combine elements of hierarchy, collaboration, and market
dynamics. The selection of a pattern is not static, and robust systems should be architected to dynamically adapt
their interaction strategies.

4.5.2 Communication Protocols and Interfaces

The operational integrity and extensibility of agentic AI systems are fundamentally underpinned by the protocols
and interfaces that govern agent interactions. These protocols define the formal mechanisms by which agents
discover one another, exchange information, delegate tasks, and coordinate actionswithin a distributed ecosystem.
A robust communication framework ensures that agent societies remain modular, interoperable, and secure, while
supporting the dynamic evolution of capabilities and workflows.

There are four layers of collaboration protocols that need to be considered: Coordination Layer, Execution Layer,
Interface Layer, and Identity Layer.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 20

Coordination Layer - Agent-to-Agent (A2A) Protocols

A2A protocols define standardized mechanisms by which agents discover, negotiate, and coordinate with one
another. These protocols formalize message structures, task lifecycles, and capability semantics. There are three
popular choices: A2A, ACP, and ANP. The table 4.4 summarizes these protocols.

• Agent2Agent (A2A) Protocol: Facilitates secure communication, capability discovery, and negotiation among
heterogeneous agents for long-running tasks.

• Agent Communication Protocol (ACP): A RESTful API standard supporting synchronous and asynchronous agent
interactions across frameworks.

• Agent Network Protocol (ANP): A decentralized peer-to-peer standard enabling autonomous agent discovery and
interaction across the internet. Although ANP is a collaboration protocol, it does not directly compete with ACP
or A2A. Instead, ANP aims to be the foundational “HTTP for the Agentic Web Era,” designed for a truly open,
decentralized, and untrusted global network of agents. In contrast, A2A and ACP focus on collaboration within
specific contexts (enterprise and local environments, respectively).

Feature A2A ACP

Primary Goal Interoperability across different external agent frameworks and
vendors.

Seamless communication and orchestration for agents in a
local-first or controlled environment.

Communication Style Wraps JSON-RPC 2.0 inside HTTP POST requests, creating a
multi-layered approach.

REST-first, using standard HTTP verbs (GET, POST) intuitive for
web developers.

Discovery Mechanism Online discovery via public “Agent Cards” published at a
well-known URI.

Online discovery via dedicated endpoints and offline discovery
via embedded metadata (e.g., in Docker registries).

Content Extensibility Uses three explicitly defined message part types (Text, File, Data),
requiring protocol updates for new types.

Uses MIME types for content identification, making it
immediately extensible to any data format.

Ideal Environment Open, cross-platform agent networks where agents from
different organizations collaborate.

Controlled environments where latency, reliability, and offline
capabilities are critical (e.g., edge, IoT, manufacturing).

Table 4.4: Comparison of A2A and ACP protocols

Recommendation: Use A2A if the system is stateless and cross-platform; use ACP within controlled platforms.

Execution Layer - Agent-to-Tool and Agent-to-Environment Interfaces

Agents frequently interact with external tools, data sources, and environments to fulfill their objectives. These
interactions are mediated by well-defined interfaces—such as the Model Context Protocol (MCP)—which abstract
the complexity of underlying systems and provide secure, context-rich access to resources. These protocols
ensure that agents can invoke tools, retrieve data, and execute actions consistently and securely, regardless of the
heterogeneity of the external landscape.

Recommendation: Use MCP protocols to abstract tool complexity, design tools with relevant metadata for efficient
discovery, ensure secure access using MCP servers, and enable consistent execution by prompt engineering
referencing specific tools.

Agent to Identity Layer

Agent-to-Identity protocols are essential because, just like people, AI agents must securely prove who they are
before collaborating or accessing sensitive data. This trust layer prevents unauthorized actions and ensures secure,
auditable interactions.

Consideration: When choosing an identity protocol, the main factor is the operating environment:

• For internal corporate systems, a federated enterprise identity (likeOAuth 2.1) is efficient, integratingwith existing
security infrastructure managed by a central authority.

21 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

• For communication across organizations orwhenuser privacy is paramount, decentralized identity protocols such
as DIDComm allow agents to have self-sovereign identities and establish peer-to-peer trust without a central
intermediary.

Recommendation: Treat identity as a foundational layer, chosen separately from communication protocols like A2A
or ACP. Use enterprise identity for controlled internal workflows and decentralized identity (DIDComm) for open,
secure ecosystems requiring end-to-end verified trust.

Agent to Interface (Agent-to-Human) Layer

This is the top-most layer, defining how the entire agent system communicates with the end-user. It standardizes
the real-time, interactive experience, making the agent’s actions and reasoning visible and controllable through a
user interface. This layer ensures that the complex, autonomous operations of an agent are transparent, interactive,
and controllable through a front-end application. The primary standard for this layer is the Agent-to-User Interface
(AG-UI) protocol. It is an open, lightweight protocol that standardizes how backend AI agents communicate with
user-facing applications, acting as a universal translator between agent logic and the UI.

AG-UI Core Architecture and Purpose: AG-UI is designed for real-time, interactive AI workflows. It uses an event-
driven architecture where an agent, as it executes a task, emits a stream of standardized JSON events. The front-
end application listens to this stream and updates the UI in real time, showing streaming text, tool usage, and state
changes. This model is transport-agnostic and can be implemented over Server-Sent Events (SSE), WebSockets, or
webhooks.

AG-UI Key Capabilities are real-time state synchronization, Human-in-the-Loop collaboration, and front tool
integration.

Recommendation: Use AG-UI protocol to stream agent events, enable real-timeUI updates, and ensure transparent,
controllable human-agent collaboration.

4.5.3 Governance, Security, and Observability

As agentic systems become more autonomous, these three pillars are foundational for responsible deployment.

Governance: Encompasses clear policies, roles, and accountability structures. It includes defining escalation paths,
approval gates, and providing mechanisms for human oversight (human-in-the-loop and human-on-the-loop
controls).

Security: All agent communications must be secured through robust authentication and authorization. This
involves enforcing the principle of least privilege, using role-based access controls, and brokering all interactions
through governed gateways that validate compliance with security policies.

Observability: Provides the transparency necessary for trust and continuous improvement. All agent interactions
should be meticulously logged and traceable, capturing the full context of each transaction to enable auditing,
debugging, and performance monitoring.

Following are the Key Principles for Governance and Security in a Heterogeneous Multi-Agent Ecosystem:

• Principle of Least Privilege: Service accounts for agents and adapters must be granted the absolute minimum
permissions required to perform their function.

• Robust Authentication: Every interaction, at every layer, must be secured through strong authentication.

• Adapters as Policy Enforcement Points: The adapter pattern is the primary control point for enforcing security
policies, validating data, and auditing interactions between the open ecosystem and proprietary enterprise
platforms.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 22

4.5.4 Multi-Agent Deployment Architectures

Choosingadeployment architecture is a foundational decision thatdictateshowagents areorganizedandhowthey
scale. The architecture defines the flow of information and control within the system. The table 4.5 summarizes the
key deployment architectures, their characteristics, and suitable use cases.

Deployment
Architecture

Working Pros Cons Best Suited For

Vertical
Architecture
(Hierarchical)

A user request goes to the lead
agent, which decomposes the
goal into sub-tasks, distributes
them to specialized worker
agents, evaluates the results,
and synthesizes the final
output.

Highly efficient for sequential
workflows. Provides clear
governance and auditability.
Offers a transparent flow of
information.

Can create performance
bottlenecks. Vulnerable to a
single point of failure if the
orchestrator fails.

Structured processes based
on predefined rules where
control and predictability are
paramount.

Horizontal
Architecture
(Decentralized)

Agents interact directly
to negotiate roles, share
information, and build
consensus. The system’s
intelligence emerges from
the collective behavior of its
components.

Highly flexible, dynamic, and
resilient against single points
of failure. Well-suited for
complex, interdisciplinary
problems needing diverse
expertise.

Coordination can become
a challenge, potentially
leading to inefficiency
or decision-making loops.
Generally slower than vertical
architecture.

Creative processes,
complex problem-solving,
environments demanding
high adaptability and
robustness.

Hybrid
Architecture

A hybrid system may feature
a hierarchical structure at a
high level, with a lead agent
orchestrating major goals,
while teams of specialized
agents operate horizontally,
collaborating freely to
complete sub-tasks.

Balances efficiency and control
of vertical with flexibility and
resilience of horizontal. Well-
suited for complex, real-world
problems where no single
approach suffices.

Can introduce complexity
in managing interactions
betweendifferent architectural
patterns.

Sophisticated applications
like autonomous vehicles,
where reactive agents handle
immediate tasks (e.g., obstacle
avoidance) and deliberative
agents manage strategic goals
(e.g., route optimization).

Table 4.5: Multi-Agent Deployment Architectures

4.5.5 Standardizing Lifecycle Artifacts: Ensuring Portability and Governance

True interoperability extends beyond real-time communication protocols. It must also encompass the static
artifacts that define an agent’s lifecycle, from development to deployment and evaluation. Standardizing these
assets ensures that an agent’s core logic and performance benchmarks are portable across different runtimes
and MLOps platforms, further reducing vendor lock-in. The table 4.6 summarizes the complete interoperability
specification stack.

Prompts, Pipelines, and Evaluation (JSON/YAML): Using standardized formats like JSON for prompt templates and
model I/O, andYAML for declarative agentpipelines andevaluation schemas, ensures that the fundamental building
blocks of an agent can be versioned, shared, and executed across heterogeneous environments.

Observability (OpenTelemetry): This is the critical enabler for trust, governance, and continuous improvement.
By adopting OpenTelemetry as the standard for instrumenting agent interactions, enterprises can gain a unified,
vendor-neutral viewof the entire agentic ecosystem. This allows formeticulous tracing of agent decisions, tool calls,
token consumption, and performance metrics, which is essential for auditing, debugging, and cost management.

Key Considerations: Apart fromadopting standards such asOpenTelemetry, define semantic conventions including
Agent Identification, Request Details, Tool Usage, Token Consumption, and Response Metadata.

The following table provides a comprehensive overview of the specification stack to build interoperable agentic
systems.

4.5.6 Guidance for Adoption

The most effective and future-proof strategy is to embrace a standards-based, multi-protocol, layered approach
rather than committing to a single standard.

23 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

Layer Purpose Specification Key Open Source
Implementations

Identity Secure agent authentication and trust
establishment.

OAuth 2.1 / DIDComm Logto, Keycloak, Affinidi
Messaging

Execution Agent-to-tool and environment
interfaces.

MCP Open source MCP Servers
(https://mcp.so/),
Docker MCP Hub (https:
//hub.docker.com/u/mcp),
MCP SDKs like FastMCP

Coordination Agent-to-agent communication and
orchestration.

A2A / ACP A2ASDKs (Python, JS, Java, .NET),
ACP SDKs (Python, TS)

Interface Agent-to-human UI protocols for real-
time interaction.

AG-UI CopilotKit SDKs and
Components

Model I/O Standardized input/output formats for
LLMs and agents.

JSON N/A (Universal Standard)

Prompts Structured prompt templates and
versioning.

JSON N/A (Universal Standard)

Pipelines Declarative agent workflows and CI/CD
integration.

YAML N/A (Universal Standard)

Evaluation Agent performance and behavior testing
schemas.

YAML / JSON N/A (Universal Standard).
Popular open source frameworks
(Arize Phoenix and LangFuse)

Observability Unified tracing and monitoring across
agent systems.

OpenTelemetry OpenTelemetry SDKs,
OpenTelemetry Collector

Table 4.6: Complete Interoperability Specification Stack

Start with a Clear Use Case: Begin by assessing your primary need. Are you connecting an agent to a tool (MCP),
connecting agents to each other (A2A/ACP), or connecting an agent to a user (AG-UI)?

Adopt a Layered ”Protocol Stacking” Model for Agents: Build your system with modular communication
components. A common and effective pattern involves using multiple protocols in concert:

• Identity: Underpin the entire stack with a robust Identity Protocol (OAuth or DIDComm) to ensure all
communication is secure.

• Execution: Use MCP at the execution layer to give agents access to tools and data.

• Coordination: Use A2A or ACP at the coordination layer for agent-to-agent collaboration, choosing based on
whether the environment is open-enterprise or local/edge.

• Interface: Use AG-UI at the interface layer for any human interaction.

Use Specifications to Promote Interoperability Beyond Agents: To reduce fragmentation and ensure seamless
integration across agentic platforms, adopt standardized specifications across layers, i.e., for agent interactions,
data formats, and lifecycle operations.

Standardize Formats: Adopt JSON for prompts and model I/O, YAML for pipelines and evaluation to ensure
portability across platforms.

Instrument for Observability: Integrate OpenTelemetry to trace agent decisions, tool usage, and performance
metrics.

Govern Lifecycle: Apply consistent governance, security, and observability practices across all layers.

Build for Flexibility: The agent protocol landscape is still evolving. Design your agents with swappable
communication adapters. This will prevent vendor lock-in and allow you to easily adopt new or improved
standards as they mature and gain traction in the open-source community. Also use these adapters to provide
required governance.

This approach enables plug-and-play agent composition, cross-platform compatibility, and governed lifecycle
management—reducing vendor lock-in and accelerating enterprise adoption.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 24

https://mcp.so/
https://hub.docker.com/u/mcp
https://hub.docker.com/u/mcp

5 Human Oversight and Responsible
Control

As autonomous, intelligent, agentic AI systems become increasingly integrated into critical business processes,
their capacity for pursuing complex goals with minimal human supervision presents immense potential for
efficiency and innovation. However, greater autonomy introduces significant safety concerns and risks if agent
behavior becomes unexpected. Effectively managing this autonomy is paramount for ensuring reliability, security,
and performance—sustaining user trust and maintaining safe, efficient operations. This chapter provides a
structured taxonomy of human-AI interaction patterns, a practical framework for autonomy assessment, and
operational controls—guardrails, escalation, and override—essential for robust, accountable AI deployment.

5.1 Why Human Oversight Matters

Theunpredictable, non-deterministic nature of advancedAI systems contrastswith thedeterministic characteristics
of traditional enterprise systems. The figure 5.2 illustrates this contrast. This can lead to:

• Emergent behaviors and hard-to-predict outcomes from agentic systems,

• Complexity in monitoring, validation, and control,

• Increased risks in high-impact domains if autonomy is unchecked.

5.2 Oversight Spectrum: Human Interaction Patterns

The degree andmode of humanoversight fundamentally shapes the safety, reliability, and accountability of agentic
systems[29, 21]. We characterize three primary oversight patterns. The figure 5.1 illustrates the spectrum from full
human involvement to complete autonomy.

Figure 5.1: The oversight spectrum: human-in-the-loop (HITL), human-on-the-loop (HOTL), and human-out-of-the-
loop (HOOTL).

• HITL (Human-in-the-Loop): Humans actively and continuously participate in the agent workflow, offering
judgement, approvals, and feedback. This ensures robustness, error minimization, and user trust—especially in
high-stakes use cases.

25 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

• HOTL (Human-on-the-Loop): Oversight occurs at key junctures, with humans supervising theworkflow, informed
by intelligent escalation mechanisms. The system routes only low-confidence, anomalous, or high-risk decisions
to human reviewers, so oversight is efficient without micromanagement.

• HOOTL (Human-out-of-the-Loop): The AI agent operates fully autonomously within clearly defined parameters
and safety constraints. Human intervention occurs automatically only if boundaries are exceeded or the agent
escalates ambiguous situations.

Functional Summary of Oversight Patterns

For each pattern, define:

• Decision rights: What can the AI do without oversight?

• When is escalation triggered: Uncertainty, policy violation, novelty, cost, or regulatory triggers?

• Human burden: Always engaged, only on exceptions, or post hoc?

5.2.1 Human-in-the-Loop (HITL)

HITL involves continuous human intervention within the agentic workflow. The
figure 5.2 illustrates a typical HITL workflow.

• Explicit Feedback: Users and reviewers provide direct feedback (ratings,
critiques, corrections) integrated into retraining and fine-tuning cycles.

• Periodic Review Sessions: Human experts regularly audit borderline or
randomly sampled agent outputs, labeling errors to produce high-quality
improvement data.

• Workflow Interruption and Control: Frameworks (e.g., LangGraph, AutoGen)
enable pausing, approval, and correction at critical workflow points.

• Validation and Refinement: Sensitive domains (medical, legal, coding) demand
supervised manual validation pre-deployment.

• Ensuring Reproducibility: Use low-variance decoding (temperature ≈ 0) for
evaluation, enabling consistent, auditable responses.

• Iterative Evaluator-Optimizer Cycles: Alternation between generators and
evaluators (human or LLM-based) fosters continuous system improvement.

Figure 5.2: Human-
in-the-Loop (HITL)
Workflow

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 26

5.2.2 Human-on-the-Loop (HOTL)

HOTL involves supervisory oversight with intelligent escalation
mechanisms. The figure 5.3 illustrates a typical HOTL escalation
ladder.

• Escalation Protocols: Automatically route low-confidence,
anomalous, or high-risk decisions to human experts based on
task complexity and regulatory requirements.

• Autonomy Dial: Adjustable thresholds dynamically route
edge cases to humans while streamlining routine agent
actions where confidence is high.

• Monitoring and Detection: Dashboards visualize live metrics,
logs, and alerts for at-a-glance review and root-cause analysis.

• Informing Humans: The system provides summary
notifications about consequential agent decisions or
unexpected results.

Figure 5.3: HOTL escalation ladder
(“autonomy dial”)

5.2.3 Human-out-of-the-Loop (HOOTL)

HOOTL systems are fully autonomous—yet bounded by guardrails and safetymechanisms. The figure 5.4 illustrates
the key components of HOOTL systems.

• Unconstrained Actions and Risks: Autonomy enables arbitrary code execution, tool access, or internet
operations—raising compound risk/cost.

• Automatic Escalation and Guardrails: Policy and boundary violations force the agent to escalate to a human or
default to safe behaviors.

• Rigorous Testing: Systems must be extensively tested in sandboxed environments before deployment.

• Guardrails: Implement input/output filters, policy checks, constrained action schemas, and sandboxing to contain
unsafe behavior.

• Challenges: Latency, hallucinations, lack of benchmarks, shared accountability, prompt injection, and data
leakage risks.

• Vision for AGI: Complete autonomy—conducting novel research, independent reasoning, and creative
synthesis—remains a future aspiration with potent risks and rewards.

Figure 5.4: Guardrails Stack for HOOTL Systems

27 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

5.3 Observability and Improvement Loop

Continuous observability is essential—not merely
optional—for effective and responsible oversight of
agentic AI. A well-designed observability system enables
organizations to understand, validate, and continuously
improve agent behavior. The figure 5.5 illustrates the key
components of an AgentOps observability system.
• Instrumentation: Trace all prompts, tool calls, context
windows, logs, human approvals, and agent outputs
so that every decision and action is auditable and
explainable.

• Measurements: Monitor key performance metrics such
as task success rates, escalation or violation frequency,
hallucination events, costs, latency, and model drift to
reveal issues or degradations in agent performance.

• Testability: Ensure robust system health by running pre-
deployment simulations with realistic data, adversarial
red-team tests, and chaos experiments to validate
escalation and recovery mechanisms.

• AgentOps Lifecycle: Follow a cyclic improvement
loop: Instrument → Monitor → Detect → Escalate
→ Intervene → Label → Retrain/Update → Redeploy,
enabling ongoing optimization and governance.

Figure 5.5: AgentOps
observability

5.4 Managing Agent Autonomy

To guide risk assessment and control, we place AI agents on a 2Dmatrix of Impact (potential consequences) versus
Oversight (strength of supervision). The figure 5.6 illustrates this taxonomy with example placements.

5.4.1 Autonomy Levels Taxonomy and Worked Examples

• Impact: What can the agent do; what is at risk (from conversation-only to open-ended code execution).

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 28

• Oversight: How much and what kind of supervision is provided (fixed workflows, human guidance, live
monitoring).

Example placements:

• CSA - Conversational support agent, manual refund approval (low impact, strong oversight)

• DA - Database assistant with write privileges, anomaly-based escalation (medium impact, medium oversight)

• CE - Code-executing agent with internet, auto-escalation + sandbox + monitoring (high impact, low oversight)

• HRB - HR bot drafting emails but requiring human send approval (medium impact, strong oversight)

• FIN - Financial report generator with automated SQL queries, results reviewed in dashboards (medium impact,
medium oversight)

• OPS - IT operations auto-remediator fixing service alerts under predefined rules (high impact, strong oversight)

• RPA - Robotic process automation agent handling repetitive back-office tasks, audit logs enabled (low impact, low
oversight)

• MED - Clinical triage assistant suggesting next steps, but doctor reviews before action (high impact, strong
oversight)

• MKT - Marketing content generator posting directly to social media (medium/high impact, low oversight)

• TRD - Algorithmic trading bot executing trades within risk thresholds, with real-time monitoring (high impact,
medium oversight)

O
ve

rs
ig
ht

Impact

High Impact

St
ro

ng
O
ve

rs
ig
ht

Low Impact

Lo
w

O
ve

rs
ig
ht

CSA

DA

CE

HRB

FIN

OPS
MED

RPA MKT

TRD

Figure 5.6: Autonomy Risk Matrix

29 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

5.4.2 Code-Based Autonomy Assessment

Checklist/Rubric:
• Tool/action scope,

• Environment isolation,

• Approval gates,

• Observability/logging coverage,

• Policy enforcement,

• Test/simulation coverage,

• Secrets/access control.
Score each 0-5; higher-risk agents demand higher levels of oversight
and controls. The figure 5.7 illustrates an example assessment
checklist.

Assessment Checklist

Tool Scope

Env. Isolation

Approval Gates

Observability

Policy Enforcement

Test Coverage

Secret Mgmt

Figure 5.7: Example autonomy
assessment checklist

5.4.3 Balancing Autonomy and Determinism

Offer modes aligned to task needs and regulatory demands:
• No-LLM Mode: High predictability with deterministic
workflows.

• Copilot Mode: Human-designed workflows with creative
assistance from the agent.

• LLM Agent Mode: Full agent autonomy and real-time,
probabilistic decision-making.

Mode transitions: Rising uncertainty or risk drops autonomy
(autonomy dial); fallback to safer modes with human capture
of error/incident data for learning. The figure 5.8 illustrates a
decision tree for routing to the appropriate agent operational
mode.

Figure 5.8: Modes decision tree, routing to
appropriate agent operational mode.

5.5 Guardrails: Preventive, Detective, Corrective Controls

Guardrails are essential constraints and safety mechanisms:

• Preventive: Input validation, allowlists/denylists, constrained tool schemas, least-privilege keys, sandboxing.

• Detective: Anomaly and OOD detection, evaluator LLM checks, policy scanners.

