
WHITE PAPER

LEVERAGING MICROFRONTENDS FOR
BUILDING FLEXIBLE AND INNOVATIVE
USER INTERFACES

External Document © 2023 Infosys Limited

Contents..2

Flexible user interfaces...3

	 Functional example of flexible user interfaces... 3

		 Examples of Contact Center tools..3

	 Considerations while building user interfaces for contact center solutions...................... 5

		 Integration with existing agent tools..5

		 Integration with CRM systems...5

		 Integration with CTI tools...5

Building flexible user interfaces...6

	 Technical assumptions... 6

		 HTML5 & CSS3 Compatibility...6

		 Ability to modify HTML..6

		 Ability to customize Content Security Policy headers..6

	 Options for building flexible user interfaces.. 6

		 Micro frontends...6

		 Web components..6

	 Five key technical considerations while building flexible user interfaces.......................... 7

		 1. Run-time loading of configuration..7

		 2. Dynamic rendering & positioning..8

		 3. Communication between user interface components...9

		 4. Module federation: sharing of common libraries & modules..10

		 5. Common technical infrastructure..11

Building micro frontends in Angular.. 11

	 Application shell...11

	 Micro applications...12

Building web components in Angular.. 13

	 Web components in Angular using Angular elements..14

References... 15

Table of Contents

External Document © 2022 Infosys LimitedExternal Document © 2023 Infosys Limited

Flexible user interfaces

User interfaces of modern applications typically tend to be one

large monolith that caters to the business requirements of that

specific application. However, such large monoliths rarely lend

themselves to easy extension.

Modern applications need to be flexible and easily extensible.

In this regard there is a benefit for the User Interface of modern

applications to be designed to be as modular and independent as

possible. Having application User Interface composed of several

pieces, each handling a specific functionality, allows for ease of

extensibility as well as maintenance in that a specific piece can

be either enhanced or completely switched out and replaced

with another without having significant impact on the remaining

application functionality.

Functional example of flexible user interfaces

Let us illustrate such flexible user interface design with the help of

a functional use-case of a modern contact center. Modern contact

centers are meant to deliver value and ensure excellent customer-

experiences, to the customers of today’s enterprises. Customers

nowadays would expect a contact center agent to know

beforehand about the history of their past interactions, the nature

of issues they have faced, their preferences, etc. The contact center

agent often must use multiple enterprise applications to fetch all

the information about the customer to ensure she is able to deliver

the experience that the customer may have come to expect.

Today’s contact centers employ a wide variety of tools to assist

the agents deliver the value demanded by the customer. Any tool,

which may be introduced into a contact center, must be capable

of delivering immediate value while minimizing disruption to

existing processes that the agents may be accustomed to.

Tools must be able to deliver assistance contextually, while

still not getting in the way. Any tool that is constructed with

a one-size-fits-all paradigm is bound to fail within contact

centers that already have a suite of applications being

employed. The reason for the failure has little do with the

quality of the tool itself, but with the quantum of change in

existing processes that the tool may entail.

In contrast, a tool that can plug into existing systems in a

seamless way and provide incremental value to the agents

will see better uptake and better success among agents

who typically have little time to climb a steep learning

curve that a completely new system or tool would demand.

Hence it becomes imperative for solution providers, who

are aiming to deliver value-systems to contact center

agents, to devise solutions which employ an extremely

flexible user interface capable of plugging into any systems

that the contact centers already employ.

Examples of Contact Center tools

To illustrate how such flexibility and ability to plug-in user

interface elements may be beneficial, let’s consider a few

examples:

Toolbars

Agent tools that are built to be plugged into any existing

application must be organized to enable easy access while

still being as non-intrusive and non-disruptive to the agent.

Simple toolbars that stay away from the main field of view

and only come into play when accessed by the agent are

useful mechanisms to embed multiple tools into the agent

application.

Figure 2: Illustration of user interface tools being used

Figure 1: Illustration of user interface plug-in embedded into existing Agent's Desktop application

External Document © 2023 Infosys Limited

Contact Center Agent Desktop Application

Customer

Schedule

Tickets

Task Start Effort
20//10//2014 27//10//2014

M T W T F S S M T W T F
1 Task 120//10//2014 8:00...40h
2 Task 220//10//2014 8:00...40h
3 Task 320//10//2014 8:00...40h
4 Task 420//10//2014 8:00...40h

October 2014< >

Mo Tu We Th Fr Sa Su
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 25 26 27 28
29 30 31 1 2 3 4
5 6 7 8 9 10 11

24

Search

Tool 1 Tool 2 Tool 3

Chat Bubble
Toolbar

Contact Center Agent Desktop Application

Customer

Schedule

Tickets

Task Start Effort
20//10//2014 27//10//2014

M T W T F S S M T W T F
1 Task 120//10//2014 8:00...40h
2 Task 220//10//2014 8:00...40h
3 Task 320//10//2014 8:00...40h
4 Task 420//10//2014 8:00...40h

October 2014< >

Mo Tu We Th Fr Sa Su
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 25 26 27 28
29 30 31 1 2 3 4
5 6 7 8 9 10 11

24

Search

Chat

Tool 1 Tool 2 Tool 3

Hint Notification

Softphone

+1 247 892 -1234

Chat Window

Chat Bubble

Softphone (CTI)

Hints & Noti� cations

Toolbar

Chat

Agents typically have the need to speak with others within the

organization, or with an AI-based virtual assistant or a bot, and

chat-based systems enable this. Plugins should allow for chat tools

to be embedded within the agent application, such that the chat

systems are made available on demand while also staying away

from view when not needed.