• Corrective: Auto-escalation, safe defaults, rollback, rate limiting.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 30

5.6 Human Oversight and Intervention: The “Big Red Button”

Certain scenarios require immediate, unambiguous human
override 5.9:
• Intervention protocols: Anomaly detected → throttle /
quarantine → human override (big red button) → system
rollback / safe state → incident reporting.

• Lifecycle: Override events should be logged, traced, and
regularly reviewed for systemic improvement.

Figure 5.9: Big Red Button” sequence diagram, showing stepwise override and recovery

5.7 Governance and Accountability

Effective agentic AI governance requires:

• Roles/RACI: Define model, policy, and incident owners; assign escalation paths and approvals.

• Audit artifacts: Trace IDs, decision / approval logs, change history.

• Review cadence: Regular evaluative reviews, red-teaming exercises, and gated production deployment.

• Change management: Version gating, rollback protocols, and transparent incident reporting.

With robust oversight frameworks, continuous observability, and clearly defined controls, enterprises can safely
harness the innovative power of agentic AI systems—while maintaining human authority, trust, and regulatory
compliance.

5.8 Responsible and Ethical AI in Practice

Embedding ethical considerations into every stage of the agentic AI lifecycle is a fundamental prerequisite for
building sustainable trust with customers, employees, and society at large. AgentOps ensures responsibility is
inherent in theAI architecture from the outset, including secure and safe development practices and the generation
of an AI Bill of Materials (AIBOM) to catalog components for transparency and regulatory adherence.

• A Comprehensive AI Governance Framework: Requires a holistic framework defining clear policies, roles, and
responsibilities across the agent’s entire lifecycle, from data collection and training to deployment, monitoring,
and decommissioning. This framework should be a living document, evolving with technology and regulations.

• Bias Detection and Mitigation: AI models can inherit and amplify biases from training data, leading to
discriminatory outcomes. Proactive measures include diverse datasets, fairness audits, and algorithmic bias
mitigation techniques.

• Transparency and Explainability (XAI): Stakeholders must understand how autonomous systems arrive at
decisions. XAI techniquesmake complex AI systems understandable to humans, crucial for trust, debugging, and
regulatory compliance.

31 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

• Accountability and Traceability: Clear accountability for agent actions requires robust traceability mechanisms,
including detailed logs and audit trails of agent decisions, data used, and models invoked (“decision lineage”). A
tiered model of agent autonomy allows organizations to build confidence and refine governance protocols for
different levels of autonomy. For example, a pragmatic tiered model of agent autonomy—ranging from basic
automation to advanced autonomous systems—has been proposed in recent industry research. For responsible
deployment, enterprises should start with lower-tier agents (e.g., reflex-based or goal-based agents for specific,
well-defined tasks) before scaling to more complex, autonomous systems. This tiered approach allows the
organization to build confidence, refine governance protocols, and ensure human oversight is appropriate for
the level of autonomy.

• Ethical Review and Societal Impact Assessment: A formal process for ethical review and societal impact
assessment shouldbe inplacebeforeproject approval, guidedby augmentinghuman intelligence and respecting
user rights. This involves creating a cross-functional ethics committee to review proposed applications, consider
potential misuse, and evaluate the broader societal and ethical implications, ensuring that the pursuit of
innovation is always aligned with fundamental human values.

• Continuous Ethical Monitoring and Auditing: Beyond deployment, systems for continuous monitoring and
auditing of agent behavior in production are needed to actively check for emergent biases, ethical drift, or
unintended consequences. Establishing periodic, automated audits and clear ethical KPIs ensures that the agent
remains aligned with the organization’s values and regulatory requirements throughout its operational life.

• Sustainability and Environmental Impact: A forward-looking ethical framework must also address the
environmental impact of large-scale AI. Training and running sophisticated agentic systems are energy-
intensive processes that contribute to an organization’s Carbon Footprint. Responsible AI practice now includes
evaluating and optimizing for energy efficiency by selecting more sustainable cloud providers, utilizing smaller,
task-specific models where possible, and employing techniques like Model Quantization. Addressing this
“Sustainable AI” component is becoming crucial for corporate social responsibility and aligns with global

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 32

6 Frameworks, Tools & Methodologies for
Agent Development

This chapter presents the essential frameworks and methodologies crucial for building, implementing, and
managing sophisticated Agentic AI solutions within enterprise environments. It covers various agent development
frameworks, compares their features, outlines different agentic platform offerings, details core implementation
stages, and highlights the importance of Prompt Engineering for agents and tools.

6.1 Core Implementation Stages

• Phase 1: Crawl
The Crawl phase focuses on establishing a predictable baseline by combining
ReAct (a reasoning and acting framework), Plan-Execute strategies, and basic
Retrieval-Augmented Generation (RAG). This lays the groundwork for further
development and ensures that all foundational systems operate in a stable
and repeatable manner. The emphasis is on setting up core mechanisms for
action and retrieval, providing a reliable starting point for the project.

• Phase 2: Walk
In the Walk phase, the priority shifts to building resilience in the system. This
involves integrating self-correction capabilities, Level 1 (L1) Memory for more
sophisticated state retention, and fine-tuning the tools involved. The
adaptations made during this phase are intended to enhance robustness,
allowing the system to better handle errors, adapt to changes, and improve its
functional depth.

• Phase 3: Run
The Run phase aims at enabling autonomous operation through multi-agent
validation, human-AI hybrid collaboration, and the introduction of Level 3 (L3)
Archive for advanced data management. This stage pushes the system
towards higher independence, leveraging multiple agents for collaborative
verification and incorporating human feedback for optimal outcomes.

• Phase 4: Explore
The Explore phase leverages Reinforcement Learning to achieve strategic
optimization advantages. This advanced stage is focused on continuous
improvement, allowing the system to learn from experience and strategically
optimize processes and decisions for sustained performance gains. Figure 6.1: Four Phases of

Agent Implementation

33 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

This roadmap outlines a structured four-phase approach for implementing advanced AI systems, progressing
from foundational setup to strategic self-optimization. Each phase builds upon the previous one, progressively
increasing the system’s capabilities, resilience, autonomy, and strategic intelligence throughout implementation.
The figure 6.1 illustrates the four phases of agent implementation.

6.2 Agent Development Frameworks

Developing AI agents necessitates tools that can orchestrate Large Language Models (LLMs), manage state,
integrate external tools, and facilitate communication and collaboration among agents. Several open-source
frameworkshaveemerged to simplify the implementationof agentic systems, providing structures andabstractions
for complex agent workflows. Popular options include:

• LangGraph: An open-source framework built by LangChain, LangGraph models agent workflows as directed
acyclic graphs (DAGs) where each node represents a specific task or function. It provides fine-grained control
over flow and state, supports advanced memory, error recovery, and Human-in-the-Loop (HITL) interactions,
and integrates seamlessly with the LangChain ecosystem for robust tool coverage. LangGraph is well-suited for
complex workflows requiring state management and dynamic control flow.

• Semantic Kernel: Also from Microsoft, Semantic Kernel is an open-source SDK designed to integrate LLMs with
conventional programming languages like C#, Python, and Java, acting as middleware for rapid delivery of
enterprise-grade AI solutions. Its central kernel architecture manages services and plugins, supports function
composition for complex workflows, and includes built-in planners for orchestration. It provides comprehensive
memory management and observability. Semantic Kernel is considered production-ready for enterprise
applications requiring sophisticated AI orchestration and seamless integration with existing business systems.

• CrewAI: This framework specializes in facilitating collaboration among role-based AI agents, where each agent is
assigned specific roles and goals to operate as a cohesive unit. CrewAI supports sequential and hierarchical task
execution, autonomous inter-agent delegation, and flexible task management. Built on LangChain, it inherits
extensive tool access and supports structured output and comprehensivememory systems. It also allows human
intervention during task execution. CrewAI is ideal for multi-agent systems operating as teams with clearly
defined roles.

• AG2: AG2 is an advanced open-source framework designed for building and orchestrating AI agent systems with
a focus on modularity and scalability. It supports task decomposition into discrete agents that collaborate or
operate independently to solve complex problems. AG2 offers flexible integration with various AI models, robust
memorymanagement, and error handling. It is ideal formulti-agent systems requiring dynamic coordination and
adaptability across diverse domains.

• ADK (Agent Development Kit): ADK is a developer-centric toolkit aimed at rapid prototyping and building
intelligent agent applications. It provides reusable components and templates to easily customize agents with
domain-specific knowledge and behaviors. ADK supports natural language processing, task scheduling, and
event-driven interactions, integrating seamlessly with popular machine learning frameworks. It suits teams
focused on accelerating AI agent development with controlled functionality and performance.

• Pydantic AI: Pydantic AI Framework extends the core Pydantic library into a purpose-built solution for AI model
management and deployment. It combines data validation with AI lifecycle tools to enable seamless integration
of AI models into production workflows. The framework emphasizes type-safe configuration, model versioning,
and interpretability while supporting rapid experimentation and deployment. It is tailored for developers who
need reliable, scalable AI infrastructure that enforces data integrity alongside AI orchestration.

Other frameworks and platforms mentioned include MetaGPT, Amazon Bedrock’s AI Agent framework, Rivet,
Vellum, Beam AI, Cognition AI, and Kore.AI.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 34

6.3 Comparing Framework Features

When selecting a framework, it’s crucial to compare their features against project requirements:

• EaseofUse: AutoGenandCrewAI aregenerally consideredmore intuitive forbeginnersdue to their conversational
and structured role-based approaches.

• Multi-Agent Support and Patterns: CrewAI excels with its structured role-based design, while LangGraph
stands out with its graph-based approach for complex, dynamic interactions. AutoGen is flexible in modeling
conversations.

• Tool Coverage: LangGraph and CrewAI have an advantage due to their extensive integration with the LangChain
ecosystem, offering a wide range of tools, though all frameworks support custom tools.

• Memory Support: LangGraph and CrewAI are noted for comprehensive memory systems, ensuring contextual
awareness. AutoGen also supports memory.

• Structured Output: All frameworks support structured output, with LangGraph and CrewAI providing strong,
versatile support, and AutoGen through function calling.

• Human-in-the-Loop (HITL): All frameworks provide effective human interaction support.

• Scalability: While all offer flexibility, LangGraph and CrewAI are highlighted for supporting complex workflows
and being more production-ready or having production-grade integrations compared to AutoGen.

The table 6.1 provides a detailed comparison of the frameworks discussed, highlighting their unique features and
capabilities.

35 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

Feature Langgraph Semantic
Kernel

Langchain Amazon
Bedrock

Crew AI AG2 ADK Pydantic AI

Focus/Primary
Goal

Complex,
stateful
workflows,
precise agent
control

Enterprise-
grade AI
orchestration
middleware
integrating
LLMs with
conventional
programming

Broad range
of LLM
applications,
comprehensive
framework

Enterprise
workflows,
data-driven
applications
within AWS
ecosystem

Rapid
prototyping,
developer
experience
for multi-agent
systems

Modular,
scalable
multi-agent
orchestration
with task
decomposition

Developer-
focused toolkit
for rapid
intelligent
agent
prototyping

Type-safe
AI model
management
and
deployment
framework

Workflow
Management

Graph-
based state
management,
strong
visualization

Central kernel
architecture,
function
composition,
built-in
planners

Broader range
of workflow
management,
can be
complex

Supports
complex
business
workflows
with multiple
agents

Streamlined,
easy-to-use
workflow
management,
YAML, CLI tools

Flexible
independent
or
collaborative
agent
coordination

Reusable NLP
components,
event-driven
design

Type-safe
config
supporting
AI lifecycle and
experiments

Multi-Agent
Collaboration

Control and
visibility over
interaction
patterns

Comprehensive
memory,
observability,
enterprise
orchestration

Enables multi-
agent systems,
LangGraph
offers
specialization

Supports
multi-agent
collaboration,
specialized
agents

Role-based
collaboration,
seamless
teamwork

Dynamic
multi-agent
collaboration,
adaptability

Modular
agents with
domain-
specific
behaviors

Reliable
orchestration
and
observability

Ease of Use /
Learning Curve

Steep,
significant
setup for
complex
workflows

Production-
ready, requires
integration
expertise

High learning
curve, can be
overwhelming

Needs detailed
setup and
configuration

Rapid
prototyping,
quick setup,
no-code tools

Moderate
curve,
understanding
multi-agent
needed

Easy with
templates, ML
knowledge
required

Pythonic, easy
integration

Strengths Flexible flows,
statefulness,
HITL, error
handling

Enterprise-
grade
middleware,
complex AI
orchestration

Wide
features, large
community,
many
integrations

Multi-agent
collaboration,
memory
retention, AWS
integration

Streamlined
dev, fast setup,
no-code tools

Highly
modular,
scalable task
coordination

Rapid
prototyping,
extensible
components

Strong data
validation,
lifecycle tools

Considerations Steep
complexity
and learning
curve

Sophisticated
integration
needed

Complex,
not always
lightweight

AWS
dependency

Standalone,
requires careful
role definition

Requires multi-
agent design
expertise

Limited
templates,
needs domain
adaptation

Focus on
AI model
management
not full
workflows

ExternalD
ocum

ent@
2025

Infosys
Lim

ited
Building

Autonom
ous,Resilientand

IntelligentAgentic
A
ISystem

s
|36

Feature Langgraph Semantic
Kernel

Langchain Amazon
Bedrock

Crew AI AG2 ADK Pydantic AI

Ideal Use Cases Complex
automation,
interactive
stateful apps

Robust AI
orchestration
for enterprises

LLM-heavy,
complex
integrations

Enterprise AWS
workflows

Rapid
prototyping,
collaborative
business apps

Dynamic multi-
agent problem
solving

Fast intelligent
agent dev

AI model
validation,
deployment,
governance

Integration Seamless
LangChain
integration,
LangSmith
observability

Multi-language
support,
plugins,
orchestration

Part of
LangChain
ecosystem,
many
integrations

Seamless
AWS service
integration

Integrates with
LangChain
tools,
standalone
core

Supports
diverse AI
models and
toolkits

Integrates with
ML frameworks
and NLP tools

Easy
integration
with Python AI
pipelines

Cost & Speed
in Multiagent
Framework

Slow speed,
high tokens,
higher cost

Production-
grade
efficiency for
enterprise

Slow speed,
high tokens,
slightly high
cost

Fast speed,
high tokens,
costly

Fewest tokens,
slower, lower
cost

Balanced
speed,
modular
scalability

Moderate
speed, model-
performance
dependent

Efficiency in
validation and
deployment

Table 6.1: Comparison of Agent Development Frameworks

37
|Building

Autonom
ous,Resilientand

IntelligentAgentic
A
ISystem

s
ExternalD

ocum
ent@

2025
Infosys

Lim
ited

6.4 Prompt Engineering for Agents and Tools

Prompt Engineering is paramount not only for interacting with the core Large Language Model (LLM) but also,
and crucially, for enabling agents to effectively utilize tools and exhibit desired behaviors. This section delves into
the strategic application of prompt engineering to enhance tool utilization, enforce safe execution, and leverage
advanced prompting techniques.

6.4.1 Tool Utilization: The Criticality of Tool Documentation

Agents dynamically invoke APIs, databases, or other models, making effective tool utilization a critical capability.
Prompt engineering for tools focuses on specifying the structure and definition of these tools within the prompt,
ensuring that the model has enough tokens to “think,” and keeping formats close to natural text while avoiding
unnecessary formatting overhead.

The quality of a tool’s documentation within the prompt is as important as the prompt’s main instructions. The
agent’s LLM brain relies entirely on this information—the tool’s name, its description, and its parameter schema—
to determine which tool to use and how to use it correctly.

Just as with human interfaces, the concept of the Agent-Computer Interface (ACI) emphasizes investing significant
effort in creating clear and well-defined interfaces for agents to use tools. This meticulous documentation within
the prompt is fundamental for accurate and reliable tool invocation, preventing issues such as incorrect parameter
passing or misinterpretation of tool outputs.

6.4.2 Overall Prompts, Instructions, and Safe Execution Models

The overall prompts and instructions given to an agent significantly impact its performance and reliability. This
involves defining a well-defined task or persona with clear objectives, constraints, and expected outcomes. For
complex tasks involving multiple tool calls, prompts can be designed to enforce safer, more deliberate execution
patterns. This prevents the agent from making a cascade of errors and addresses challenges like uncoordinated
tool usage that can lead to overconsumption of shared resources or degraded performance.

Prompts canbedesigned to introduce iterative and safe executionmodels, ensuringdeliberateprogression through
tasks:

• Plan vs. Act Modes: Similar to balancing autonomy and determinism, systems can present agents with two
operational phases. In “Plan” mode, the agent outlines a sequence of actions without executing them, creating
checkpoints for reflection and validation. In “Act” mode, the agent executes one step at a time with human
oversight or automated validation. This aligns with strategies such as breaking down tasks into subtasks and
generating and selecting structured plans.

• Use Only One Tool Per Turn: Prompts can constrain the agent to invoke a single tool per interaction cycle. This
deliberate pacing allows outcomes to be validated, feedback to be integrated, and decisions carefully adjusted.
The strategy mitigates risks like misaligned tool chaining and enhances robustness through observation-
verification cycles.

This approach acts as a preventive guardrail by constraining tool schemas and ensuring careful handling of inputs
and outputs. By guiding the LLM more effectively through specialized prompts, agents can be steered toward
consistent and reliable performance, particularly in dynamic or unpredictable environments.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 38

6.4.3 Prompting Techniques Based on Agent Context

Specialized prompts guide LLMs toward specific tasks, while research-backed techniques help reduce issues like
hallucinations. Emerging competencies for working with Agentic AI now include expertise in Prompt Engineering,
especially mastery of advanced prompt patterns. Key prompting techniques include:

• Chain of Thought (CoT): Guides the LLM to explicitly articulate reasoning steps. By making reasoning chains
explicit, the agent can decompose tasks into smaller units and effectively invoke tools to complete subtasks. CoT
supports dynamic, adaptive behavior and is recognized as an advancedprompting strategy essential for AI/Agent-
specialized roles.

• ReAct (Reasoning+Action): A fundamental agentic pattern combining reasoning and tool execution. ReAct loops
involve iterative cycleswhere the LLM reasons, executes a tool, and thenobserves the feedback. Implementations
like LangChain’s Agent Loop use this design. This pattern enables agents to reason progressively through
problems while simultaneously executing and validating subtasks.

• Self-Reflection: Empowers agents to meta-evaluate, detect errors, and self-correct. Prompts guide the agent to
evaluate the consequences of actions, update its knowledge, and refine its strategy. This reflective pattern creates
a feedback loop for continuous improvement and is tied to research in Self-Observing and Self-RegulatingAgents.
Self-reflective prompting enhances robustness and allows agents to learn iteratively from errors.

• Role-Based Prompting: Particularly relevant in multi-agent systems. Prompts specify distinct roles (e.g.,
“Perception,” “Cognition,” “Action,” “Coordination”) assigned to agents in a system. By clarifying goals and
responsibilities, role-based prompting enables specialized task distribution and synchronized collaboration.
Frameworks like CrewAI adopt this methodology to orchestrate multi-agent workflows efficiently.

6.5 Data Integration and Management

Effective agentic systems necessitate sophisticated data management capabilities that underpin autonomous
decision-making and continuous learning. This involves a multi-faceted approach to handling data:

• Data Collection and Preprocessing: Agentic systemsmust be able to gather and clean data frommultiple sources.
These sources include structured databases, unstructured documents, real-time streams, and external APIs. The
preprocessingphase involves crucial steps such asdata validation, normalization, transformation, andenrichment
to ensure consistency and quality across diverse data sources.

• Knowledge Management: The implementation of vector stores, knowledge graphs, and retrieval systems is
key to enabling agents to access and utilize organizational knowledge effectively. This capability encompasses
features like semantic search, contextual retrieval, and dynamic knowledge updates, all of which support
informed decision-making.

• Feature Extraction and Processing: This process involves converting raw data into meaningful features that can
be used for decision-making. It leverages various capabilities such as natural language processing, image analysis,
pattern recognition, and statistical analysis. Theseenable agents tounderstandcomplexdatapatterns andextract
actionable insights from the processed data.

6.6 Quality Engineering & Quality Assurance Guide

Agentic AI systems represent a revolutionary leap from traditional AI applications, operating autonomously
to achieve goals through independent decision-making, tool utilization, and multi-step reasoning. Unlike
conventional AI models that provide single-turn responses to specific prompts, agentic AI systems maintain

39 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

persistent memory, pursue complex objectives, and interact with external environments to accomplish tasks with
minimal human intervention.

Theautonomousnatureof these systems introducesunprecedentedquality challenges. Traditional softwarequality
assurance methods, designed for deterministic systems with predictable inputs and outputs, prove inadequate for
evaluatingAI agents that exhibit emergent behaviors, make real-timedecisions, and adapt based on environmental
feedback. Organizations implementing agentic AI face the critical challenge of ensuring these systems operate
safely, effectively, and ethically while maintaining alignment with business objectives and regulatory requirements.

Comprehensive agentic AI testing encompassesmultiple dimensions that gobeyond conventional software testing
paradigms. Step-level testing isolates individual agent components, validating specific actions and functions
within the AI system. This includes unit testing for AI agents using frameworks like JUnit or pytest to verify that
individual modules such as intent recognition, tool selection, and parameter validation operate correctly under
various conditions.

Workflow-level testing evaluates AI agents in realistic, multi-step scenarios that mirror real-world complexity. This
approach assesses end-to-end task completion, simulation-based agent testing in controlled environments, and
multi-agent interaction testing to ensure coordinated behavior without conflicts. Long-term interaction testing
examines how agents perform over extended periods, maintaining consistency and learning from accumulated
experiences.

Adversarial testing through red teaming specifically targets agenticAI vulnerabilities that emerge fromautonomous
operation. This includes testing for authority spoofing, role manipulation, goal redirection, and context injection
attacks that could compromise agent behavior. Unlike traditional red teaming focused on content generation,
agentic red teaming explores howmalicious actors might manipulate autonomous agents to betray their intended
purposes.

The quality engineering approach for agentic AI requires a multi-layered framework that addresses both technical
performance and business alignment. This comprehensive strategy integrates claims-based assurance processes
that gather evidence demonstrating system trustworthiness throughout the development lifecycle. The framework
encompasses three critical phases: prepare for assurance, establish assurance, and maintain assurance, each with
specific artifacts and approval gates.

The solution leverages hybrid evaluation methodologies combining automated assessment tools, human-in-the-
loop validation, and continuous monitoring systems. This approach recognizes that agentic AI evaluation requires
both quantitative metrics for technical performance and qualitative assessment for user trust, safety, and ethical
alignment. The framework emphasizes transparency, continuous oversight, and adaptive risk management to
ensure systems operate within acceptable parameters while maintaining operational autonomy.

6.6.1 Tool Usage

6.6.2 Tool Correctness

Tool correctness in agentic AI systems requires validation that agents select appropriate tools for given tasks and
execute them with proper parameters. This involves measuring tool invocation accuracy to ensure correct tool
selection and tool diversity assessment to prevent over-reliance on specific tools when alternatives might be
more appropriate. Agent systems must demonstrate contextual understanding of tool capabilities and limitations,
selecting optimal tools based on task requirements and environmental constraints.

Evaluation frameworks must assess whether agents can gracefully handle tool failures, adapt to unavailable tools,
andmaintain task continuity when primary tools become inaccessible. This includes testing tool chaining scenarios
where agents must coordinate multiple tools to accomplish complex objectives, ensuring each tool interaction
contributes meaningfully to the overall goal achievement.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 40

6.6.3 Tool Argument Accuracy

Parameter validation represents a critical quality dimension where agents must provide correctly formatted inputs
to selected tools. This involves testing the agent’s ability to extract relevant information from context, transform
data into required formats, and handle edge cases such as missing or invalid inputs gracefully. Robust parameter
handling ensures tools receive appropriate inputs to perform their intended functions without error.

Advanced parameter validation testing examines how agents handle boundary conditions, type mismatches, and
constraint violations when interfacing with external tools and APIs. Systems must demonstrate error recovery
capabilitieswhenparameter validation fails, either through automatic correction, alternative parameter generation,
or graceful fallback to alternative approaches.

6.6.4 Tool Efficiency and Execution Reliability

Tool efficiency evaluation measures both computational resource utilization and execution speed across different
tool invocation patterns. This includes assessing response time metrics for tool execution, resource utilization
patterns during concurrent tool usage, and throughput capacitywhen agents handle multiple simultaneous tasks.
Efficient systems optimize tool usage to minimize computational overhead while maximizing task completion
effectiveness.

Execution reliability testing examines system behavior under stress conditions, network failures, and resource
constraints. This includes testing agent behavior when tools become temporarily unavailable, when execution
times exceed expected thresholds, andwhen external dependencies introduce latency or failures. Reliable systems
maintain operational continuity through intelligent retrymechanisms, timeout handling, and alternative execution
pathways

6.6.5 Task Completion Efficacy

Task completion efficacy serves as the primary measure of agentic AI system value delivery. Task completion
rates across diverse scenarios provide foundational metrics for system effectiveness, measuring the percentage
of assigned tasks successfully completed within acceptable parameters. This includes evaluating success rates
across different task complexity levels, from simple information retrieval to complex multi-step problem-solving
scenarios.

Error analysis and recovery capabilities examine how systems handle task failures, partial completions, and
unexpected obstacles. Effective agentic systems demonstrate sophisticated error recovery, learning from failures
to improve future task execution andmaintainingprogress towardgoals despite encounteringobstacles. Advanced
evaluation examines whether agents can decompose complex tasks into manageable sub-goals, execute them
sequentially or in parallel, and synthesize results into coherent outcomes.

6.6.6 Reasoning Evaluation

Reasoning evaluation assesses the cognitive capabilities that distinguish agentic AI from simple automation
systems. Decision quality assessment examines how agents make choices under uncertainty, comparing their
decisions to human expert judgments on standardized problems. This includes evaluating decision justification
quality, risk awareness in decision-making, and consistency across similar scenarios.

Multi-step reasoning validation tests agents’ abilities to maintain logical coherence across extended reasoning
chains. This involves trajectory evaluation that analyzes the sequence of decisions agents make, identifying
whether each step aligns with expected behavior and contributes meaningfully to goal achievement. Advanced
reasoning evaluation examines how agents handle conflicting information, update beliefs based on new evidence,
and maintain reasoning consistency over time.

41 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

6.6.7 Memory Usage

Memory architecture evaluation examines both short-term memory (STM) and long-term memory (LTM)
capabilities that enable agents to maintain context and learn from experience. Short-term memory testing
validates working memory capacity, context window management, and ability to maintain goal coherence during
task execution. This includes testing memory efficiency under varying context lengths and evaluating how agents
prioritize and retain relevant information.

Long-term memory evaluation assesses how agents store, organize, and retrieve historical interactions to inform
future decisions. Memory retrieval mechanisms must demonstrate semantic accuracy, relevance ranking, and
efficient access patterns that support contextual decision-making. Advanced memory testing examines how
agents handle memory conflicts, update stored knowledge based on new information, and maintain memory
integrity across extended operational periods.

6.6.8 Agent Planning

Agent planning capabilities represent the strategic intelligence that enables autonomous goal achievement.
Planning algorithm evaluation examines how agents decompose complex objectives into actionable sub-goals,
sequence actions optimally, and adapt plans based on changing conditions. This includes testing planning horizon
capabilities, resource allocation decisions, and coordination mechanisms in multi-agent scenarios.

Adaptive planning assessment evaluates how agentsmodify strategies when initial plans prove ineffective or when
new information becomes available. Sophisticated planning systems demonstrate the ability to maintain progress
toward goals while adapting execution approaches, balancing exploration of new strategies with exploitation
of known effective approaches. Planning evaluation must also examine how agents handle planning under
uncertainty, incomplete information, and time constraints.

6.6.9 Agent Routing & Decision Making Evaluation

Decision-making evaluation assesses how agents navigate complex choice scenarios and coordinate actions across
distributed systems. Intent resolution accuracy measures how effectively agents interpret user requirements and
translate them into actionable plans. This includes testing disambiguation capabilities when user intents are
ambiguous and validation of goal interpretation accuracy across different communication styles.

Routing efficiency evaluation examines how agents make strategic decisions about task delegation, resource
allocation, and workflow optimization. In multi-agent systems, this includes testing coordination mechanisms,
communication protocols, and conflict resolution strategies whenmultiple agents compete for shared resources or
pursue conflicting objectives. Advanced evaluation examines how agents balance local optimization with global
system performance.

6.6.10 Agent Orchestration

Agentorchestrationevaluationexamineshowmultiple agents collaborate effectively to achieve complexobjectives
that exceed individual agent capabilities. Multi-agent coordination testing validates communication protocols,
task delegationmechanisms, and collaborative decision-making processes. This includes testing how agents share
information, coordinate actions, and maintain system-level coherence while operating autonomously.

Orchestrationpattern evaluation assesses the effectiveness of different coordination strategies including sequential
orchestration, concurrent execution, andhierarchical delegationpatterns. Testingmust examinehoworchestration
systems handle agent failures, dynamic role assignment, and load balancing across agent networks. Advanced
orchestration evaluation includes testing emergent behaviors that arise from agent interactions and validating that
collective agent behavior aligns with intended system objectives.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 42

6.6.11 Agent Safety: Policy Compliance

Policy compliance evaluation ensures agentic AI systems operate within defined ethical, legal, and organizational
boundaries while maintaining autonomous capabilities. Regulatory compliance testing validates adherence to
frameworks such as the EU AI Act, NIST AI Risk Management Framework, and domain-specific regulations. This
includes testing data protection compliance, algorithmic accountability measures, and transparency requirements
that enable stakeholders to understand agent decision-making processes.

Safety guardrail validation examines how agents respond to boundary violations, unauthorized access attempts,
and situations that could compromise system integrity. This includes testing emergency intervention controls,
behavioral boundary detection, and escalation protocols that enable human oversight when agents encounter
high-risk scenarios. Advanced safety testing includes red teaming exercises that probe for vulnerabilities unique
to autonomous systems, including goal hijacking, privilege escalation, and memory manipulation attacks

6.6.12 Performance Metrics

6.6.13 Agent Performance Metrics

Agent performancemetrics provide quantitative assessment of systemeffectiveness across operational dimensions.
Task completion effectiveness measures success rates, error frequencies, and completion times across diverse
scenarios. This includes calculating task complexity handling capabilities, resource efficiency ratios, and adaptation
rates when agents encounter novel situations.

Decision quality metrics examine the accuracy and appropriateness of agent choices through comparison
with expert decisions, analysis of decision rationale quality, and measurement of consistency across similar
scenarios. Advanced metrics include learning and adaptation ratesthat track performance improvements over
time, generalization capabilities across domains, and knowledge retention consistency.

6.6.14 LLM Performance Metrics

Large Language Model performance within agentic systems requires specialized metrics that account for
reasoning quality, hallucination rates, and contextual appropriateness. Reasoning accuracy assessment examines
logical coherence in multi-step reasoning chains, factual accuracy in generated content, and appropriateness
of conclusions drawn from available information. This includes measuring hallucination rates that track false or
misleading responses and adaptability scores for handling novel tasks without explicit training.

Context utilization metrics evaluate how effectively agents leverage available context information, maintain
conversation coherence across multi-turn interactions, and integrate memory content into current reasoning
processes. Advanced LLM metrics include measuring response diversity to prevent repetitive outputs, creativity
scores for open-ended tasks, and alignment measures that ensure generated content reflects intended system
values and objectives.

6.6.15 LLM Metrics

Specialized LLM metrics for agentic systems focus on capabilities unique to autonomous operation. Prompt
engineering effectiveness measures how well agents construct prompts for internal reasoning, external tool
invocation, and communication with other agents. This includes testing prompt robustness under varying
contexts, effectiveness of few-shot learning approaches, and consistency of prompt-response patterns across
different scenarios.

Chain-of-thought evaluation examines reasoning transparency and logical progression in agent decision-making

43 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

processes. This includes measuring explanation quality for agent actions, coherence of reasoning chains, and
ability to provide justifications that enable human oversight and trust. Advanced LLM metrics include measuring
semantic consistency across paraphrased inputs, robustness to adversarial prompt modifications, and alignment
with specified reasoning methodologies.

6.6.16 Red Teaming

Red teaming for agentic AI systems addresses unique vulnerabilities that emerge from autonomous operation,
persistent memory, and goal-directed behavior. Adversarial testing methodologies simulate realistic attack
scenarios including authority spoofing, role manipulation, goal redirection, and context injection attacks designed
specifically for autonomous systems. This comprehensive approach examines howagents respond tomanipulation
attempts, maintain security boundaries, and preserve operational integrity under adversarial pressure.

Vulnerability assessment frameworks categorize risks across five critical areas: authority and permission
compromise, goal and mission subversion, information and data extraction, reasoning and decision integrity
violations, and context and memory manipulation. Advanced red teaming includes testing for prompt injection
attacks, jailbreak attempts, model inversion risks, and data poisoning scenarios that could compromise agent
behavior over time. These exercises provide actionable insights for strengthening system prompts, output filters,
and behavioral constraints while maintaining operational autonomy.

The red teaming process follows a structured methodology including threat modeling to identify potential
attack vectors, scenario building that simulates realistic abuse patterns, adversarial testing using both manual
and automated techniques, and comprehensive analysis that categorizes findings by severity and provides
remediation recommendations. Effective red teaming establishes continuous improvement cycles that enhance
system resilience through iterative testing and refinement.

In conclusion, Quality engineering for agentic AI systems demands a fundamental re-imagining of traditional
software testing approaches. The autonomous nature of these systems, combined with their ability to maintain
persistent memory, execute multi-step plans, and interact with complex environments, creates evaluation
challenges that extend far beyond conventional quality assurance methodologies. Organizations deploying
agentic AI must implement comprehensive frameworks that address technical performance, safety compliance,
and ethical alignment while maintaining the operational autonomy that defines these systems.

The evolution from assistive AI to truly agentic systems requires quality engineering practices that can assess not
just what these systems produce, but how they think, learn, and adapt over time. This necessitates continuous
monitoring, robust testing methodologies, and adaptive governance frameworks that can evolve alongside the
technologies they evaluate. As agentic AI systems become increasingly sophisticated and widely deployed, the
quality engineering practices outlined in this guide will prove essential for ensuring these powerful technologies
deliver their transformative potential while operating safely and reliably in real-world environments.

Success in agentic AI quality engineering requires embracing the inherent complexity and unpredictability of
autonomous systemswhile establishing rigorous standards for performance, safety, and compliance. Organizations
that master these quality engineering principles will be positioned to harness the full potential of agentic AI while
mitigating the risks associated with autonomous operation.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 44

7 Agentic Platform Offerings

The landscape of Artificial Intelligence (AI) is undergoing a fundamental transformation, shifting from systems
primarily focused on predictive analytics to those capable of autonomous decision-making and action [30, 31].
This evolution has given rise to Agentic AI platforms, which are designed to enable AI agents to pursue complex
goals with minimal human supervision, exhibiting adaptive behavior akin to human agents [30]. Unlike traditional
rule-based systems or basic conversational tools, LLM-powered agents offer enhanced flexibility, cross-domain
reasoning, and natural language interaction, capable of processing diverse data modalities like text, images, audio,
and structured data [31].

The importance of these platforms is underscored by their ability to facilitate automation at scale, orchestrate cross-
platform workflows, and implement adaptive, goal-oriented processes [30, 31]. They empower organizations to
streamline operations, augment human capabilities, and enhance productivity by offloading repetitive and time-
consuming tasks in a controlled and predictable manner [30]. Agentic platforms address the growing complexity
of modern businesses by enabling AI agents to manage unstructured tasks through continuous learning and real-
time analysis, optimizing workflows beyond the capabilities of conventional, rules-based systems [31]. This shift is
not merely an incremental improvement; it redefines how technology engages with the world, moving towards a
future where AI becomes a thinking entity and a collaborator [31].

The offerings in this rapidly evolving domain can be broadly categorized based on their scope, integration, and
target audience [32, 33]. The sources discuss several types, including:

• Commercial Agentic Platforms: Proprietary solutions designed for enterprise-specific automation, often deeply
integrated within a particular business domain or software suite [30, 31].

• Hyperscaler Agentic Platforms: Cloud-native services provided by major cloud vendors, offering foundational
models and tools for developing and managing agents at scale [34, 35, 36].

• Vertically Integrated Platforms: Solutions embeddedwithin proprietary ecosystems, leveraging existing data and
user interfaces for seamless adoption and enhanced governance [31, 37].

• Agent Builder Platforms: Flexible, often open-source tools and SDKs that enable developers to custom-build
agents, emphasizing modularity and community-driven innovation [38, 39, 40].

The table 6.1 summarizes the key features and differences among these agentic platform categories.

45 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

Feature Commercial Agentic Platforms Hyperscaler Agentic Platforms Vertically Integrated Platforms Agent Builder Platforms

Scope Enterprise-specific automation Cloud-native, scalable to global
demand

Deep ecosystem integration Open, flexible, modular

Integration Integrated within existing
business processes

Cloud infrastructure services Within proprietary ecosystems Frameworks and SDKs

Target
Audience

Enterprises requiring
domain-specific agentic
automation

Developers and enterprises
needing scalable AI agents

Users within a single ecosystem
(e.g., Microsoft 365)

Developers creating custom
agents

Model
Support

Proprietary models or
embedded AI

Supports multiple foundation
models including third-party

Custom models tuned with
proprietary data

Model agnostic, supports
multiple LLMs

Scalability Moderate (enterprise scale) Very High (cloud elastic
scalability)

High within ecosystem Variable, depends on
deployment

Security &
Compliance

High, with governance features Enterprise-grade security via
cloud

Robust security and
compliance

Depends on deployment setup

Customization Limited to platform-specific
features

Highly customizable via APIs
and cloud tools

Highly customizable with
low-code/no-code

Highly customizable and
extensible

Multi-Agent
Collaboration

Supported for business
workflows

Strong multi-agent
orchestration support

Advanced built-in multi-agent
orchestration

Supports complex multi-agent
systems

Ease of
Adoption

Medium, depends on
enterprise ecosystem

Requires development
expertise

Easy for ecosystem users Requires developer expertise

Primary Use
Case

Process automation, customer
support, IT ops

Large-scale AI applications,
production deployments

Seamless AI embedding in
business operations

Rapid prototyping,
departmental automation, R&D

Table 7.1: Feature-wise comparison of Agentic Platform Categories

7.1 Commercial Agentic Platforms

Commercial Agentic Platforms refer to proprietary solutions specifically designed for enterprise automation
and integration within existing business processes [31]. These platforms often evolve from BPA/RPA systems,
embedding intelligent, autonomous capabilities to tackle more complex and adaptive workflows [31]. They are
typically “vertically integrated agentic platforms” with domain-specific agents delivering services-as-software [30].

Examples

• Salesforce Agentforce: Customer service and CRM use cases with Atlas Reasoning Engine narratives and
documented case studies demonstrating cost and resolution gains [41, 42].

• ServiceNow AI Agents: ITSM workflow automation with AI Agent Studio, AI Control Tower, and Agent Fabric
enabling cross platform orchestration and governance [43, 31].

• UiPath AI Center: Intelligent RPA with AI-in-the-loop for decisioning and complex workflows, spanning low-code
and pro-code environments [33].

• MavenAGI, Assistents.ai, Moveworks: Specialized enterprise agents for omnichannel support, no-code agent
builders, and FedRAMP-authorized employee support, respectively [33].

Feature Comparison of Notable Commercial Platforms

The table 7.2 summarizes the key features and differences among these commercial agentic platforms.

The primary value of Commercial Agentic Platforms lies in their ability to facilitate an evolution from traditional
RPA to intelligent autonomous automation. They enable businesses to automate complex, non-deterministic
workflows, integrate cross-functional tools and APIs, process ambiguous data through continuous learning, and
maintain enterprise-grade security and compliance. This shift transforms AI from simple automation tools into
self-directed, adaptive business partners capable of navigating complexity and unlocking new possibilities.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 46

Feature Salesforce
Agentforce

ServiceNow AI
Agents

UiPath AI Center MavenAGI Assistents.ai Moveworks

Primary Focus Customer service
automation

IT service
management and
workflow
automation

AI-enabled
intelligent RPA

AI-powered
omnichannel
customer support

No-code AI agent
workflow
automation

Employee and
customer support
with compliance

Key Capability Atlas Reasoning
Engine reduces
costs by 40%

Multi-agent
collaboration for
app deployment
and management

AI and RPA
workflow
integration

Agent
Maven™ multi-
channel support
and internal
copilot

No-code
customizable
workflows with
analytics

FedRAMP
authorized,
multi-model
reasoning

Autonomy Level High, with human
oversight for
complex decisions

Integrated
multi-agent
workflows across
enterprise apps

High, with
low-code and
pro-code

High, with no-code
build for
multi-channel
agents

High, with complex
orchestration and
customization

High, with security
and enterprise
governance

Risk Considerations Responsibility
paradox with
autonomous
decisions

Emphasis on
security, budget,
and service-level
compliance

AI model
governance
features

Operational
visibility and
system security

Security
deployment
options including
on-prem

AI compliance and
FedRAMP
authorization

Integration Deep integration
within CRM
ecosystem

Orchestrates with
various agent
providers

Integrates with
existing RPA
infrastructure

Integrates with
common CRMs and
communication
channels

Integrates via APIs,
Zapier, and
Snowflake

100+ system
integrations for
enterprise
workflows

Table 7.2: Feature comparison of notable Commercial Agentic Platforms

7.2 Hyperscaler Agentic Platforms

Hyperscaler Agentic Platforms are cloud-native platforms from leading cloud vendors, providing infrastructure,
models, and orchestration frameworks for enterprise agent development and operations [34].

Examples

AWS: Multi-model support and event-driven components (EventBridge, Lambda), RAG services, and open-source
Strands Agents SDK for model-driven planning and orchestration [39].

Google Cloud Vertex AI ADK: Integrated model access and ADK with OpenTelemetry-based instrumentation for
traces of prompts, tool choices, and intermediate reasoning [34].

Microsoft Azure AI Foundry: Agent identity, governance, and lifecycle via Entra Agent ID and Purview integration
for secure multi-agent orchestration [36, 37].

Relevance AI, Microsoft AutoGen: Enterprise agents with visual builders and complexmulti-agent collaboration for
Azure-native deployments [32, 40].

Hyperscaler Platform Capabilities Comparison

The table 7.3 summarizes the key features and differences among these hyperscaler agentic platforms.

These platforms are pivotal in bringing agentic AI from experimental stages to production-grade deployments,
enabling businesses to create more adaptive, scalable, and intelligent automated processes.

47 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

Feature AWS & Partners Google Cloud
(Vertex AI & ADK)

Microsoft Azure AI
Foundry

Relevance AI Microsoft Autogen

Model Flexibility Multi-provider
models: AWS,
Anthropic, Meta

Google and
third-party
foundation models

OpenAI, Anthropic,
Microsoft
proprietary models

Multi-model
foundation model
support

Azure-native
foundation and
conversational
models

API Integration EventBridge,
Lambda & agent
broker pattern

Cloud Functions,
Pub/Sub,
event-driven
processing

Azure Functions,
Logic Apps for
orchestration

Extensive APIs and
no-code tooling

Integrates Azure
services for complex
orchestration

Knowledge Bases Retrieval-
Augmented
Generation (RAG)

Supports semantic
search & contextual
grounding

Integration with
Azure Cognitive
Search

Knowledge
graph-backed
agentic
orchestration

Supports complex
multi-agent
knowledge flows

Multi-Agent
Collaboration

Supervisor &
asynchronous
orchestrations

Modular
orchestration

Role-based
multi-agent
governance

Multi-agent
coordination

Designed for
complex
collaboration

Scalability Elastic cloud
infrastructure

Global scalable
cloud

Enterprise-scale
Azure cloud

Enterprise-grade
scalability

Azure cloud
enterprise scale

Monitoring &
Governance

Integrated
observability,
security &
compliance

Detailed logging and
monitoring

Azure Monitor,
Purview & Entra
Agent ID

End-to-end security
and trust

Logging and error
handling

Table 7.3: Capabilities comparison of Hyperscaler Agentic Platforms

7.3 Vertically Integrated Platforms

These platforms are deeply integrated within proprietary ecosystems, leveraging existing data and application
stacks for agentic capabilities embedded in everyday workflows [37].

Examples

• Microsoft Copilot Studio: Low-code agent building, Copilot Tuning, multi-agent orchestration, and governance
with Entra Agent ID and Purview [37, 36].

• Salesforce Einstein GPT Agentforce: CRM-embedded agents for sales, service, and marketing, with natural-
language workflow creation and compliance controls [41].

• ServiceNowAIAgents: ITSM-focusedorchestrationwithAI Agent Studio, Control Tower, and Fabric for cross-agent
collaboration [31].

• HubSpot, Oracle, SAP: CRM/ERP suites embedding conversational and agentic automation for domain workflows
[33].

The table 7.4 summarizes the key features and differences among these vertically integrated platforms.

These platforms are designed for enterprises that prioritize security, compliance, and seamlessworkflow integration
within familiar ecosystems. Their value lies in reducing operational friction, leveraging rich data context, enabling
scalable AI-driven automation, and supporting regulated industry requirements. By embedding agentic AI directly
into core applications, these platforms transform how organizations innovate, collaborate, and respond to market
demands.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 48

Feature Microsoft Copilot
Studio

Salesforce Einstein
GPT & Agentforce

ServiceNow AI
Agents

HubSpot AI Agents Oracle Digital
Assistant

SAP Conversational
AI

Ecosystem
Integration

Microsoft 365,
SharePoint, Teams,
Graph API

Salesforce CRM,
Marketing Cloud

ServiceNow ITSM
and SaaS
ecosystem

HubSpot CRM and
marketing platform

Oracle Cloud Apps
(ERP, HCM)

SAP ERP, SCM
suites

Model
Customization

Copilot Tuning
with low-code
customization

AI Builder with
domain tuning

Pretrained and
customizable
agents

Proprietary
HubSpot-trained AI
models

Industry-specific
NLP and workflows

Conversational AI
with industry
templates

Multi-Agent
Orchestration

Advanced
orchestration
capabilities

Cross-agent
collaboration in
sales/service
workflows

Embedded
orchestration
within ITSM

Multi-agent
workflows for
customer journeys

Supports
multi-turn
conversational
workflows

Integrated
multi-bot
orchestration

Governance &
Security

Entra Agent ID,
Purview controls

Robust CRM
compliance & data
privacy features

IT security and
compliance-first
design

HubSpot data
governance &
privacy

Enterprise-grade
security, auditing

Security aligned
with SAP enterprise
governance

Ease of
Adoption

Seamless for
Microsoft
ecosystem users

High for Salesforce
customers

Medium, strong in
IT/service domains

Easy for HubSpot
users

Medium, strong for
Oracle clients

Medium to high for
SAP customers

Table 7.4: Integration and security comparison of Vertically Integrated Platforms

49 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

7.4 Agent Builder Platforms

Agent Builder Platforms are open and flexible SDKs and tools enabling developers to construct custom agents with
orchestration, tool integration, memory, and evaluation primitives [38].

Examples

LangGraph: Stateful, graph-based multi-actor applications with memory, error recovery, and HITL; integrates with
LangChain [38]. AutoGen: Conversational and multi-agent collaboration with code executors and function tools;
Azure-native deployments [40]. CrewAI: Role-based collaboration and autonomous delegation for research-style
teams [32]. Strands Agents: Model-driven SDK with planning, tool calling, reflection, RAG/Knowledge Bases, and
multi-agent orchestration; used across AWS teams [39, 35]. Dify: Integrated LLM application platform with prompt
management, evaluation, feedback, monitoring, tracing, and guardrails [33].

The table 7.5 summarizes the key features and differences among these agent builder platforms.

Feature LangGraph AutoGen CrewAI Strands Agents Dify

Type Graph-based
workflow

Conversational agents Role-based
multi-agent

Model-driven SDK Integrated LLM
platform

Modularity High Medium High High Medium

Multi-Agent Support Yes Yes Yes Yes Possible

Tool Integration Extensive Moderate Extensive Extensive Extensive

Customization Developer-centric Developer-centric Developer-centric Developer-centric Platform-centric

Deployment
Readiness

Experimental/Research Research/Prototyping Production-capable Production-grade Production-capable

Popular Use Cases Prediction markets,
workflows

Financial research,
editing

Research teams, travel
planning

Enterprise workflows LLM application
management

Table 7.5: Feature comparison of Agent Builder Platforms

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 50

Part III

Enterprise Readiness &
Governance

51 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

8 Foundational & Strategic Readiness

8.1 Executive Alignment and Goals

For Agentic AI to be effectively integrated within an enterprise, executive sponsorship is essential. Leaders must
develop a thorough understanding of Agentic AI’s capabilities, limitations, and potential return on investment,
grounding their decision-making in evidence rather than hype [21, 44]. When executives lack this depth of
engagement, initiatives may be underfunded or misaligned, limiting their impact and failing to deliver meaningful
outcomes.

Agentic AI and transformative technologies succeed only when rooted in explicit executive intent and aligned with
business priorities, alongside clearly defined operational guardrails [21, 45, 44]. Without such alignment at the
highest levels, investments can easily become fragmented or lose sight of organizational value.

Key questions to address include:

• What strategic outcomes and value creation are targeted [21]?

• Which business problems will Agentic AI address, and what is their urgency [45, 44]?

• What organizational, technical, regulatory, or ethical constraints exist [44, 46]?

Alignment should be achieved through setting a clear North Star, engaging stakeholders across business and
technology, defining measurable outcomes, and documenting guardrails to guide use-case selection and
implementation [21, 47]. Key executive artifacts include vision statements, outcome maps, and a comprehensive
constraints register. These should be concise, visible, and regularly updated at every major project milestone.

8.2 Prioritized Value Streams & Use-Case Portfolio

Agentic AI programs are most effective when addressing high-impact, clearly defined business cases rather than
simply seeking to deploy new tools [21, 47]. The focus should be on value streams where autonomous agents can
deliver measurable business impact, tightly linked to robust problem framing and operational metrics [21, 48].

Instead of simply automating existing processes, organizations should reimagine workflows as AI-native systems.
For instance, rather than just accelerating invoice approvals, Agentic AI can coordinate the entire procure-to-pay
cycle, only escalating exceptions to humans [21, 47]. Agentic AI excels at automating complex workflows, enabling
hyper-personalized customer service, and optimizing supply chain operations through orchestrated agent
collaboration [21, 47, 49].

Successful portfolios are curated by ranking value streams according to feasibility, business potential, and
regulatory considerations [44, 47]. Each potential use case should be evaluated by its measurable impact, data
readiness, scalability, and risk profile [44, 47, 49]. Artifacts such as problem framing statements, baseline KPIs,
guardrail profiles, and human-in-the-loop plans ensure responsible and impactful adoption.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 52

8.3 Readiness Baselines

Enterprises must establish clear baselines across data, talent, infrastructure, and GenAI capabilities to set realistic
starting points andmitigate early-stage risks [21, 50, 49]. Using a structuredmaturitymodel, organizations can align
goals, investment, and timelines with their current readiness and future opportunities [50].

Agentic AI relies on the orchestration of high-quality, governed data with advanced generative models [21, 50, 49].
Readiness assessments should focus on infrastructure, data quality, governance, talent, and organizational culture,
with identified gaps addressed systematically in the adoption roadmap [50, 49].

8.4 Operating Model & Center of Excellence (CoE)

A robust operating model—with clear roles, ownership, and governance—is foundational to Agentic AI adoption
[47, 49]. Establishing a Center of Excellence (CoE) for Agentic AI standardizes methods, accelerates delivery, and
ensures accountability across domains [47, 49]. TheCoE’s responsibilities includedevelopinggovernance standards,
curating tooling and platforms, driving business enablement, and aligning the portfolio with enterprise priorities.

The CoE should operate under a centralized or hybrid model, retaining platform stewardship and standards at
the core while embedding practitioners in business units for contextual speed and effectiveness [47]. Its success
depends on measurable outcomes, well-defined structures, and continuous improvement.

8.5 Change Management and Skills Development

Effective communication, change enablement, and rapid upskilling of both technical and business audiences
are essential [47]. Agentic AI programs reshape workflows, roles, and decision-making, requiring transparent
engagement and support throughout the organization. Executive sponsorship, two-way communication, and
phased rollouts reinforce responsible adoption [47, 49].

Training programs should target technical and business users, emphasizing new competencies like prompt
engineering, workflow design, and output evaluation. The CoE should empower champions and communities of
practice, using metrics-driven approaches for adoption and proficiency [47].

8.6 External Ecosystem and Vendor Management

Successful Agentic AI adoption also depends on a robust external ecosystem. Enterprises must develop
transparent criteria for evaluating, selecting, and managing Agentic AI vendors, ensuring that all integrations
align with organizational security, interoperability, and strategic standards [49]. Active participation in alliances,
standards bodies, and the open-source community can foster innovation and minimize vendor lock-in. Regular
vendor reviews and formalized selection processes ensure alignmentwith evolving technology and risk landscapes
[49].

8.7 Change Fatigue and Cultural Transformation

Large-scale transformations often encounter resistance and change fatigue. To mitigate this, organizations
should pace adoption, recognize achievements, and provide ongoing forums for feedback. Programs that engage
employees at every level—through town halls and recognition of early adopters—encourage a culture that

53 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

embraces Agentic AI, reducing resistance and fostering champions across the enterprise. Leadership must create
psychological safety for experimentation and learning while supporting reskilling and new career pathways [47].

8.8 Continuous Learning and Post-Adoption Evolution

True Agentic AI transformation is continuous. Enterprises should establish regular post-adoption reviews,
leveraging lessons learned to update processes, policies, and technical practices [44, 50, 48, 46]. Continuous
feedback loops, after-action reviews, and integration of research findings reinforce agility and sustained value.
Communities of practice and knowledge-sharing platforms further embed ongoing learning into the organization.

8.9 Alignment with Business Continuity and Disaster Recovery

The resilience of Agentic AI systems is paramount. Adoption efforts should be integrated with broader business
continuity and disaster recovery frameworks [44, 49]. Scenario planning for system outages, robust data backup,
and regular incident response drills ensure that organizations are prepared for disruptions. Clearly documented
and tested escalation paths and contingency plans should be maintained in alignment with organizational risk
management procedures [44, 49].

8.10 Financial Modeling and ROI Realization

Agentic AI initiatives must be grounded in robust financial modeling and ROI tracking [21, 47]. Establishing clear
baselines, forecasting expected returns, and regularly analyzing outcomes ensures that investments remain closely
tied to strategic business objectives. When targets are missed, root-cause analyses and corrective plans must
be enacted. This accountability strengthens stakeholder trust and ensures that Agentic AI investments drive
measurable value [47].

8.11 Executive Checklist

• Is executive intent and outcome alignment clearly documented [21]?

• Are business priorities and constraints fully understood [21, 44]?

• Have value streams been mapped and use-cases prioritized [21, 47]?

• Has each use-case passed the Portfolio Gate [21, 48]?

• Are baseline KPIs and data maturity documented [50]?

• Is ownership clear, with accountable leaders and a CoE established [47, 49]?

• Are change management and upskilling plans in place [47]?

• Are all required artifacts completed per stage gate [21]?

• Is there a process for reviewing and retiring misaligned use-cases [21, 47]?

• Is there a mechanism for ongoing risk and regulatory updates [44, 46]?

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 54

9 Governance, Risk, and Compliance (GRC)

Agentic AI introduces autonomy into critical processes, requiring a strategic GRC foundation that embeds
governance, proactive risk management, and responsible AI throughout the lifecycle to build trust, ensure
integrity, and prevent ethical and financial harm [51, 52]. A comprehensive framework sets guardrails so
autonomous systems operate effectively while protecting stakeholders and complying with evolving regulations
[51, 53].

9.1 Governance Frameworks

Effective governance defines clear policies, roles, responsibilities, and controls from data collection and training
through deployment, monitoring, and decommissioning, maintained as a living framework [52, 51]. The updated
OECD AI Principles emphasize systematic risk management, accountability, traceability, and human-centric
oversight as global reference points [51, 54]. Governance must also cover operating model changes and workforce
transition, recognizing emerging roles (e.g., model tuners, agent orchestrators) and aligning HR policies and
training with human oversight duties required for high-risk systems [53, 55].

9.2 Risk-Aware Governance and Compliance Review

Governance and compliance are integral to the agent lifecycle, ensuring agents are developed with accountability,
regulatory alignment, and risk-awareness [51, 52]. A structuredevaluationprocess, supportedby standardized tools,
templates, and semi-automated assessments, enables consistent oversight without slowing down development.

9.2.1 Scope of Governance & Compliance Evaluations

During the creation phase, every agent is evaluated against critical compliance dimensions:

• Data Privacy Safeguards:

– Compliance with organizational privacy rules and regional/global laws [51, 52].

– Data Classification & Masking:

* Automated data scanners (e.g., Microsoft Presidio, Infosys Responsible AI privacy modules) classify PII/PHI.

* Masking/anonymization techniques (format-preserving encryption, tokenization) applied before agent
consumption.

• Regulatory Applicability:

– Map agent functionality to applicable acts and sector-specific regulations [51].

55 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

– Policy-as-Code Enforcement:

* Regulations codified as enforceable rules (e.g., OPA/Rego, Sentinel) [56, 57].

* Rego policies validate agent behaviour and integrate with CI/CD pipelines [56].

– Runtime Validation Layer:

* Sidecar or gateway-based enforcement (OPA sidecar, Envoy with embedded policies); real-time Zero Trust
checks for every agent action [56].

• Audit-Ready Traceability:

– Immutable logging (e.g., ELK / Splunk) with hashing/digital signatures to ensure tamper-proof logs.

– Dashboards (Grafana, Kibana) provide leadership with compliance visibility.

• Responsible AI Hooks (RAI focus):

– Decision explainability with SHAP, LIME, Captum; fairness checks integrated into CI/CD (AIF360, Fairlearn).

– For high-risk/regulated actions, enforce mandatory human approvals before execution [52].

• Security Considerations:

– Zero Trust Enforcement: Authenticate every agent action (JWT, OAuth2, mTLS); enforce RBAC/ABAC; strong
cryptography (TLS 1.3 in transit, AES-256 at rest).

– Vulnerability Scanning & Monitoring:

* CI/CD-integrated SAST/DAST (e.g., SonarQube).

* Runtime intrusion detection/monitoring (e.g., Snort, Suricata).

• Policy Alignment:

– Adherence to Responsible AI principles and operational guardrails [51, 52].

– Responsible AI Policies-as-Code: encode fairness, explainability, accountability rules into the policy engine [57].

– Bias & Fairness Audits: run evaluation scripts pre-deployment (e.g., Responsible AI Toolkit, AI Fairness 360,
Fairlearn).

– Explainability Hooks: justification trails with SHAP/LIME/Captum.

– Ethics & Governance Checklist: bias checks, explainability, security scans embedded in CI/CD; prompt-injection
mitigations included [58, 59].

9.3 Technical Implementation Guide

This section describes automated governance controls for agent onboarding, risk classification, and runtime
assurance. The controls are implemented as layered checks (build-time, deployment-time, runtime) with
integration points into CI/CD, ticketing, and SIEM systems.

• Automated Compliance Checks

– Policy-as-code validation

* Use policy-as-code frameworks (OPA/Rego, Sentinel) to validate permissions, encryption, and retention [56,
57].

* Apply automated templates to check data access permissions, encryption (at rest/in transit), and retention
rules.

* Run these checks during CI/CD to block non-compliant deployments [57].

• Risk Classification & Tracking

– Risk scoring and storage

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 56

* Apply a risk scoring model (Low, Medium, High) to classify agents.

* Store results in a compliance database/storage linked to each agent for auditability.

* Integrate findings with ticketing systems (Jira/ServiceNow) for remediation tracking.

• Escalation Workflow

– Triage and escalation

* Low/Medium risks → feedback loop with developers for remediation.

* High risks → automatic escalation to compliance officers with evidence logs.

* Maintain an exception approval workflow for urgent deployments that documents justification and time-
bounded approvals.

• Auditability & Traceability

– Immutable evidence and signing

* Generate immutable audit logs in secure storage; include reviewer, timestamp, rule triggered, and decision.

* Use digital signatures to prevent tampering and preserve chain-of-custody for reviews.

• Continuous Monitoring (Post-Deployment)

– Runtime telemetry and response

* Telemetry hooks track runtime behaviour and emit alerts for anomalies or repeated violations.

* Integrate with SIEM platforms (Splunk, ELK, Microsoft/Azure Sentinel) to enable automated responses
(quarantine, revoke access, block).

* Incorporate agent observability research and dashboards for runtime analysis and optimization [60].

9.4 High-Level Workflow Example

The workflow below summarizes the typical agent onboarding and governance process. It highlights the
sequential checkpoints—from automated policy scans and governance review to risk classification, remediation,
approval, deployment, and continuous runtime monitoring—used to ensure agents meet security, compliance,
and operational readiness before production.

• Agent Proposal → Developer submits agent design/specifications.

• Automated Pre-Checks → Policy-as-code engine scans code/configurations [56, 57].

• Governance Review → Compliance team validates regulatory & security risks [52].

• Risk Classification → Automated + manual scoring (Low/Medium/High).

• Feedback & Remediation → Developers fix flagged issues.

• Escalation (High Risk) → Compliance officer & leadership review.

• Approval & Deployment → Only compliant agents move to production.

• Runtime Monitoring → Telemetry captures activity & policy enforcement [60].

• Continuous Audit → Immutable logs + alerts for anomalies.

9.5 Enforcement Controls

The following layered enforcement controls are applied across the agent lifecycle; each top-level bullet denotes a
phase with nested controls.

57 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

• Build-time (CI/CD):

– Block merge/deploy if compliance check fails [57].
– Policy checks: no PII logs, encryption enabled.

• Deployment-time:

– Sidecar policy engine validates agent permissions/tools; Zero-Trust enforcement for APIs & data access [56].

• Runtime:

– Telemetry captures data flows, API calls, decisions; real-time alerts for anomalies (multiple failed access
attempts, repeated policy violations, data exfiltration signals).

– Automated responses: block request, quarantine agent, revoke credentials [60].

• Audit and Retention:

– Logs digitally signed, immutable, and stored securely.
– Periodic reports for compliance officers; historical versions maintained for retrospective audits.

9.6 Standards & Frameworks for Threat & Governance

The frameworks belowoffer practical guidance and establishedbest practices for threatmodeling, governance, and
security controls that are directly applicable to multi-agent and generative AI deployments. Reference these when
defining policy-as-code, runtime enforcement, and audit requirements for agentic systems:

• Multi-Agentic/MAESTRO threat modeling and OWASP GenAI resources [61, 62, 63, 59, 58].

• OECD AI governance principles for accountability and oversight [51, 52].

9.7 Risk Identification and Mitigation

Adopt proactive strategies that go beyond traditional testing to address emergent behaviors, stochasticity, and
interconnected risks ofmulti-agent systems [58, 64]. Implement scenario-based stress tests, adversarial evaluations,
and red teaming to probe jailbreaking and prompt-injection, and require human approvals for high-risk actions
[58, 65]. Mitigate unreliability and lack of standardized benchmarks by enforcing guardrails, output validation, and
least privilege, while monitoring for bias and drift in production [58, 52].

9.8 Financial Planning and Lifecycle Budgeting

Build lifecycle financial models that account for inference costs, API usage, monitoring, retraining, staffing, and
resilience overheads—cost drivers that can dominate post-launch [66]. Optimize prompts and context windows,
select efficient models, and consider carbon-aware scheduling to reduce spend and emissions, recognizing
inference as a major share of lifecycle impact at scale [66]. Define ROI early using tangible (cost, revenue) and
intangible (quality, risk reduction, brand) benefits, and tie KPIs to before/after measurements [52].

9.9 Regulatory Landscape

Regulations suchas theEUAIAct classify risk and require controls including riskmanagement, dataquality, technical
documentation, and meaningful human oversight for high-risk systems [53, 67]. Governance must map agentic

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 58

use cases to applicable obligations, document oversight design, and assign qualified personnel with authority and
competence to intervene [53, 55]. Maintain continuous assessments, incident response, and compliance checks as
the legal environment evolves [51, 52].

9.10 Data Sovereignty, Privacy & IP Protection

Mitigate risks from data residency, PII exposure, and IP leakage through private gateways, minimization,
anonymization, encryption, and strict access controls [52, 58]. Engineer agent systems with security-by-design and
tiered guardrails: individual agent filters, system-level coordination checks, adaptive policies, and human override
for permissioned autonomy [58, 52]. Use APIs, rate limits, abuse prevention, and prompt-shielding to restrict agent
capabilities to vetted tools and datasets [58].

9.11 Compliance Monitoring & Reporting

Compliance monitoring and reporting provide continuous assurance that agents operate within regulatory,
organizational, and ethical boundaries. This phase ensures that compliance adherence is ongoing, measurable,
and visible to stakeholders across the lifecycle [51, 52]. Monitoring focuses on runtime operations, while reporting
transforms captured evidence into actionable insights for leadership, regulators, and auditors.

9.11.1 Scope of Compliance Monitoring & Reporting

Agents are continuously monitored across all dimensions:

• Regulatory Adherence

– Ensure operational compliance with applicable laws (e.g., GDPR, DPDP, HIPAA, PCI-DSS, EU AI Act) [51, 52].

• Policy Enforcement Tracking

– Validate ongoing conformance to organizational policies and Responsible AI principles [52].

• Operational Metrics

– Monitor telemetry such as data flows, access attempts, and decision outcomes [60].

• Reporting & Visibility

– Provide dashboards and regulator-ready compliance evidence [52].

• Incident Response & Remediation

– Defined playbooks for containment, root-cause, remediation, and post-incident review.

– Integration with ticketing and postmortem processes for continuous improvement.

• Audit Trails & Forensics

– Immutable, tamper-evident logs for decision lineage, approvals, and policy evaluations.

– Support forensic analysis with indexed, searchable evidence for audits.

• Third-Party Assessments & Certification

– Schedule external audits, pen-tests, and compliance certifications; track remediation status.

• Privacy Impact Assessments (PIA)

– Perform PIAs for high-risk agents and maintain mitigation registers.

59 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

• Human Oversight & Review Processes

– Define escalation gates, reviewer roles, and approval SLAs for high-risk actions.

• Model & Data Lineage

– Record model versions, training datasets, and transformation pipelines for traceability.

• Control Telemetry & Metrics

– Instrument controls to emit metrics/events (latency, pass/fail counts, coverage).

– Store and query metrics in observability backends (Prometheus, TimescaleDB, etc.).

– Tag telemetry by agent ID, policy ID, and severity for roll-up and drill-down analysis.

• Policy Decision Logging

– Log allow/deny/warn decisions with rule IDs, reason codes, and regulation references.

– Persist standardized, queryable JSON records containing inputs, policy evaluation, and outcome for analytics
and audits.

• Alerting & Escalation

– Classify incidents by severity (P0P3), maintain on-call rotations, and publish runbooks.

– Integrate with SIEM and incident tools (Splunk, ELK, Sentinel) to automate triage and escalation [52, 60].

• Evidence Packaging & Reporting

– Generate scheduled “regulator packs” including logs, policy versions, approvals, attestations, and hashes.

– Store evidence in immutable storage (S3 Object Lock, immutable blobs) with access controls and retention
policy.

• Data Retention & Residency

– Enforce retention schedules per regulation; ensure data locality and residency constraints.

– Maintain historical versions and retention metadata for retrospective audits [51].

• Adaptability to Evolving Regulations

– Design compliance systems to accept policy updates (policy-as-code) without code rewrites.

– Preserve historical policy versions and link agent behavior to the effective policy at execution time [51, 52].

• Continuous Compliance Dashboards

– Aggregatemetrics viaobservabilityplatforms (Grafana, Kibana); surface complianceheatmaps (low/medium/high).

– Provide drill-down views per agent, per policy, and per regulator for ad-hoc reviews.

• Integration with Governance Systems

– Link monitoring alerts to ticketing systems (ServiceNow, Jira) and automated remediation pipelines.

– Trigger escalation workflows for unresolved or high-severity violations, including audit notifications.

9.12 Technical Implementation Guide

This section provides a concise operational playbook for implementing automated governance controls across
build-time, deployment-time, and runtime phases. The checklist below outlines concrete capabilities, telemetry
flows, and artifacts that should be integrated into CI/CD pipelines, AgentOps workflows, and incident runbooks to
ensure continuous compliance, traceability, and rapid remediation.

• Define Metrics & Event Taxonomy: coverage, effectiveness, violation rate.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 60

• Alerting & Runbooks: containment, rollback, key rotation.

• Reporting Templates: weekly ops, monthly leadership, quarterly regulator.

• Retention/Immutability: align policies with regulations [51].

• Continuous Testing: inject synthetic violations to verify alerts/reports.

• Data Collection & Aggregation: telemetry pipelines forward to centralized compliance data lake [60].

• Compliance KPIs & Metrics: define KPIs (% compliant executions, violation frequency, resolution time). Auto-
classify severity (Low, Medium, High).

• Reporting&LeadershipDashboards: generate real-timedashboards;monthly/quarterly summaries for leadership
and regulators.

9.13 Enforcement Controls

These enforcement controls are applied in a layered fashion across the agent lifecycle to ensure compliance,
traceability, and operational readiness. Each layer (build, deployment, runtime, and reporting) contains automated
checks andmeasurable gates that are tied to the agent identifier so failures can be traced, remediated, and audited.
Wherever possible, controls are enforced via CI/CD, policy-as-code, and runtime policy engines tominimize human
error and maintain immutable evidence for regulators.

• Build-Time (CI/CD)

– Fail the build if mandatory controls are missing (e.g., logging hooks, regulatory mapping).

– Block deployment if exceptions or waivers are not documented and approved.

• Deployment-Time

– Validate that monitoring and telemetry pipelines are enabled and verified before agents go live.

– Require dashboards and reporting templates to be linked to the agent ID for operational visibility.

• Runtime

– Emit real-time alerts that trigger automated escalation workflows (ticket creation, quarantine flagging).

– Continuously detect drift and apply configured rollback actions if baseline deviation thresholds are exceeded.

• Reporting & Evidence

– Automatically generate regulator-ready compliance packs (signed and immutable) for audits.

– Block external reporting if evidence completeness <100% (e.g., missing logs, approvals, or waivers).

9.14 Telemetry and Audit Assurance

Capture detailed execution traces, policy decisions, data flows, tool invocations, and outcomes to enable
verification and explainability [52]. Implement real-time anomaly detection and alerts to reduce exposure, and
maintain immutable, secure logs for scheduled and on-demand audits [52]. Report leadership metrics such as
compliant execution rates, prevented violations, and emerging risk patterns to sustain accountability and trust
[52].

61 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

9.14.1 Scope of Telemetry & Audit Assurance

Agents must generate and maintain audit-ready evidence across the following areas:

• Execution Traceability — capture all agent actions, tool invocations, data flows, and decision outcomes [60].

• Policy Validation Logs — record when policies are evaluated, triggered, and enforced [56, 57].

• Data Handling Records — evidence of consent validation, masking, and redaction applied at runtime.

• Exception & Violation Logging — capture anomalies, repeated violations, or attempted bypasses.

• Audit Trail Assurance — ensure logs are tamper-proof, immutable, and traceable to specific policies and agents
[52].

• Model & Data Lineage — record dataset versions, transformation steps, model versions, and training/inference
artifacts to support reproducibility and investigations.

• HumanReview&Approval Records—store reviewer IDs, timestamps, decisions, and rationale for gating/override
events.

• Retention & Access Controls — document retention schedules, access policies, and privileged access events for
auditability.

• Comprehensive telemetry pipelines:

– Instrumentation — instrument agents to emit structured events (inputs, outputs, decisions, tool calls) with
standardized schemas (JSON/OTel semantic conventions).

– Streaming / Ingest — event buses and streaming platforms (Kafka, Azure Event Hubs) for high-throughput,
ordered ingestion.

– Processing— log processors / stream processors (Logstash, Fluentd, Kafka Streams) for enrichment, validation,
and real-time metrics.

– Storage & Indexing— time-series DBs, ElasticSearch, or object stores for long-term retention and fast querying.

– Sampling & Aggregation — define sampling policies, rollups, and aggregation windows to control cost while
preserving forensic fidelity.

• Immutable audit logging & storage:

– Append-only / WORM storage — S3 Object Lock, Azure Immutable Blob, or equivalent write-once stores for
regulatory compliance.

– Integrity and provenance—digital signatures, hashing, and chained records to prove immutability and detect
tampering [51].

– Encryption & key management — encrypt logs at rest and in transit; manage keys via HSMs or cloud KMS with
rotation policies.

• Distributed tracing & correlation:

– End-to-end trace IDs — propagate trace and causal context (OpenTelemetry, Jaeger, Zipkin, Tempo) across
agents, tools, and external services.

– Cross-system correlation — correlate traces with logs, metrics, and policy-evaluation events for full visibility
[60].

– Async and batch boundaries — ensure context propagation across async queues, retries, and worker pools.

• Alerting, detection & SOAR:

– Detection—feedevents intoSIEMplatforms for correlation/analytics (Splunk, ELK,AzureSentinel) andanomaly
detection [52].

– Response — automated orchestration (Cortex XSOAR, Splunk Phantom) to quarantine agents, revoke
credentials, or trigger human review.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 62

– Playbooks & runbooks — codified escalation procedures, SLA-based routing, and post-incident evidence
collection.

• Privacy-preserving logging:

– Field-level redaction / tokenization — use DLP tools and masking libraries to remove or tokenize PII before
long-term storage.

– References instead of raw data — store cryptographic hashes or pointers to protected vaults while preserving
traceability [51].

– Analytics-safe transforms — apply aggregation, differential-privacy, or k-anonymity techniques for telemetry
used in analytics.

– Access auditing — log and audit all accesses to sensitive telemetry and enable just-in-time access where
appropriate.

9.15 Technical Implementation Guide

The following checklist summarizes key telemetry, audit, and escalation controls. Each top-level item lists concrete
implementation notes and operational expectations to ensure traceability, immutability, and timely response for
agentic systems.

• Telemetry Capture & Forwarding

– Embed structured telemetry hooks in every agent action: inputs, outputs, tool calls, and decision metadata
(use JSON/OTel semantic conventions).

– Stream events to observability and SIEM backends for real-time processing and correlation (e.g., Kafka, Event
Hubs, Splunk) [60].

– Include trace IDs and context propagation to enable end-to-end correlation across async boundaries.

• Audit Trail Construction

– Consolidate logs and traces into structured, queryable evidence records (timestamped JSON recordswith agent
ID, policy decision, and tool results).

– Apply cryptographic hashing and digital signatures to evidence bundles to ensure immutability and provable
provenance [51].

– Record versioned metadata for prompts, model versions, and policy rules linked to each execution trace.

• Anomaly Detection & Escalation

– Define operational thresholds and detection rules (e.g., repeated failed access > 3, sudden spike in policy
violations, unusual token spend).

– Automate escalation workflows for alerts: create tickets, notify compliance/security owners, and optionally
quarantine offending agents [52].

– Ensure human-review gates (HOTL/HITL) for high-severity incidents and capture reviewer decisions for
auditability.

• Audit Evidence Lifecycle

– Store signed audit packs in secure, tamper-evident storage with version history (WORM/S3 Object Lock or
equivalent).

– Retain evidence according to legal and regulatory requirements (GDPR, DPDP, HIPAA) and document retention
policies [51].

– Enforce strict access controls, key management, and just-in-time access for forensic reviews.

63 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

9.16 Enforcement Controls

Layered enforcement controls applied across the agent lifecycle. Each top-level item denotes a phase with nested,
concrete controls that are enforced automatically or via gate checks.

• Build-Time:

– Fail the build if telemetry/audit hooks are not embedded.

– Block deployment if logging pipelines are not configured [56].

• Deployment-Time:

– Validate telemetry forwarding and secure storage are active before go-live.

– Block agent launch if audit storage is unavailable.

• Runtime:

– Quarantine the agent if the telemetry stream is interrupted (“silent agent” condition).

– Auto-block high-severity violations (e.g., PII exfiltration attempts).

• For Audits:

– Ensure all logs and evidence are stored immutably with full traceability.

– Generate automated audit reports with version history for leadership and regulators.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 64

10 Technical Readiness

Telemetry and audits form the backbone of compliance assurance in agent-based systems. While monitoring
focuses on detecting violations, telemetry ensures every action is captured, explainable, and attributable, and
audit mechanisms transform this telemetry into verifiable evidence for both internal governance and external
regulators. Together, they provide transparency, trust, and accountability throughout the agent lifecycle [51, 52].

10.1 Enterprise AI Infrastructure

Agentic AI is computationally intensive, requiring scalable compute, storage, and networking for training, fine-
tuning, and low-latency inference across diverse workloads [68, 66]. “AI factory” patterns demonstrate cloud-native
clusters orchestrating tens of thousands of GPUs with Kubernetes, enabling standardized pipelines from design to
production [68]. Platform selection should align to existing cloud strategy while enabling vector databases, secure
LLM access, and enforceable data governance for AI workloads [69].

• Recommendation: Select a primary hyperscaler AI/ML platform (e.g., SageMaker, AzureML, Vertex AI) and extend
with specialized services for storage, containers, and model endpoints [69].

• Deliverables: Provisioned AI/ML platform; vector stores (e.g., Pinecone, Weaviate, Milvus or managed); secure
LLM/API access; documented data governance (residency, anonymization, retention) [69].

• Key Tasks: Configure object storage and registries; set up vector DBs for RAG and memory; enforce API gateways
and secret managers; codify data controls with catalogs/governance services [69].

• Considerations: Cost optimization, regional availability, latency SLAs, Zero Trust, and prompt-shielding patterns
for agent security [58, 66].

10.2 Agent-Specific Tooling

Agent frameworks (e.g., LangChain, AutoGen, CrewAI) enable planning, tool use, memory, and multi-agent
orchestration, but differ in abstractions, maturity, and ecosystem fit [70, 71, 72]. A poly-AI and poly-agent
architecture avoids lock-in, enabling integration of the best models, providers, and tools per use case with
standardized interfaces and governance [70, 71].

• Recommendation: Integrate open-source or commercial frameworks, institute prompt/version management,
robust memory/state design, secure tool registries, and human oversight [70, 71].

• Deliverables: Frameworks deployed; prompt management with version control; short-term memory (e.g., Redis)
and long-term memory (vector stores, DB); tool registry with OpenAPI specs; HITL workflows [70, 72].

• Key Tasks: Validate compatibility with LLM APIs and vector stores; track prompt iterations and behavior in CI/CD;
define authN/authZ for tools; route critical actions for human approval with an override [71, 58].

65 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

• Considerations: Framework maturity, multi-step reasoning, latency budgets, security of memory components,
and observability hooks [70, 58].

10.3 AI/Agent Specialized Roles

Agentic systems require capabilities beyond classic ML engineering, including prompt and workflow design, safety
andgovernance, andagent evaluationat task and system levels [73, 74]. Dedicated roles suchas agentorchestrators,
prompt engineers, and responsible AI specialists help align safety, performance, and business outcomes [73, 74].

• Recommendation: Develop role-based learning paths covering prompt engineering, agent orchestration,
bias/testing, and explainability [73, 74].

• Deliverables: Team proficiency in frameworks and prompts; RAI policies and tooling for bias and explainability;
agent-specific evaluation metrics and tests [73].

• Key Tasks: Train on patterns like ReAct, tool-use planning, and multi-agent coordination; use RAI toolkits (e.g.,
Clarify, Responsible AI Dashboard); combine agent-as-judge/LLM-as-evaluator with human review [74, 73].

• Considerations: Regulatory context, societal impacts, and KPI alignment for safety and effectiveness [73].

10.4 Agent Development - CI/CD Pipelines

CI/CD must treat prompts, tool specs, and agent graphs as first-class artifacts with automated tests for safety,
functionality, and resilience [75, 58]. Pipelines should include vertical tests (components), end-to-end flows, and
adversarial/red-team evaluations to surface vulnerabilities and reliability gaps before production [75, 58].

• Recommendation: Automate build/test/deploy for code, prompts, tools, and configurations; containerize and
consider serverless for elastic inference; integrate security scanning and policy checks [75].

• Deliverables: CI/CD for agents; automated test suites for tool use, safety guardrails, and multi-step workflows;
deployment patterns via containers/Kubernetes and managed runtimes [75].

• Key Tasks: Addprompt versioning; generate synthetic test data; run red teaming for jailbreaks and injections; gate
releases on safety thresholds and audit logs [58, 75].

• Considerations: Continuous testing in production, drift detection, rollback/kill-switch, and traceability of changes
[75, 58].

10.5 Continuous Improvement via AgentOps

AgentOps extends MLOps with real-time behavioral telemetry, policy enforcement, and automated improvement
loops tied tobusiness KPIs [75, 58]. Monitoring should capture latency, success rates, tool-usepatterns, token spend,
and decision logs, with alerts for anomalies, bias, and policy violations, plus automated retraining or rule updates
[75, 66].

• Recommendation: Implement dashboards, alerts, and explainability trails; track safety and reliability metrics;
trigger retraining from feedback and drift; integrate incident response [75].

• Deliverables: Telemetry by agent and task; violation and threat alerts; feedback pipelines; retraining workflows
and evaluation harnesses [75].

• Key Tasks: Log decisions and rationales; use LLM-assisted evaluations with human review; control token budgets;
monitor carbon/energy and optimize prompts/models accordingly [66, 75].

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 66

• Considerations: Granular PII controls in logs, alert fatigue management, dataset versioning for retraining, and
linkage to compliance dashboards [58, 75].

Integration and Interoperability

Use API gateways, event buses, and adapters to integrate agents with ERP/CRM and domain systems, enforcing
least privilege and auditable tool access [58, 69]. Normalize schemas for tool inputs/outputs and adopt
OpenAPI/Swagger for consistent capability exposure across agents and services [70, 71]. Design for portability
across models/providers to sustain a poly-AI strategy as the ecosystem evolves [70, 71].

67 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

hispagestylelandscape

10.6 Technical Capabilities Mapped to Hyperscaler Services

The table 10.1 provides a detailedmapping of the conceptual components in the reference architecture to equivalent services across AWS, Azure, and Google
Cloud, demonstrating the practical applicability of the proposed framework across leading cloud environments.

Table 10.1: Technical Capabilities Mapped to Hyperscaler Services

Conceptual Component AWS Equivalent Services Azure Equivalent Services Google Cloud Equivalent Services

Development and Experimentation

Dev Environment (IDEs, Local Tools) Amazon SageMaker Studio Lab /
Notebook Instances, Local VS Code
with AWS Toolkit

Azure Machine Learning Studio /
Compute Instances, Local VS Code
with Azure ML Extension

Vertex AI Workbench, Local VS Code
with Cloud Code Extension

Agent Frameworks and
Orchestrators

LangChain, LlamaIndex, AutoGen, CrewAI (Hyperscaler-Agnostic)

Prompt Management DVC, MLflow (for artifact logging), custom prompt management tools (Hyperscaler-Agnostic)

Tool Registry / API Spec Storage S3 for OpenAPI/JSON schemas;
internal service discovery

Blob Storage for OpenAPI/JSON
schemas; internal service discovery

Cloud Storage for OpenAPI/JSON
schemas; internal service discovery

Version Control Github, GitLab, BitBucket (Hyperscaler-Agnostic)

LLM APIs Amazon Bedrock (Anthropic Claude,
AI21 Labs Jurassic, Stability AI Stable
Diffusion, Amazon Titan),
SageMaker JumpStart LLMs

Azure OpenAI Service (GPT models),
Azure AI Studio for custom models

Vertex AI Gemini API, Vertex AI PaLM
API, custom models on Vertex AI

Vector DB (Dev Instance) Self-managed OpenSearch, Qdrant,
Weaviate on EC2/EKS

Self-managed PostgresQL with
pgvector, Redis with RediSearch
module

Self-managed PostgresQL with
pgvector, Redis on GKE

Continued on next page

ExternalD
ocum

ent@
2025

Infosys
Lim

ited
Building

Autonom
ous,Resilientand

IntelligentAgentic
A
ISystem

s
|68

Table 10.1 – Continued from previous page

Conceptual Component AWS Equivalent Services Azure Equivalent Services Google Cloud Equivalent Services

Data Lake / Storage (Dev) Amazon S3 Azure Blob Storage / Azure Data
Lake Storage Gen2

Google Cloud Storage

CI/CD and MLOps Orchestration

Continuous Integration (CI) AWS CodeBuild, Github Actions,
Jenkins on EC2

Azure DevOps Pipelines, Github
Actions

Cloud Build, Github Actions

Continuous Delivery/Deployment
(CD)

AWS CodeDeploy, AWS
CodePipeline

Azure DevOps Pipelines, Azure
Deployment Slots

Cloud Deploy, Cloud Build

MLOps Pipelines / Workflow
Orchestrator

Amazon SageMaker Pipelines, AWS
Step Functions, Argo Workflows on
EKS

Azure Machine Learning Pipelines,
Azure Data Factory, Azure Logic
Apps

Vertex AI Pipelines, Cloud Composer
(Apache Airflow), Argo Workflows
on GKE

Model Registry / Agent Artifact
Store

Amazon SageMaker Model Registry,
Amazon S3

Azure Machine Learning Model
Registry, Azure Blob Storage

Vertex AI Model Registry, Google
Cloud Storage, Artifact Registry

Vector DB Management Amazon OpenSearch Service
(managed vector engine),
third-party managed services

Azure Cosmos DB for PostgreSQL
(pgvector), Azure AI Search (vector
search)

Vertex AI Vector Search (managed
service), AlloyDB Omni (pgvector)

Data Governance AWS Lake Formation, AWS Glue
Data Catalog, Amazon Macie

Microsoft Purview Google Cloud Data Catalog, Google
Dataproc, Google BigQuery

Production Environment

Agent Service Deployment Amazon ECS/EKS (containers), AWS
Lambda (serverless), Amazon
SageMaker Endpoints

Azure Container Apps (serverless
containers), Azure Kubernetes
Service (AKS), Azure Functions

Google Kubernetes Engine (GKE),
Cloud Run (serverless containers),
Cloud Functions

LLM APIs (Production Endpoints) Amazon Bedrock, SageMaker
JumpStart, self-hosted LLMs

Azure OpenAI Service, Azure AI
Studio

Vertex AI Gemini API, Vertex AI PaLM
API, custom models on Vertex AI

Vector Database (Production) Amazon OpenSearch Service with
vector engine, dedicated managed
third-party services

Azure Cosmos DB for PostgreSQL
(pgvector), Azure AI Search

Vertex AI Vector Search (managed
service)

Continued on next page

69
|Building

Autonom
ous,Resilientand

IntelligentAgentic
A
ISystem

s
ExternalD

ocum
ent@

2025
Infosys

Lim
ited

Table 10.1 – Continued from previous page

Conceptual Component AWS Equivalent Services Azure Equivalent Services Google Cloud Equivalent Services

Knowledge Store Amazon DocumentDB, Amazon
Neptune (graph), Amazon Aurora

Azure Cosmos DB, Azure SQL
Database

Google FireStore, Google CloudSQL,
Neo4J on GKE

Agent Memory Amazon ElastiCache (Redis for
short-term), Amazon DynamoDB
(long-term)

Azure Cache for Redis (short-term),
Azure Cosmos DB (long-term)

Memorystore (Redis for short-term),
Google FireStore / Google CloudSQL
(long-term)

Tool Invocation Proxy AWS API Gateway, Application Load
Balancer

Azure API Management, Azure
Application Gateway

Apigee API Management, Cloud
Load Balancing

Data Lake / Storage (Training Data,
Logs, Feedback)

Amazon S3 Azure Data Lake Storage Gen2 Google Cloud Storage

Monitoring and Logging Amazon CloudWatch, AWS X-Ray,
Amazon Managed Grafana

Azure Monitor, Application Insights,
Azure Log Analytics

Cloud Logging, Cloud Monitoring,
Cloud Trace

Alerting and Incident Management Amazon CloudWatch Alarms, AWS
Systems Manager OpsCenter

Azure Monitor Alerts, Azure Service
Health

Cloud Monitoring Alerts, Cloud
Operations

Responsible AI Monitoring Amazon SageMaker Clarify Azure Machine Learning
Responsible AI Dashboard

Vertex AI Explainable AI

Human-in-the-Loop (HITL) Custom UIs, Amazon Augmented AI
(A2I)

Custom UIs, Azure Machine
Learning Designer

Custom UIs, Vertex AI
Human-in-the-Loop

Security and Governance
(Cross-cutting)

Identity and Access Management
(IAM)

AWS IAM, AWS Organizations Azure Active Directory (Microsoft
Entra ID)

Google Cloud IAM

Network Security Amazon VPC, Security Groups,
Network ACLs, AWS WAF, AWS
Firewall Manager

Azure Virtual Network, Network
Security Groups (NSGs), Azure
Firewall, Azure DDoS Protection

Google Cloud VPC, Firewall Rules,
Cloud Armor

Audit Logging and Compliance AWS CloudTrail, AWS Config Azure Activity Log, Azure Policy,
Azure Security Center

Cloud Audit Logs, Cloud Asset
Inventory, Security Command
Center

Continued on next page

ExternalD
ocum

ent@
2025

Infosys
Lim

ited
Building

Autonom
ous,Resilientand

IntelligentAgentic
A
ISystem

s
|70

Table 10.1 – Continued from previous page

Conceptual Component AWS Equivalent Services Azure Equivalent Services Google Cloud Equivalent Services

Secrets Management AWS Secrets Manager, AWS
Parameter Store

Azure Key Vault Google Secret Manager

Feedback and Improvement Loop

Feedback Collection Custom web forms, internal tools, integration with ticketing systems (Hyperscaler-Agnostic)

Data Analysis and Insights Amazon Athena, Amazon Redshift,
Amazon QuickSight

Azure Synapse Analytics, Azure Data
Explorer, Power BI

Google Big Query, Looker, Google
Dataproc

Retraining Pipeline Amazon SageMaker Pipelines, AWS
Step Functions

Azure Machine Learning Pipelines Vertex AI Pipelines

New Agent Version Represents the output of the retraining pipeline, flowing back into the CI/CD process (Hyperscaler-Agnostic)

71
|Building

Autonom
ous,Resilientand

IntelligentAgentic
A
ISystem

s
ExternalD

ocum
ent@

2025
Infosys

Lim
ited

10.7 Security Considerations in Agentic AI

Integrate security, governance, and oversight from design through operations to address non-determinism,
autonomous tool use, and emergent multi-agent behaviors that traditional software controls do not fully cover
[59, 58]. Agentic systems plan and act dynamically; therefore controls must be embedded across layers—data
operations, agent frameworks, infrastructure, observability, and cross-agent interactions—to ensure reliability,
trust, and compliance [76, 62].

Agentic AI threat landscape and vulnerabilities

Multi-agent systems introduce novel attack surfaces from distributed decision-making, shared memory, and
inter-agent messaging [63]. Common risks include memory poisoning, agent-to-agent communication poisoning,
tool misuse, cascading hallucinations, and privilege compromise, often triggered by prompt injection, jailbreaks,
or deceptive reasoning propagation [58, 62]. Uncoordinated LLM use can also create “tragedy of the commons”
dynamics over shared resources, degrading performance and inflating costs across the system [77]. MAESTRO
provides a layered methodology to map threats across foundation models, data operations, agent frameworks,
deployment infrastructure, evaluation/observability, security/compliance, and the wider agent ecosystem,
including cross-layer risks unique to MAS [76, 63, 62]. OWASP GenAI resources complement this with concrete
attack classes such as prompt injection and defenses like least privilege, tool allow-lists, and human-in-the-loop
controls [59, 58]. The figure 10.1 synthesizes these perspectives into a comprehensive threat model for agentic AI
systems.

Figure 10.1: Proposed Agentic AI Threat Modeling

Core Technical Readiness for Agentic AI Security

Securitymust be embedded fromdesign through operations to address agent non-determinism, autonomous tool
use, and emergent behaviors that exceed traditional software threat models [58, 59]. A layered approach spans

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 72

sandboxed execution, permissioned autonomy, identity and secure communications, defense-in-depth controls,
continuous monitoring, and auditability [59, 78].

Secure, isolated, and sandboxed execution of AI agents Agents should run in tightly controlled sandboxes—
containers, microVMs, or WebAssembly runtimes—with explicit limits on CPU, memory, execution time, filesystem,
and network egress to contain blast radius and enforce least privilege [58, 76]. Runtime monitoring and anomaly
detection must track tool invocations, memory access, and outbound requests, with policy-as-code validating tool
calls and memory updates before execution [57, 56]. Defense can be strengthened with memory segmentation,
TTL on contexts, context-sensitive policies, and human-in-the-loop gates for high-risk actions as part of a
defense-in-depth architecture [58, 76].

Enforcing permissions and access control Permissioned autonomy requires brokering all agent actions through
governed gateways and enforcing RBAC with ABAC/CBAC overlays to capture context and risk in real time [57,
56]. Policy engines such as OPA, along with authorization systems like Cerbos or OpenFGA, help implement least
privilege, session isolation, and auditable decision trails across tools and data [57, 56]. Relationship-based access
(ReBAC) patterns can further scope authority in collaborative,multi-tenantworkflowswhere resourcegraphs inform
dynamic authorization [57, 58]. The table 10.2 summarizes common access policy models, their advantages, and
drawbacks in agentic contexts.

Model Description Pros Cons

DAC (Delegated Access Control) Users delegate access to
Agents/tools

Flexible, user-driven Risk of over-delegation, hard to audit

RBAC (Role-Based Access
Control)

Access based on predefined
roles

Scalable, easy to manage Static, lacks context sensitivity

ABAC (Attribute-Based Access
Control)

Access based on attributes (e.g.,
Agent type, time, location)

Fine-grained, dynamic Complex policy management

CBAC (Context-Based Access
Control)

Access based on runtime
context (e.g., task criticality, trust
score)

Adaptive, real-time Requires robust context modeling

Table 10.2: Advantages and drawbacks of access policy implementations

Non-human identity (NHI) management Autonomous agents and services require verifiable, managed identities
with assured provenance, granular authorization, and full lifecycle controls to prevent impersonation and
lateral movement [59, 56]. DIDs and Verifiable Credentials can establish identity assurance, while platforms
implementing just-in-time access, credential rotation, and revocation reduce standing privileges and audit gaps
[59, 57]. Monitoring identity behaviors, encrypting inter-agent communications, validating message integrity, and
applying rate limits further contain abuse and spoofing risks in multi-agent ecosystems [58, 59].

Communication security Frequent inter-agent interactions necessitate mTLS, mutual authentication, and
message integrity verification, with rate limiting and quota enforcement to mitigate abuse and resource
contention [58, 59]. Secure API access to LLMs and external tools should enforce allow-lists, scoped tokens, and
policy checks at invocation time to maintain permissioned autonomy and traceability [58, 57]. Where applicable,
identity/coordination standards and strong OAuth/OIDC patterns harden discovery and negotiation among agent
services [59, 56].

Robust Defense Mechanisms and Mitigation Strategies

A multi-layered defense-in-depth model should combine preventive, detective, and corrective controls across the
agent lifecycle [58, 76]. Session isolation with context-aware policies, dynamic trust scoring, anomaly detection,
andwatchdog agents can identify goalmanipulation, cascading hallucinations, and toolmisuse in real time [76, 59].

73 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

Red teaming and adversarial testing probe prompt-injection and jailbreak vectors before release and continuously
in production to sustain safety as behavior drifts [58, 65]. Continuous monitoring via evaluation harnesses and
observability tools should capture decision logs, tool usage, token consumption, and outcome metrics to trigger
remediation and retrainingworkflows [59, 75]. Maintaining anAI Bill ofMaterials (AIBOM) catalogs datasets, models,
tools, and dependencies for transparency, impact analysis, and regulatory traceability [78, 79].

Poly-AI architecture and vendor flexibility

Poly-AI and poly-agent designs reduce lock-in and enable risk-aware model/tool selection while standardizing
interfaces and policy enforcement across providers [70, 71]. This architectural flexibility, governed by AgentOps
and policy-as-code, supports cost, security, and performance optimization as the ecosystem evolves [75, 57].

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 74

11 FinOps

11.1 FinOps: Financial Management for Agentic AI

Thewidespread adoption of agentic AI requires specialized financial operations to control volatile token-based and
GPU-driven costs, especially across multi-cloud and poly-AI environments [80, 81, 82]. FinOps must be embedded
into the AI lifecycle so feature launches and user ramp-ups proceed with cost guardrails, anomaly detection, and
accurate forecasting [80, 83].

Key cost drivers in agentic AI

Agentic AI expenses grow with inference tokens, GPU utilization, multi-agent orchestration overhead, memory
retrieval, continuous monitoring, and retraining; left unmanaged, these drivers destabilize adoption budgets [82,
80]. Studies show token optimization and caching can reduce inference spend by 20-40% and, in some cases, by an
order of magnitude for repetitive workloads, enabling broader rollout within fixed budgets [84, 83].

Strategies for cost optimization

A comprehensive FinOps strategy should focus on:

• Model selection & usage optimization: Choose models by cost-performance; apply prompt engineering and
token/caching strategies; route routine traffic to smaller models to cut spend [84, 85].

• Resource management & scaling: Use autoscaling, batching, and serverless to avoid over-provisioning and scale
to zero when idle [80, 83].

• Workflow optimization: Streamline multi-agent collaboration, avoid redundant calls, and cache frequent queries
and retrievals [83, 84].

• Infrastructure efficiency: Containerize and orchestrate with Kubernetes; align regions and hardware to
latency/SLO needs and pricing [81, 82].

• Lifecycle budgeting: Forecast full AI lifecycle costs (monitoring, retraining, compute, APIs) and tie adoption gates
to unit-economics KPIs [86, 81].

Multi-cloud considerations & implementation

Adopt a poly-AI, poly-agent architecture to avoid lock-in and route workloads to the most cost-efficient models
and regions while maintaining interoperability and governance [82, 81]. Implementation includes selecting
hyperscaler AI/ML platforms, provisioning scalable vector stores, enforcing secure API access and data governance,
and deploying real-time monitoring and alerting to catch inefficient operations [81, 82].

75 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

11.2 Process Integration into Business Workflows

Successful embedding of agentic AI hinges on mapping high-value use cases to workflows, managing non-
determinism, and aligning cost guardrails with performance and risk constraints throughout adoption waves
[80, 86]. Joint FinOps-product governance ensures feature ramps and cohort sizing meet budget, SLO, and
compliance objectives [81, 82].

11.3 Understanding Enterprise Workflows and Challenges

AI agents introduce non-deterministic behavior, dynamic plans, and complex runtime artifacts, raising risks in
reliability, security, evaluation, and cost; standardized testing, lifecycle management, AIBOM, and comprehensive
observability are often immature and costly to operate at scale [80, 84]. FinOps instrumentation (labels, scopes,
FOCUS) is needed to attribute spend across services and teams as adoption grows [82, 81].

11.4 Identifying High-Value Use Cases for ROI

Prioritize domains where autonomy reduces cycle time and handoffs under defined latency, ethics, and security
constraints; quantify ROI with outcome-based cost metrics (e.g., cost per case or claim) to govern scale-out [86, 80].
Use cost-aware model routing and prompt optimization to keep unit costs aligned with value capture as usage
expands [84, 83].

11.5 Case Studies in Enterprise Adoption

Early deployments concentrated on coding copilots and chat support; recent examples show material operational
gains with disciplined rollout and cost controls [87, 88].

• Customer Support Automation: Infosys analyzed and prepared Finnair’s knowledge data to be AI-ready
and deployed Salesforce agentic AI on the customer portal, autonomously resolving queries and improving
operational efficiency, achieving over 35% automation with 80% first-time resolution, significantly reducing call
center workload and improving customer satisfaction.

• Financial Audits: A leading global audit firm integrated LangSmith and Grafana dashboards to automate financial
audits, improving AI justification quality by 45% and reducing false escalations by 38%.

• IT Service Desks: A Fortune 500 company deployed an agentic AI assistant to handle IT service desk requests,
automating a significant portion of routine tasks.

• Claims Processing: An AI agent was implemented to automate insurance claims processing, focusing on metrics
like LLM Call Error Rate, Task Completion Rate, and Number of Human Requests to improve performance,
compliance accuracy, and resource utilization.

• Tax Audit: An AI audit agent at an accounting firmwas optimized by analyzingmetrics like Total Task Completion
Time, TokenUsageper Interaction, andNumber ofHumanRequests to addressworkflowbottlenecks and improve
efficiency.

• Stock Analysis: An investment firm improved its AI-enhanced analysis service by focusing on metrics such as
Total Task Completion Time, Output Format Success Rate, and Token Usage per Interaction, enhancing efficiency,
reporting, and resource use.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 76

• Coding Assistance: A software development company improved its AI coding assistant by optimizing LLM Call
Error Rate, Task Success Rate, and Token Usage per Interaction, enhancing reliability and productivity.

• Lead Scoring: An agent was enhanced by analyzing Token Usage per Interaction, Latency per Tool Call, and Task
Success Rate to improve efficiency and lead quality assessment.

• Healthcare: Oracle Health developed its Clinical AI Agent to automate documentation and enhance patient-
provider interactions, resulting in a 41% reduction in documentation time. CommBank leverages agentic AI to
process payment disputes, automating verification and lodging.

• Newsroom Empowerment: Magid integrated real-time observability using Galileo for their RAG-based system,
achieving 100% visibility over inputs and outputs and enhancing content accuracy.

• Travel Planning: Waynabox partnered with CrewAI to transform travel planning by automatically generating
tailored itineraries based on real-time data and preferences.

• Supply Chain Forecasting: Levi Strauss implemented agentic AI for granular demand forecasting, autonomously
adjusting inventory based on real-time demand signals.

Effective integration requires continuous optimization tied to business targets and human oversight, using shared
dashboards to manage the balance of accuracy, latency, and cost during scale-up [80, 81].

77 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

Part IV

Scaling, Performance &
Quality

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 78

12 AgentOps (Agentic Lifecycle
Management)

Agentic LifecycleManagement (AgentOps) is a specialized discipline and framework crucial for the successful large-
scale deployment and management of autonomous intelligent agent systems in enterprises [89]. It is designed to
ensure that AI agents are built effectively and operate reliably, transparently, and efficiently in dynamic, real-world
environments [89].

12.1 AgentOps as Specialized DevOps

AgentOps is defined as a specialized DevOps paradigm specifically tailored for Large LanguageModel (LLM) agents.
Its primarygoal is to enable observability, providing stakeholderswith actionable insights into the internalworkings
of agents [89, 90]. This observability is essential for ensuringAI safety, allowing for proactive understandingof agent
behavior, detection of anomalies, and prevention of potential failures [89].

AgentOps builds upon the established principles and practices of:

• DevSecOps: Focuses on software development with integrated security [89].

• MLOps: Manages the lifecycle of machine learning models [89].

• LLMOps: Addresses the operational complexities specific to large language models [89].

Unlike simpler models, agentic systems incorporate planning, reasoning, and autonomous decision-making,
leveraging memory and contextual knowledge to navigate complex interactions [89]. AgentOps extends the
scope of these existing disciplines to integrate tools and governance measures that reflect these complexities,
providing seamless management and ensuring agents operate efficiently, adapt dynamically, and stay aligned
with enterprise goals while maintaining operational integrity [89, 90].

The shift from LLMOps to AgentOps expands the scope, complexity, and lifecycle imperatives, necessitating amore
comprehensive approach to management [89].

12.2 AgentOps Lifecycle Phases

The AgentOps framework encompasses the entire lifecycle of agentic systems, from conception to retirement,
streamlining the process and contributing to their scalability, transparency, and effective management [89].

79 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

Define and Design

This foundational phase is paramount for embedding responsibility and aligning with human values right from
the outset, making AI responsibility an inherent part of the architecture rather than an afterthought [89]. It
involves meticulously defining clear functional and non-functional objectives, such as performance, security, and
compliance [89]. The design must explicitly address safe operations, transparency, and accountability for every
decision and action an agent takes [89].

Key mechanisms are integrated into this phase, including Human-in-the-Loop (HITL) interventions to guide and
provide feedback, and a crucial ”big red button” (human override capability) to halt the system if necessary [89]. A
rigorous design review is essential to verify reliability, security, and safety before proceeding to workflow and task
mapping [89].

During this phase, Large Language Models (LLMs) are integrated with various data sources, connectors, tools, and
plugins to enhance agent capabilities, and agents should maintain a dynamic registry of available tools and APIs
[89]. A critical design consideration is implementing restrictions or strict validations on user prompts to prevent
unintended behaviors [89]. Furthermore, secure and safe development practices are fundamental to mitigate
vulnerabilities and safety risks [89].

A mature design practice includes generating an AI Bill of Materials (AIBOM), which catalogs all software, hardware,
datasets, tools, dependencies, and interactions, ensuring transparency and aiding regulatory adherence [89].
Continuous risk assessments, security incident response planning, and compliance checks are also integral
components of this design stage [89]. The reflection design pattern can be employed to enable LLMs to evaluate
their own outputs, thereby fostering a cycle of self-improvement [89].

Testing and Evaluation

This is a critical phase, often identified as a primary barrier to trustworthy deployment by a significantmajority of AI
practitioners [89]. It begins with defining specific success metrics and developing rigorous evaluation strategies to
ensure the system’s reliability, effectiveness, efficiency, adaptability, ethical adherence, and regulatory compliance
[89].

Quality engineering plays a crucial role in designing comprehensive test plans and creating simulated real-world
environments to accurately assess agent behavior [89].

A dual testing approach is highly recommended to provide a holistic view of performance:

• Vertical testing focuses on individual agents, assessing metrics like successful task completions, tool selection
accuracy, mean time to complete tasks, SLA adherence, and human intervention frequency [89].

• Horizontal testing evaluates the entire end-to-end agentic process, measuring overall system performance [89].

Key performance metrics for end-to-end testing include tool utilization efficacy, memory coherence and retrieval,
strategic planning index, and component synergy score [89]. Evaluation methods incorporate automated
assessments, agent-as-judge evaluations (where another AI model assesses outputs), LLM-assisted evaluations,
and human oversight [91]. It is emphasized that monitoring execution steps and intermediate outputs is as crucial
as evaluating the final output to understand the agent’s full trajectory [89].

The Socio-Technical Evaluation Matrix (STEM) offers a unique framework to assess both technical performance
and societal impact, covering aspects like ethical alignment and adversarial robustness [92]. Tools like LangSmith
and Galileo can significantly accelerate this process by providing evaluation tracking and real-time monitoring
capabilities [93].

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 80

Deployment

Once an agentic AI system meets all required evaluation criteria and resolves any outstanding issues, it is ready for
production release [89]. This involves integrating the agent into the production environment with all necessary
tools and APIs for real-world interactions [89]. Implementing identity management solutions—such as HashiCorp
Vault, AWS Secrets Manager, or Azure Key Vault—is crucial for agents to securely manage credentials for external
tools and APIs [89].

Proper infrastructure sizing is paramount to support auto-scaling, handle high data volumes, ensure low latency,
reliability, high availability, security, data privacy, and optimize costs [89]. Agentic components are typically
deployed as container workloads, managed by orchestrators like Kubernetes, which provide built-in resiliency and
auto-scaling capabilities [89]. The decision between hyperscaler and private cloud deployment often hinges on
specific security and regulatory requirements [89].

Automated provisioning pipelines, following Infrastructure-as-Code or Infrastructure-from-Code models, are
established to streamline the process [89]. Continuous delivery pipelines automate agentic component
deployment using strategies like blue-green or canary releases to minimize disruption [89]. The performance of
the deployment is rigorously measured using DORA metrics, which include deployment frequency, change lead
time, change failure rate, mean time to recovery, and service level objective adherence [89].

Observe and Improve

Establishing a robust framework and toolchain for end-to-end observability, traceability, and debuggability
is essential before the system is released into production [89, 90]. These capabilities are critical for ensuring
transparency, enhancing credibility, and providing a comprehensive understanding of the agent’s internal state,
behavior, tool invocation, interactions, knowledge retrieval, and decision-making throughout its entire lifecycle
[90].

• Observability provides deep insights into how an AI agent or system functions internally and interacts with its
environment. This involves continuous monitoring of system metrics, prompt/response content, performance
indicators like latency and cost, and using dashboards to display real-time logs and metrics [90, 93].

• Traceability ensures transparency by meticulously tracking an agent’s decision-making processes, interactions,
and outcomes. This includes capturing decision logs, managing version control of dynamic components, and
ensuring reproducibility to demonstrate how decisions were reached [89].

• Debuggability focuses on rapidly diagnosing and resolving production issues to minimize the mean time to
resolution, with workflow debuggers and scenario simulation [89].

Continuous learning is fundamental for maintaining long-term effectiveness of agentic systems, requiring
knowledge base updates, regular performance audits, and refinement of behavior based on observed actions [89].

Human feedback integration is particularly critical for continuous refinement, enabling human reviewers to
examine logs and label decisions, thereby creating high-quality data for fine-tuning agents or updating their
heuristics [89]. Tools like Phoenix, often integrated with Arize, offer comprehensive observability across the LLM
lifecycle, including production monitoring, latency tracking, and alerts [93].

12.2.1 Reliability Solutions Playbook

This playbook operationalizes recurring reliability risks with concrete mitigations aligned to AgentOps phases and
telemetry [89]. It is organized by four problem areas observed in agentic systems and ties directly to observability,
testing, and guardrails defined in this chapter [89].

81 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

Long-Context Failure

• L1 Working Memory: enforce thread-scoped working memory with bounded summaries; monitor context-
window pressure and token usage per interaction; alert on truncation events [89].

• Contextual Scaffolding: dynamically restructure prompts with retrieval-aware summaries and plan headers to
reduce irrelevant context; validate with memory coherence metrics [89].

• L3Archive: persist episodic/semantic/procedural long-termmemory; route largehistories through retrieval rather
than direct inclusion; audit read/write traces [89].

Brittle Planning

• ReAct Framework: adopt iterative reason-act loopswith tool observations recorded for traceability; cap stepcount
and enable loop breakers [89].

• Plan-and-Execute: separate global plan synthesis from execution; replan on low-confidence or failed steps;
escalate via HOTL autonomy dial [89].

• Self-Correction Loops: add reflection/evaluator passes to detect errors and auto-recover; log revisions for
postmortems [89].

Fragile Tool Use

• Few-Shot Learning: embed successful tool-call exemplars and argument schemas in prompts; measure
tool-selection accuracy and latency per call [89].

• Constrained Output: enforce JSON schemas for actions; perform pre-execution validation and safe defaults on
violation [89].

• Tool-Specific Fine-Tuning: calibrate domain tools and add verification layers for result interpretation; gate critical
actions with HITL [89].

Hallucination Risk

• L2 Knowledge Graph: ground reasoning on curated entities/relations; track citation coverage per claim [89].

• RAG + Source Citation: require source-linked answers with retrieval traces; compute context-adherence and
hallucination rate [89].

• Multi-Agent Validation: add independent reviewer/checker agents or LLM-as-judge before release in high-risk
flows [91].

Instrument all items with OpenTelemetry traces, success/failure labels, and cost/latency metrics [90].

12.3 Tools and Frameworks for AgentOps

The AgentOps tool landscape constantly evolves, covering building blocks across lifecycle phases [89, 93]:

• Design frameworks: LangChain, LangGraph, AutoGen, CrewAI for workflow architectures, tool-integration, and
memory management [89].

• Evaluation tools: RagaAI, Braintrust, Databricks Mosaic AI Agent Evaluation, Okareo, Giskard, and Agent-as-a-
Judge methods. Platforms such as Galileo, Phoenix also enhance evaluation robustness [91, 93].

• Security and Compliance Testing: Tools like CalypsoAI, Wiz, Zenity, and Giskard for scanning, OWASP AI standards,
and compliance checks [89].

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 82

• AIBOM generation: Tools include Wiz, OWASP, and Manifest. Lack of mature standards persists in this area [89].

• Observability and Debugging: AgentOps.AI, LangSmith, Arize, Langfuse, Braintrust. Arize Phoenix specializes in
RAG system monitoring; Fiddler AI in LLM performance monitoring [93].

• End-to-End Lifecycle Management: Platforms like AgentOps.AI, Arize, and Braintrust combine project
management, integration, rollout, and observability in one suite [89].

Despite progress, notable gaps remain. There is still no standardized global evaluation framework or universally
adopted platform managing the whole agentic lifecycle [89]. Additionally, comprehensive real-time monitoring
remains highly resource-intensive and cost-heavy, requiring strong alignment with FinOps principles [89].

83 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

13 Evaluating Agent Performance & Quality

As autonomous intelligent agents become increasingly integrated into critical business processes, rigorously
evaluating their performance and quality is paramount to maintaining user trust and operational efficiency [91].
This involves a comprehensive approach that moves beyond traditional software testing to address the unique
complexities of AI agents, which can exhibit non-deterministic and adaptive behaviors [91].

Ensuring the accuracy and reliability of AI agents is a critical challenge in their large-scale adoption [91]. Unlike
simpler AI models confined to single tasks, agentic AI systems are characterized by their decision-making and
adaptive behaviors, introducing significant risks if they behave unexpectedly [91]. Without proper oversight and
continuous evaluation, an autonomous agent could deviate from its intended goals, produce biased or incorrect
outputs, or expose security vulnerabilities, leading to business or ethical failures [91].

Many existing evaluation methodologies are often too simplistic or context-dependent, which can inadvertently
mask shortcomings in an agent’s true performance [91]. This lack of rigorous, standardized evaluation
methodologies is identified as a primary barrier to trustworthy deployment by a significant majority-72%—
of AI practitioners [91].

Effective evaluation is crucial for proactively identifying weaknesses, preventing errors from escalating, and
ensuring agents operate reliably in dynamic, real-world environments [91]. Beyondmerely confirming functionality,
evaluation plays a vital role in risk assessment, operational control, safe deployment strategies, and establishing
clear accountability for agent actions [91].

A structured framework for evaluation, integrating various dimensions like infrastructure surveillance, prompt-
response monitoring, performance tracking, and human feedback, is essential for organizations to maintain tight
control over their AI systems, allowing for continuous refinement and robust risk mitigation [91].

13.1 Success Metrics & KPIs

The foundation of any robust evaluation process for agentic AI systems lies in defining clear and measurable
success metrics [91]. A comprehensive approach to assessing agent performance must extend beyond simple
linguistic accuracy to encompass a broader spectrum of indicators, including task success rate, adaptability,
context awareness, and overall human satisfaction [91].

The absence of universally accepted benchmarks for agentic systems makes it challenging to compare different
solutions or track progress consistently [91]. Thus, developing domain-specific benchmarks andmulti-dimensional
evaluation frameworks is necessary to account for the diverse functionalities and behaviors of LLM-powered agents
[91].

System Metrics (Latency, Cost, Resource Usage): Monitoring efficiency and resource consumption is vital for cost
management and scalability [93]. Indicators include:

• Latency: Time taken for an agent to process a request. Timestamped logs enable precise measurement [93].

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 84

• Throughput: Number of tasks an agent processes per minute [93].

• Resource Utilization: Efficiency of CPU, GPU, memory usage. Overconsumption leads to latency and higher costs
[93].

• Cost: Includes token usage and per-interaction costs. Vital efficiency metric: Token Usage per Interaction [93].

• Reliability Metrics: Mean time between failures (MTBF) and mean time to resolution (MTTR) [93].

Task Completion (Success Rate, Steps per Task):

• Task Success Rate: Percentage of goals achieved without human intervention [91].

• Steps per Task: Efficiency indicator reflecting the number of discrete operations per task [91].

Quality Control (Accuracy, Relevance, Format Success):

• Accuracy and Relevance: Comparing agent outputs to human references using cosine similarity, BLEU scores, or
a Context Adherence Score [91].

• Output Format Success Rate: Tracks adherence to expected formatting and presentation standards [91].

• Hallucination Rate: Real-time tracking of biases and inaccuracies [91].

Tool Interaction (Selection Accuracy, Latency per Call):

• Tool Utilization Efficacy: Measures correct choice and usage of tools [91].

• Tool Selection Accuracy: Examines appropriateness of tool choice for task requirements [91].

• Latency per Tool Call: Time delay between request submission and response return [91].

• Challenges include incorrect parameter passing, misinterpretation of results, failed integrations [91].

Industry and Business-Facing KPIs: To better capture business outcomes impacted by agentic AI systems,
incorporate relevant KPIs based on the domain context [91].

In Services-AI environments:

• Requirements Stability Index: Measures how stable and well-defined project requirements are over time [91].

• Design Quality Index: Assesses adherence to design standards and best practices [91].

• Developer Productivity: Tracks efficiency and output quality of AI development teams [91].

• Test Coverage: Percentage of code and scenarios covered by automated tests [91].

In Client-AI or CRM contexts:

• Call Center Agent Productivity: Improvement in agent handling capacity and customer interactions [91].

• Sales Win Rates: Increase in conversion rates and closed deals attributed to AI support [91].

• Time to Market: Reduction in product or service deployment cycles enabled by agents [91].

• Overall Productivity Improvements: Broader efficiency gains across workflows and teams [91].

85 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

13.2 Evaluation Methodologies

Effective evaluation requires rigorous strategies and processes involving a combination of telemetry, automated
metrics, and human oversight [91]. The methodology typically includes preparing evaluation datasets, defining
success criteria, and structured testing [91].

• LLM-as-a-Judge: Uses a separate LLM to evaluate outputs; expanded to Agent-as-a-Judge to assess intermediate
steps and decisions [91].

• Benchmarks and Real-World Scenarios: Domain-specific benchmarks and simulations reflect real-world
complexity; sandboxed testing is recommended before live deployment [91].

• Dual Testing (Vertical and Horizontal):

– Vertical Testing: Evaluates individual agents using task success, SLA adherence, tool accuracy, MTTR [91].

– Horizontal Testing: Evaluates end-to-end multi-agent workflows for collective performance [91].

Worked Examples

• Testing Long-Context Controls: Stress-test beyond context windows; verify summary compression, retrieval
hit-rate, and correctness under context swapping [93].

• Planning Robustness: Compare ReAct vs. plan-execute; measure steps-per-task, loop-abort rate; require
HOTL escalation on low confidence [91].

• Tool Reliability: Schema fuzz arguments; use golden outputs and latency budgets; track tool-selection
accuracy and rollback efficacy [91].

• Hallucination Control: Require citations; compute citation-coverage; run retrieval-ablation; pair LLM-as-
judge with human spot checks [91].

13.3 Observability, Traceability, and Debuggability

Building a framework for observability, traceability, debuggability is indispensable for deployment readiness [93].
These capabilities enhance transparency and allow system introspection across the lifecycle [93].

• Observability: Continuous monitoring of performance metrics (latency, cost, token usage) and logs; tools:
LangSmith, Galileo, Phoenix, Arize [93].

• Traceability: Decision logs, prompt/rule versioning, reproducibility and audit trails [93].

• Debuggability: Workflow debuggers, log snapshots, scenario simulations; visualization of reasoning traces [93].

13.4 Integrating Human Feedback

The final and arguably most critical layer of evaluation is integrating human feedback to continually refine the
agent; autonomous does not mean unattended [91]. Human feedback methods—explicit ratings and qualitative
critiques alongside implicit signals—feed improvement cycles and policy checks [91]. Periodic reviews of decision
logs create high-quality labels for fine-tuning and heuristic updates, while HITL/HOTL arbitration preserves control
over judgment-intensive decisions [91].

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 86

14 Troubleshooting & Performance Tuning

Agentic AI systems are increasingly integrated into critical business processes, offering immense potential for
business efficiency and innovation [94]. However, their ability to pursue complex goals and workflows with
minimal human supervision also introduces inherent complexities and potential risks if the agent behaves
unpredictably [60]. Unlike traditional rule-based or reinforcement learning systems, Large Language Model
(LLM)-powered agents offer greater adaptability but introduce distinct challenges, such as high inference latency,
output uncertainty, and the absence of standardized evaluation metrics [94].

Successfully developing a framework for AI agents requires significant effort and often the establishment of a
specialized platform engineering team [94]. Many AI agents do not deliver the anticipated outcomes despite
their considerable potential. It is crucial to understand the underlying reasons behind these challenges to ensure
successful deployment and continuous improvement [60].

One significant contributing factor to operational challenges is the non-deterministic nature of LLM-powered
agents [60]. Unlike conventional deterministic enterprise systems that follow set rules, AI agents dynamically plan
action sequences and adapt their behavior as inputs evolve. This dynamism, while enabling powerful capabilities,
also means agents can produce varied outputs even with identical inputs, making their behavior less predictable
[94].

The operational pipelines of agentic systems are inherently complex, integrating LLMs with various components
and dynamically generating runtime artifacts like goals and plans [94]. This complexity, combined with dynamic
interaction with external environments, increases the risk of unintended behaviors. Additionally, uncoordinated
usage of LLMs in multi-agent systems can lead to a “tragedy of the commons,” potentially overconsuming shared
computational resources, which drives up costs and degrades performance across the system [60].

Furthermore, in high-stakes applications, uncertain or unreliable outputs, including hallucinations, pose significant
concerns [94]. The general lack of standardized benchmarks and evaluation metrics for agentic systems makes it
difficult to compare different solutions and ensure reliability in real-world scenarios [94]. There are also security
and privacy concerns, such as susceptibility to attacks like jailbreaking and prompt injection, which can lead to
the generation of harmful content or data leakage [60]. Successfully overcoming these obstacles is vital for the
next generation of AI agents to deliver accurate, context-aware outputs and effectively automate processes in an
enterprise setting [94].

Operational challenges in agentic AI systems can stem from various stages, including development, issues intrinsic
to Large LanguageModels (LLMs), andproductiondeployment [94]. Understanding these areas helps in proactively
addressing potential performance limitations [60].

14.1 Development-Related Considerations

• Ambiguity in Task Definition or Agent Persona: A clear and well-defined task or persona is fundamental for
effective agent operation. Without explicit objectives, constraints, and expected outcomes, agents may struggle
to make appropriate decisions, leading to suboptimal performance [94].

87 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

• Evaluation Limitations: Evaluating agent performance is challenging due to operation in dynamic environments
with complex interactions, making it difficult to establish clear metrics for success; many practitioners cite lack of
rigorous methodologies as a key barrier [94].

• GuidanceChallenges: Steering LLMs towards specific tasks canbeunpredictable; hierarchical designs, specialized
prompts, and continual fine-tuning on task data help stabilize behavior [60].

14.2 LLM-Specific Considerations

• Elevated Operational Costs: Inference is resource-intensive; control costs via minimal context, smaller models
where feasible, batching, and serverless elasticity [60].

• Planning Difficulties: Break down tasks, synthesize candidate plans, and replan on low confidence to improve
reliability in multi-step tasks [94].

• Reasoning Limitations: Use feedback fine-tuning, reasoning chains, ensembles, or specialized agents to
strengthen multi-step reasoning [94].

• Tool Interaction Challenges: Mitigate with strict schemas, argument validation, and verification layers on tool
results [60].

14.3 Production-Related Considerations

• Guardrail Management: Combine filters, validation, policy checks, and HITL for safety and compliance in
production [90].

• Agent Scalability: Design for elastic scaling and real-time telemetry to maintain SLOs under variable load [90].

• Resilience and Recovery: Employ redundancy, retries with jittered backoff, self-healing pipelines, and
orchestrators like Kubernetes [90].

• Persistent Looping: Prevent with termination conditions, confidence thresholds, and loop-breakers in planners
[60].

14.4 Strategies for Resilience & Continuous Improvement

Key Strategies for Robustness and Continuous Improvement

• Continuous Evaluation and Feedback Integration: Automate tests, mix LLM/agent-as-judge with human review,
and close feedback loops into training and rules [94].

• Robust Safety Measures and Guardrails: Layer preventive, detective, and corrective controls; addmoderation and
privacy protections [90].

• Enhanced Observability and Monitoring: Instrument traces/metrics/logs; use dashboards and alerts to surface
inefficiencies and bottlenecks [90].

• Improved Planning and Reasoning: Apply task decomposition, reflection/self-correction, and ensemble
reasoning to reduce errors [60].

• Optimized Tool Interaction: Define clear parameters and verification checks for tool outputs [60].

• Scalable and Resilient Architecture: Engineer for redundancy and recovery; leverage orchestration for stateful
resilience [90].

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 88

• Balanced Automation with Human Oversight: Maintain HITL/HOTL and a “big red button” override for judgment-
intensive scenarios [94].

By combining these strategies, organizations can build powerful, trustworthy, adaptable, and enterprise-ready
intelligent agents [94]. Strategic adoption today will position organizations to reap long-term benefits from AI
systems [60].

Reliability Cheatsheet

Symptom -> Action
• Plan loops -> enable plan-execute split, cap steps, add self-correction; escalate via HOTL when confidence is
low [60].

• Spurious facts -> enforce Enhanced RAG with source citation and/or knowledge-graph grounding; add
reviewer agent [94].

• Tool 4xx/5xx -> schema validation, retries with jittered backoff, safe defaults/rollback [90].

• Context loss -> tighten summaries, move history to archive+RAG, monitor truncation [60].

• All actions must emit traces and alerts through AgentOps dashboards for detection and MTTR [90].

89 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

Part V

Future Outlook

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 90

15 The Internet of Agents and Emerging
Trends

15.1 Vision of the Internet of Agents

The rapid advancements in AI agents are paving the way for a new computing paradigm known as the Internet
of Agents (IoA)[95], or the open agentic web. This vision anticipates a future where AI agents can autonomously
make decisions and perform tasks on behalf of users or organizations, collaborating seamlessly across individual,
organizational, team, andend-to-endbusiness contexts[21]. The IoA is conceptualized as anew, secure connectivity
layer that extends beyond the current cloud-native internet, enabling quantum-safe, agent-agent collaboration on
a global scale.

The necessity for the Internet of Agents stems from the limitations of current agent frameworks and the increasing
complexity of tasks that demand collaboration among diverse, distributed agents [96]. Unlike simpler AI assistants
that rely on singular foundation models, the IoA facilitates ensembles or compositions of Multi-Agent Applications
(MAAs) that can collaborate across vendor boundaries and the internet to tackle larger, more ambiguous
workflows[95, 20]. This represents an evolution from simple AI agents (scale-up) to multi-agent applications
(scale-out) and ultimately to internet-scale compositions of MAAs.

The Internet of Agents is structured upon three interconnected layers, each with a distinct purpose:

• AI-nativeAgenticApplications (TopLayer): This layer encompasses awide spectrumof applications, frombusiness
workflowautomation (e.g., Salesforce Agentforce [20]) and scientific discovery to social interaction and embodied
robotic workflows [95, 21]. Specialized AI agents collaborate across domains like software development and drug
discovery [95].

• Agent Communication Platform (Foundational “Waist”): This layer provides the fundamental protocols and
standards for how AI agents discover, authenticate, and interact[95, 96]. It deals with non-deterministic intent,
probabilistic outcomes, goal-loop prevention, and large state exchanges. Examples include Microsoft’s Model
Context Protocol (MCP) and NLWeb as a conversational interface for web.

• AI and Quantum-Safe Infrastructure (Foundational Layer): This base layer delivers secure, scalable computational
power and networking, with quantum-resistant measures built-in for trust and resilience against emerging
threats[95, 21].

AGNTCY is a concise operational framework for Agentic Governance, Networking, Tooling, Composition, and Yield
that codifies lifecycle phases and responsibilities for Internet-of-Agents deployments. The IoA vision realization
involves four critical phases identified by the AGNTCY framework:

• DISCOVER: Focuses on finding and evaluating agents using standardized metadata and reputation systems [29].
Frameworks like Cisco’sDAWN introduceGatewayAgents thatmanage registries of tools, agents, and applications.

• COMPOSE: Concerns connecting agents into effective workflows across frameworks and vendors. Involves
wrappers, protocols, and frameworks like LangGraph, AutoGen, and CrewAI enabling hierarchical, sequential,

91 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

and dynamic patterns[20, 25, 2].

• DEPLOY: Involves running multi-agent systems securely at scale[29]. Typically implemented with orchestrators
such as Kubernetes for resiliency, auto-scaling, and infrastructure optimization. Includes identity management
and cost controls[16].

• EVALUATE: Dedicated to performance monitoring and optimization[29]. AgentOps plays a central role, providing
observability, traceability, and debuggability. Tools like LangSmith and Galileo enable monitoring token usage,
costs, latency, and user feedback[29, 22].

AGNTCY’s SLIM (Secure Low-Latency Interactive Messaging) facilitates communication between AI agents. It
supports various communication patterns such as request-response, publish-subscribe, fire-and-forget, and
streaming. Built on the gRPC framework, SLIM ensures secure and scalable interactions among agents.

A secure IoA ecosystem demands safeguards like defense against prompt injection, jailbreaking, knowledge
poisoning, robust guardrails, and HITL mechanisms for oversight, especially in critical scenarios.

15.2 Evolution to AGI and Superintelligence

Looking ahead, the ultimate potential of AI agents involves achieving complete autonomy, leading to Artificial
General Intelligence (AGI) or even artificial superintelligence [45, 44]. This advanced AI tier would possess the
capacity for original research, reasoning through complex problems, and developing innovative solutions beyond
training data [45, 97]. These agents would continuously acquire new skills, refine methodologies, and tackle
previously unsolved challenges via adaptive learning and reasoning [44].

While predictions vary, optimistic timelines suggest arrival between 2026 and 2029 [50, 97]. This shift represents a
fundamental leap in AI capabilities with vast implications for science, business, and society [45].

15.3 Advanced Research Techniques

Active research areas driving progress towards powerful agentic systems include:

• Automated Design of Agentic Systems (ADAS): Involves AI-driven meta-agents autonomously generating and
refining new agents, enabling recursive improvement and discovery of novel architectures [71, 98].

• Self-Provisioning and Deployment: Agents autonomously configure infrastructure resources and optimize
deployments based on workload demand [71].

• Self-Observing and Self-Regulating Agents: Capable of monitoring and supervising their own actions, ensuring
alignment with ethical and performance goals [48].

• Ensemble Methods: Techniques such as LLM debates, agent forests, mixtures of agents, and majority voting that
combine outputs for improved reasoning reliability [46, 98].

15.4 Future of AgentOps

As agentic AI penetrates critical operations, AgentOps will become indispensable [89]. Evolving from an emerging
concept into a core enterprise discipline, AgentOps will:

• Enhance scalability, reliability, and self-regulation of agent systems [89].

• Integrate advanced design, deployment, and monitoring frameworks [90].

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 92

• Support standardized protocols for transparency and interoperability across heterogeneous agents [90].

AgentOps ensures sustainable deployment by managing the end-to-end lifecycle — encompassing design,
evaluation, deployment, observability, and continuous refinement [89]. While the supporting ecosystem is still
maturing, adoption of AgentOps will be pivotal in ensuring ethical and enterprise-aligned agent management
[89].

15.5 Standardized Protocols and Interoperability

To achieve seamless integration across AI ecosystems, industry-wide standardized protocols will be key [90]. Such
protocols strengthen:

• Event tracing, system visibility, and operational control monitoring for transparency [90].

• Seamless integration with enterprise systems, via standardized APIs and protocols [47].

• Inter-agent collaboration frameworks, enabling smooth coordination among AI agents in multi-step, complex
workflows [71].

Frameworks aiding interoperability today include LangChain, LlamaIndex, MetaGPT, AutoGen, and CrewAI [47, 71].
Cisco’s DAWN employs open protocols for inter-agent communication, using natural language specifications and
API descriptors as common mediums [49]. The establishment of robust communication frameworks will enable
truly collaborative and globally interconnected agent ecosystems [90].

93 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

16 Navigating the Future of Agentic AI

This chapter explores the persistent challenges and critical considerations that must be addressed for the
responsible and successful widespread adoption of Agentic AI systems [53]. It delves into the evolving governance
frameworks and ethical imperatives guiding their development and deployment, and outlines the strategic path
forward for enterprises to fully harness the transformative potential of these autonomous intelligent systems [58].

16.1 Addressing Persistent Gaps

Despite their transformative potential, agentic AI systems face several persistent challenges that require ongoing
research and development for robust enterprise adoption [94]. A primary concern is their non-deterministic
and unpredictable behavior, which can lead to varied outputs even with identical inputs [60]. Unlike traditional
deterministic enterprise systems, AI agents dynamically plan action sequences and adapt their behavior as inputs
evolve, making consistent and reliable outcomes a challenge [94].

Key gaps and challenges include:

• Performance andCost Inefficiency: Inference is compute-intensivewith energy andfinancial impacts; multi-agent
contention can create “tragedy of the commons” effects and latency variability [66, 60].

• Output Uncertainty and Reliability: Hallucinations and lack of standardized evaluation hinder trust in high-stakes
domains [94].

• Planning and Reasoning Limitations: Multi-step reasoning and foresight remain brittle; loops and sparse-context
errors are common [94].

• Tool Interaction Failures: Parameter, schema, and integration errors cause workflow breakdowns [60].

• Security and Privacy Vulnerabilities: Prompt injection, jailbreaking, and indirect injection require least privilege,
policy enforcement, and runtime shields [58].

• Explainability and Transparency: Opaque chains of calls and agents create auditability gaps [90].

• Sustainability: Inference dominates energy at scale; carbon-aware routing and efficient models are needed [66].

• Operational Complexities: Memory management, retrieval efficiency, accountability, lifecycle platforms, and
AIBOM for compliance remain challenging [94].

Addressing these gaps requires multi-layered safety, dynamic feedback loops, smaller domain-specific models
(SLMs), efficient hardware, and self-reflecting agents that evaluate and correct their own reasoning [60].

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 94

16.2 Governance Frameworks and Ethical Alignment

Establishing robust governance frameworks and ensuring ethical alignment is paramount for responsible adoption
[51]. Responsibility should be inherent to the system architecture rather than retrofitted [53]. Key elements:

• Comprehensive AI Governance Frameworks: Policies, roles, responsibilities across the lifecycle, integrated with
workforce plans [51].

• Proactive Risk Identification: Stress and adversarial testing, content filters, prompt shields, and vetted APIs for
permissioned autonomy [58].

• Accountability and Traceability: Decision logs, audit trails, model/data lineage [90].

• Human Oversight: HITL/HOTL with clear escalation and “big red button” overrides [53].

• Guardrails: Policy and rule-based controls to constrain operation within bounds [58].

• Ethical Review: Pre-launch review and monitoring for drift, bias, unintended consequences [51].

• Data Governance and Privacy: Privacy, sovereignty, and IP protections [51].

• Human-AI Arbitration Protocols: Balancing autonomy with human authority [53].

16.3 The Road Ahead for Enterprise Adoption

By 2025, enterprises are expected to run broad pilots, with wider adoption by 2027, transforming processes into
AI-native systems [80]. Key aspects:

• Strategic Investment: 3-4x spending growth on readiness; leadership alignment on data, cloud, and impact cases
[81].

• Operational Integration & Use Cases: Software engineering, IT ops, customer care, healthcare, manufacturing,
supply chain—underpinned by cost and risk guardrails [80].

• Workforce & Skills: Upskilling in prompt engineering, workflow design, evaluation; standing up CoEs [81].

• Technical &Operational Readiness: Poly-AI/agent architectures, API andmiddleware integration to legacy systems
[81].

• AgentOps as Core Discipline: Lifecycle management extending MLOps/LLMOps [89].

• Balance Experimentation with Responsibility: ROI and risk-driven gating for scale-up [80].

• Limitations: Not fit for rare, human-centric, or highly regulated end-decisions without human professionals and
robust governance [53].

Enterprises that invest in readiness, governance, and continuous improvement will capture durable advantages
from trustworthy, adaptable intelligent agents [81].

95 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

Bibliography

[1] Ranjan Sapkota, Konstantinos I Roumeliotis, and Manoj Karkee. Ai agents vs. agentic ai: A conceptual
taxonomy, applications and challenge. arXiv preprint arXiv:2505.10468, 2025.

[2] S. Radhakrishnan and V. Parikh. Tech navigator: Agentic ai architecture and blueprints. Mar 2025. Infosys
Limited.

[3] S. Shyamsundar. Tech navigator: Agentic ai systems. Mar 2025. Infosys Limited.

[4] Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Cognitive architectures for
language agents. Transactions on Machine Learning Research, 2024.

[5] Joche Ojeda. Leveraging memory in semantic kernel: The role of microsoft.semantickernel.memory
namespace. September 2024. Accessed: June 19, 2025.

[6] Microsoft. Adding memory to semantic kernel agents. 2024. Microsoft Learn Documentation.

[7] Author Name. Memory for agents. YYYY. Accessed: Date.

[8] LangChain AI. Memory - langgraph. 2024. Accessed: June 20, 2025.

[9] Strands Agents Team. Strands agents: Model-driven approach to building ai agents. 2024.

[10] KumarDhanagopal. Infrastructure for a rag-capable generative ai application using vertex ai and vector search.
2025.

[11] Strands Agents Team. Get started with strands agents. 2024.

[12] Liming Dong, Qinghua Lu, and Liming Zhu. Agentops: Enabling observability of llm agents. AgentOps:
Enabling Observability of LLM Agents, 2024.

[13] Kumar Dhanagopal. Security, compliance, and privacy. 2025.

[14] X. Tang, A. Zou, Z. Zhang, Z. Li, Y. Zhao, X. Zhang, A. Cohan, andM.Gerstein. Medagents: Large languagemodels
as collaborators for zero-shot medical reasoning. In Findings of the Association for Computational Linguistics:
ACL 2024, pages 599–621, 2024.

[15] T. Abuelsaad, D. Akkil, P. Dey, A. Jagmohan, A. Vempaty, and R. Kokku. Agent-e: From autonomous web
navigation to foundational design principles in agentic systems. arXiv preprint arXiv:2407.13032, 2024.

[16] U. Gupta. Tech navigator: Agentops and agentic lifecycle management. Mar 2025. Infosys Limited.

[17] AWS Machine Learning Blog. Creating asynchronous ai agents with amazon bedrock. n.d.

[18] J. Lin, J. Tang, H. Tang, S. Yang, W.-M. Chen, W.-C. Wang, G. Xiao, X. Dang, C. Gan, and S. Han. Awq: Activation-
aware weight quantization for on-device llm compression and acceleration. In Proceedings of Machine
Learning and Systems, volume 6, pages 87–100, 2024.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 96

[19] Guannan Liang andQianqian Tong. Evaluation of llm-powered agent systems. LLM-PoweredAI Agent Systems
and Their Applications in Industry, 2025.

[20] Pratik Bhavsar. Mastering ai agents. Preface, E-book.

[21] Guannan Liang and Qianqian Tong. Llm-powered ai agent systems and their applications in industry. 2025.
Independent AI researcher; arXiv preprint.

[22] Arize Phoenix. User guide | phoenix. Arize.

[23] Microsoft. Baseline openai end-to-end chat reference architecture - azure architecture center. Mar 2025.
Microsoft Learn. Contributors include Raouf Aliouat, Freddy Ayala, Rob Bagby, Prabal Deb, Ritesh Modi, Ryan
Pfalz.

[24] DanFerguson, StevenDeVries, HalehNajafzadeh, and JeffRuhnow. Additional readingonawswell-architected.
2025.

[25] K. Desai. Tech navigator: Advanced agents. Mar 2025. Infosys Limited.

[26] Y. Chen,M. Shetty, G. Somashekar, M.Ma, Y. Simmhan, J.Mace, C. Bansal, R.Wang, and S. Rajmohan. Aiopslab: A
holistic framework to evaluate ai agents for enabling autonomous clouds. arXiv preprint, Jan 2025. Microsoft,
UIUC, UC Berkeley, IISc.

[27] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez, H. Zhang, and I. Stoica. Efficient memory
management for large language model serving with pagedattention. In Proceedings of the 29th Symposium
on Operating Systems Principles, pages 611–626, 2023.

[28] KumarDhanagopal. Infrastructure for a rag-capable generative ai application using vertex ai and vector search.
Mar 2025. Google Cloud Architecture Center.

[29] M. G. Govindaraj, H. K. Hughes, and S. R. Jammula. A new approach to safe agentic ai. May 2025. Infosys
Limited.

[30] Salesforce. Agentforce: The ai agent platform. 2024. Overview of Salesforce Agentforce platform, capabilities,
and positioning.

[31] CX Today. Servicenow ai platform: Knowledge 2025 announcements. 2025. Summary of ServiceNow’s AI
Agent Studio, AI Control Tower, and Agent Fabric.

[32] Lindy. Ai agent platforms: Key features, use cases, & tools in 2025. 2025. Landscape of agent platforms and
comparisons (Vertex, Relevance, Lindy).

[33] Ampcome. Top 5 ai agents platforms in 2025 (with real-world examples). 2025. Comparative perspectives on
agent platforms and enterprise patterns.

[34] Google Cloud. Instrument adk applications with opentelemetry. 2025. How to instrument Google ADK-built
agents with OpenTelemetry for traces and logs.

[35] AWS Open Source. Strands agents sdk (python). 2025. Open-source repository for model-driven agent SDK.

[36] Microsoft TechCommunity. Securely build andmanage agents in azure ai foundry (entra agent id). 2025. Azure
AI Foundry with Entra Agent ID for agent identity, governance, and lifecycle.

[37] Microsoft Entra. Announcingmicrosoft entra agent id: Secure andmanage your ai agents. 2025. Agent identity
as a first-class object in Entra; access governance and auditing.

[38] Real Python. Langgraph: Build stateful ai agents in python. 2024. Hands-on tutorial on LangGraph concepts
and building stateful agents.

[39] AWS Machine Learning Blog. Strands agents sdk: A technical deep dive into agent architectures and
observability. 2025. Strands Agents SDK overview, production usage, and observability patterns.

97 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

[40] MetaDesign Solutions. Multi‐agent ai with gpt‐5 & autogen: Enterprise workflows in 2025. 2025. Overview
and guidance on deploying multi-agent systems with AutoGen.

[41] Salesforce. Agentforce customer stories. 2025. Public case studies of Agentforce adoption and outcomes.

[42] CX Today. 10 agentforce case studies, andwhatwe learned from them. 2025. Roundupof Agentforce customer
case studies and takeaways.

[43] Everest Group. Review of key announcements at servicenow’s knowledge 2025. 2025. Analyst review of
ServiceNow AI Agents announcements and positioning.

[44] OpenAI. Gpt-4 system card. 2023. Capabilities, limitations, and safety considerations for frontier LLMs.

[45] Nick Bostrom. Superintelligence: Paths, Dangers, Strategies. Oxford University Press, 2014. Conceptual
foundations for AGI and superintelligence trajectories.

[46] Geoffrey Irving, Paul Christiano, and Dario Amodei. Ai safety via debate. In NeurIPS Workshop, 2018. Debate-
style evaluation to improve reasoning reliability.

[47] LangChain. Langchain documentation. 2025. Agent/tool abstractions and interoperability patterns.

[48] Yuchen Zhou et al. Self-refine: Iterative refinement with self-feedback. arXiv, 2023. Self-evaluation and
refinement loops for improving model outputs.

[49] Cisco. Dawn: Distributed ai workloads on network — cisco. 2024. Cisco initiatives toward open protocols for
distributed AI workloads.

[50] Ajeya Cotra. Agi timelines: What do we know? Open Philanthropy (blog/analysis), 2021. Elicits distributions
over AGI arrival; widely cited in timeline debates.

[51] OECD. Ai principles (updated2024). 2024. UpdatedOECDAI Principles emphasizingaccountability, traceability,
and systematic risk management.

[52] OECD. Advancing accountability in ai. 2023. Integrates AI lifecycle with risk management; processes and
attributes to govern risks and promote trustworthy AI.

[53] EU AI Act. Article 14: Human oversight | eu artificial intelligence act. 2024. Human oversight obligations for
high-risk AI systems; proportional measures and design requirements.

[54] Kathrin Gardhouse. Updated oecd ai principles to keep up with novel and increased risks. 2025. Summary of
changes in 2024 update: stronger accountability, human oversight, sustainability, and bias.

[55] Melanie Fink. Human oversight under article 14 of the eu ai act. 2025. Analysis of Article 14 obligations,
implementation limits, and effectiveness of oversight.

[56] OPA Project. Open policy agent. 2024. General-purpose policy engine (Rego) for policy-as-code and runtime
enforcement.

[57] Trend Micro. Policy as code vs compliance as code. 2023. Explains policy-as-code and compliance-as-code;
mentions OPA and regulated frameworks.

[58] OWASP GenAI Security Project. Llm01:2025 prompt injection. 2025. Prompt injection and jailbreaking risks;
recommended mitigations including least privilege and HITL.

[59] OWASP GenAI Security Project. Owasp genai security project. 2025. OWASP GenAI Security Project.

[60] Daniel Moshkovich and coauthors. Observing, analyzing, and optimizing agentic ai systems. arXiv, 2025.
Operational troubleshooting loop for agent systems: observe, detect, diagnose, optimize; patterns for
resilience and cost control.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 98

[61] OWASP GenAI Security Project. Multi-agentic system threat modeling guide v1.0. OWASP
GenAI Security Project website, April 2025. Introduces MAESTRO layered methodology
for multi-agent threat modeling. Available at: https://genai.owasp.org/resource/
multi-agentic-system-threat-modeling-guide-v1-0/.

[62] William OGOU. Owasp’s maestro: Securing agentic ai’s next frontier. Blog post, May 2025. Available at: https:
//blog.ogwilliam.com/post/owasp-maestro-agentic-ai-security/.

[63] Jakub Szarmach. Multi-agentic system threatmodelling guide. Aigl.blog (OWASP Agentic AI Threat Taxonomy
+ MAESTRO framework), April 2025. Introduces MAESTRO for layered threat mapping in multi-agent systems.
Available at: https://www.aigl.blog/multi-agentic-system-threat-modelling-guide/.

[64] DeepTeam. What is llm red teaming? 2023. Definition and steps for automated adversarial simulations and
evaluation.

[65] Confident AI. Llm red teaming: The complete step-by-step guide to llm safety. 2025. Manual vs automated
adversarial testing, workflows, and mitigation strategies.

[66] Miray Özcan, Philipp Wiesner, Philipp Weiß, and Odej Kao. Quantifying the energy consumption and carbon
emissions of llm inference via simulations. arXiv preprint arXiv:2507.11417, 2025. Inference energy/cost drivers
and optimization implications for large-scale deployments.

[67] Trail ML (blog). Eu ai act: 10 things high-risk companies need to know. Trail ML blog, 2023.
Checklist style summary of EU AI Act obligations for high-risk systems—risk management, data
governance, documentation, human oversight, etc. Available at: https://www.trail-ml.com/blog/
eu-ai-act-high-risk-checklist.

[68] NVIDIA. Nvidia’s ai factory and industrial ai cloud (europe): Patterns for enterprise-grade ai infrastructure. 2024.
Cloud-native GPU clusters, Kubernetes orchestration, and reference blueprints for scalable AI factories.

[69] Major Cloud Providers. Establishing scalable ml platforms on aws/azure/gcp: Storage, containers, model
serving, and governance. 2024. Reference services and patterns for enterprise ML platforms, data governance,
and secure API access.

[70] LangChain. Langchain framework documentation. 2025. Agent planning, tool use, memory, and integration
patterns across providers.

[71] Microsoft / AutoGen. Autogen: Enabling next-gen llm applications via multi-agent collaboration. 2025. Multi-
agent orchestration including self-configuration and tool use.

[72] CrewAI. Crewai: Multi-agentorchestration for real-world tasks. 2025. Role-basedagent collaboration, planning,
tools, and memory.

[73] IBM Institute for Business Value. Ai upskilling strategy. 2024. Workforce AI literacy, skills gaps, and executive
priorities for upskilling.

[74] Various. Role of prompt engineering and up-skilling initiatives. International Journal of Advanced Research
in Science, Communication and Technology, 2024. Prompt engineering, GenAI training programs, and sector-
specific curricula.

[75] AI Sweden and collaborators. An empirical guide to mlops adoption: Framework, maturity model and
taxonomy. Information and Software Technology, 2025. Operational practices for CI/CD, testing, observability,
and governance in ML systems.

[76] Ken Huang and Cloud Security Alliance. Threat modeling agentic ai:
Introducing maestro. https://cloudsecurityalliance.org/blog/2025/03/24/
threat-modeling-openai-s-responses-api-with-the-maestro-framework, 2025. Cloud Security
Alliance (CSA) Blog.

99 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

https://genai.owasp.org/resource/multi-agentic-system-threat-modeling-guide-v1-0/
https://genai.owasp.org/resource/multi-agentic-system-threat-modeling-guide-v1-0/
https://blog.ogwilliam.com/post/owasp-maestro-agentic-ai-security/
https://blog.ogwilliam.com/post/owasp-maestro-agentic-ai-security/
https://www.aigl.blog/multi-agentic-system-threat-modelling-guide/
https://www.trail-ml.com/blog/eu-ai-act-high-risk-checklist
https://www.trail-ml.com/blog/eu-ai-act-high-risk-checklist
https://cloudsecurityalliance.org/blog/2025/03/24/threat-modeling-openai-s-responses-api-with-the-maestro-framework
https://cloudsecurityalliance.org/blog/2025/03/24/threat-modeling-openai-s-responses-api-with-the-maestro-framework

[77] LessWrong Community. Intro to multi-agent safety. LessWrong, April 2025. Discusses “tragedy of the
commons” dynamics arising from uncoordinated LLM agents contributing to the web.

[78] OWASP. Owasp ai bill of materials (aibom) project. 2024. Transparency and security framework for
documenting AI assets, lineage, datasets, and dependencies.

[79] Wiz. Ai-bom: Building an ai bill of materials. 2025. Definition, benefits, and operationalization of AI Bills of
Materials.

[80] FinOps Foundation. Finops for ai overview. 2025. Cost governance and forecasting patterns for AI adoption.

[81] FinOps Foundation. Finops framework overview. 2025. Operating model for value based technology
investments.

[82] FinOps Foundation. Finops for ai, gen ai, and machine learning. 2025. Education, certification, and FOCUS
standardization for cost and usage data across clouds and software.

[83] FinOps Foundation. Effect of optimization on ai forecasting. 2024. Demonstrates dramatic token savings via
hashing and caching; implications for scaling adoption.

[84] FinOps Foundation. Optimizing genai usage: A finops perspective on cost, performance, and quality. 2025.
Shows 20–40prompt engineering returns.

[85] nOps. Genai cost optimization: The essential guide. 2025. Practical techniques: batching, caching, prompt
routing, quantization; effects on cost per token.

[86] FinOps Foundation. Cost estimation of ai workloads. 2024. Planning and forecasting practices for training vs.
inference and adoption staging.

[87] Salesforce. Wiley sees 2132025. Agentforce improved case resolution by 40drivers and platform impacts.

[88] Ternary. Finops for ai overview: A guide from the finops foundation. 2025. Plain-language summary of FinOps
for AI guidance and practitioner implications.

[89] Liming Dong, Qinghua Lu, and Liming Zhu. Agentops: Enabling observability of llm agents. arXiv, 2024.
Taxonomy and lifecycle of AgentOps; observability data and artifacts across agent pipelines.

[90] OpenTelemetry Project. Ai agent observability — evolving standards and best practices. 2025. Semantic
conventions and practices for traces, metrics, and logs in AI agent systems; SLO-aware operations.

[91] Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbullin, Yunyang Xiong, Zechun
Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, Yangyang Shi, Vikas Chandra, and J”urgen
Schmidhuber. Agent-as-a-judge: Evaluate agentswith agents. arXiv, 2024. Extends LLM-as-a-Judge toevaluate
intermediate steps and decisions; introduces DevAI benchmark.

[92] Souleymane Camara and Jose Abdelnour-Nocera. Socio-technical evaluation matrix (stem): a collaborative
tool to support socio-technical issues of a design process. In Human-Computer Interaction – INTERACT 2009,
volume 5727 of LNCS, pages 840–841. Springer, 2009. Socio-technical evaluation lens relevant to AI system
assessment.

[93] ADaSci. A practical guide to tracing and evaluating llms using langsmith. 2024. Hands-on tracing/evaluation
patterns, with metrics for latency, token usage, cost, and debugging.

[94] Various. A survey on agentops: Categorization, challenges, andopportunities. arXiv, 2025. Survey of AgentOps
challenges, evaluation gaps, cost/latency drivers, and operational risk patterns.

[95] Vijoy Pandey. The internet of agents. Whitepaper, Cisco Systems, Inc. (Outshift), Mar 2025.

[96] Z. Aminiranjbar, J. Tang, Q. Wang, S. Pant, and M. Viswanathan. Dawn: Designing distributed agents in a
worldwide network. arXiv preprint, Oct 2024.

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 100

[97] Katja Grace, John Salvatier, Allan Dafoe, Baobao Zhang, and Owain Evans. When will ai exceed human
performance? evidence from ai experts. In Proceedings of the AAAI/ACM Conference, 2018. Survey of expert
forecasts on AI milestones and transformative impacts.

[98] Various. Mixture-of-agents: An efficient ensemble for llms. arXiv, 2024. Combining multiple agents/models
via routing and voting for better accuracy.

101 | Building Autonomous, Resilient and Intelligent Agentic AI Systems External Document @ 2025 Infosys Limited

External Document @ 2025 Infosys Limited Building Autonomous, Resilient and Intelligent Agentic AI Systems | 102

© 2025 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

	I Foundations of Agentic AI Systems
	Agentic AI & Core Classifications
	What are Agentic AI Systems?
	Evolution from Automation to Autonomy
	Agent Taxonomy
	When Not to Use Agents
	Enterprise-Grade Imperatives for Agentic AI Systems

	Fundamental operational framework of agentic AI
	The Agent Loop
	Core System Components

	Agent Development Lifecycle Overview (ADLC)
	Why a Structured ADLC is Needed
	The Stage-Gate Process Flow
	AgentOps

	II Designing & Building Agents
	Strategic Design for Agentic Systems
	Workflows vs. Agents
	Design Principles for Agentic Systems
	Agentic System Layers
	Single-Agent vs. Multi-Agent Architectures
	Collaboration
	Design Patterns for Collaboration
	Communication Protocols and Interfaces
	Governance, Security, and Observability
	Multi-Agent Deployment Architectures
	Standardizing Lifecycle Artifacts: Ensuring Portability and Governance
	Guidance for Adoption

	Human Oversight and Responsible Control
	Why Human Oversight Matters
	Oversight Spectrum: Human Interaction Patterns
	Human-in-the-Loop (HITL)
	Human-on-the-Loop (HOTL)
	Human-out-of-the-Loop (HOOTL)

	Observability and Improvement Loop
	Managing Agent Autonomy
	Autonomy Levels Taxonomy and Worked Examples
	Code-Based Autonomy Assessment
	Balancing Autonomy and Determinism

	Guardrails: Preventive, Detective, Corrective Controls
	Human Oversight and Intervention: The “Big Red Button”
	Governance and Accountability
	Responsible and Ethical AI in Practice

	Frameworks, Tools & Methodologies for Agent Development
	Core Implementation Stages
	Agent Development Frameworks
	Comparing Framework Features
	Prompt Engineering for Agents and Tools
	Tool Utilization: The Criticality of Tool Documentation
	Overall Prompts, Instructions, and Safe Execution Models
	Prompting Techniques Based on Agent Context

	Data Integration and Management
	Quality Engineering & Quality Assurance Guide
	Tool Usage
	Tool Correctness
	Tool Argument Accuracy
	Tool Efficiency and Execution Reliability
	Task Completion Efficacy
	Reasoning Evaluation
	Memory Usage
	Agent Planning
	Agent Routing & Decision Making Evaluation
	Agent Orchestration
	Agent Safety: Policy Compliance
	Performance Metrics
	Agent Performance Metrics
	LLM Performance Metrics
	LLM Metrics
	Red Teaming

	Agentic Platform Offerings
	Commercial Agentic Platforms
	Hyperscaler Agentic Platforms
	Vertically Integrated Platforms
	Agent Builder Platforms

	III Enterprise Readiness & Governance
	Foundational & Strategic Readiness
	Executive Alignment and Goals
	Prioritized Value Streams & Use-Case Portfolio
	Readiness Baselines
	Operating Model & Center of Excellence (CoE)
	Change Management and Skills Development
	External Ecosystem and Vendor Management
	Change Fatigue and Cultural Transformation
	Continuous Learning and Post-Adoption Evolution
	Alignment with Business Continuity and Disaster Recovery
	Financial Modeling and ROI Realization
	Executive Checklist

	Governance, Risk, and Compliance (GRC)
	Governance Frameworks
	Risk-Aware Governance and Compliance Review
	Scope of Governance & Compliance Evaluations

	Technical Implementation Guide
	High-Level Workflow Example
	Enforcement Controls
	Standards & Frameworks for Threat & Governance
	Risk Identification and Mitigation
	Financial Planning and Lifecycle Budgeting
	Regulatory Landscape
	Data Sovereignty, Privacy & IP Protection
	Compliance Monitoring & Reporting
	Scope of Compliance Monitoring & Reporting

	Technical Implementation Guide
	Enforcement Controls
	Telemetry and Audit Assurance
	Scope of Telemetry & Audit Assurance

	Technical Implementation Guide
	Enforcement Controls

	Technical Readiness
	Enterprise AI Infrastructure
	Agent-Specific Tooling
	AI/Agent Specialized Roles
	Agent Development - CI/CD Pipelines
	Continuous Improvement via AgentOps
	Technical Capabilities Mapped to Hyperscaler Services
	Security Considerations in Agentic AI

	FinOps
	FinOps: Financial Management for Agentic AI
	Process Integration into Business Workflows
	Understanding Enterprise Workflows and Challenges
	Identifying High-Value Use Cases for ROI
	Case Studies in Enterprise Adoption

	IV Scaling, Performance & Quality
	AgentOps (Agentic Lifecycle Management)
	AgentOps as Specialized DevOps
	AgentOps Lifecycle Phases
	Reliability Solutions Playbook

	Tools and Frameworks for AgentOps

	Evaluating Agent Performance & Quality
	Success Metrics & KPIs
	Evaluation Methodologies
	Observability, Traceability, and Debuggability
	Integrating Human Feedback

	Troubleshooting & Performance Tuning
	Development-Related Considerations
	LLM-Specific Considerations
	Production-Related Considerations
	Strategies for Resilience & Continuous Improvement

	V Future Outlook
	The Internet of Agents and Emerging Trends
	Vision of the Internet of Agents
	Evolution to AGI and Superintelligence
	Advanced Research Techniques
	Future of AgentOps
	Standardized Protocols and Interoperability

	Navigating the Future of Agentic AI
	Addressing Persistent Gaps
	Governance Frameworks and Ethical Alignment
	The Road Ahead for Enterprise Adoption