Softphone

Agents also need to handle voice calls with customers. Customer

Telephony tools (CTI) need to be embedded into the agent

application. These could either be one more tool on the Toolbar

or can be embedded with dedicated space within the screen real

estate.

Prompts & Hints

Agents can also be provided with hints or contextual notifications

as they work through resolving customer issues. Such tools would

employ AI-driven contextual insights derived based off enterprise

data, which is then personalized for the specific agent. Such

notifications can be delivered to the agent’s user interface via a

toast window or hint overlay which appears contextually, stays

active briefly, and then fades away after its purpose has been

served.

Search Tools

Agents can also be provided with unified search capabilities

to quickly find useful and required information as they work

with customers on resolving issues. Such search tools must be

equipped to provide quick and relevant results fast, in overlays

that can be dismissed or hidden by the agent when she is done

with the information.

Considerations while building user interfaces for
contact center solutions

Broadly there are three key aspects that must be considered while

building user interfaces for contact center solutions.

Integration with existing agent tools

Contact center agents typically make use of a wide variety of

tools during their interactions with customers. Agents will go

through multiple steps and perform numerous activities as they

work through the processes mandated for dealing with the

customer’s query. It is important for any new user interface to be

able to seamlessly integrate with the existing tool suite without

distracting from the execution flow and experience that the agent

may already be accustomed to.

Flexible tools can also help alleviate some cumbersome steps that

the existing tools may entail, including eliminating the necessity

for the agents to navigate complex multi-layer menus, jumping

across multiple applications, etc., by providing a more seamless

experience using timely pop-ups, overlays, and toasts, that present

contextual information and insights.

Integration with CRM systems

Contact center agents will typically make use of CRM systems to

manage client accounts. CRM systems may either form the core of

the agent’s day-to-day work, or an integral part of it.

User interfaces for contact center solutions should be built in

a modular fashion to allow quick and easy integration with

established CRM systems in the market.

Integration with CTI tools

Contact center agents make use of CTI technology (Computer-

Telephony Interface) to for interactions with customers. There are

several well-established vendors that provide CTI tools: Amazon

Connect, Avaya, Cisco, Genesys, Twilio, to name a few. Contact

center solutions must be able to easily integrate with CTI tools that

the customers are making use of.

External Document © 2023 Infosys Limited

External Document © 2023 Infosys Limited

Building flexible user interfaces

After having laid out the rationale for building user interfaces to

be flexible and “pluggable”, in the subsequent sections of this

document we will explore the tools and techniques that can help

us build these flexible user interfaces for contact center solutions.

Technical assumptions

Before we discuss the mechanisms employed for building flexible

user interfaces, we must preface it with the basic technical

assumptions that helps define the boundary of the scope we are

considering for this paper.

HTML5 & CSS3 Compatibility

We assume that the contact center tools are primarily web-based;

while it cannot be denied that many contact centers still make

use of desktop applications, it is a safe assumption to make

that most contact centers these days are progressively moving

towards modern technical stacks and will make use of web-based

applications for their day-to-day operations. This enables the

leveraging of modern HTML5 and CSS3 based technologies to

build advanced solutions for contact centers.

Ability to modify HTML

We assume that the systems being employed within the contact

centers lend themselves to a few minor modifications. This allows

us to easily integrate any new solution user interfaces with existing

systems without the need for extensive rewrites.

This allows us to plug-in other contact center tools into the

existing applications and allow the users to receive one unified

user experience.

Many systems have been found to allow creation of custom

additions using some form of custom widgets that can be created

and embedded within existing user interfaces. Such capabilities

can easily be leveraged to plug-in additional solutions and tools

that may be built for contact centers.

Ability to customize Content Security Policy headers

Web technologies today enforce security through Content Security

Policies (implemented through CSP headers). These policies

enforce how web applications interact with one another and with

servers. When we create extensible user interfaces, often there can

be scenarios that a pluggable user interface component needs to

be ‘hosted’ within the user interface of another system.

In such scenarios, it becomes essential for the CSP headers of the

host system to be tweaked to allow such embedded user interface

components to function correctly. Fortunately, most established

web applications today allow customization of CSP headers

through the admin interfaces; case in point is Salesforce.com

interface which allows for addition/modification of CSP headers

through their configuration screens.

Options for building flexible user interfaces

While building our contact center solution, we leveraged the

powerful UI framework: Angular. Angular provides the tools

necessary to build modular user interface components which allows

packaging core pieces of functionality into distinct pieces.

While we made use of the Angular framework, the options and

the approach discussed within this paper needn’t be restricted to

Angular alone. It can easily be implemented in another framework,

say React, or even using vanilla Javascript and the HTML5 APIs.

The two main options we employed were to build:

1.	 Micro frontends: these were complete applications that cater to a

specific business requirement.

2.	 Web components: these are small reusable pieces of functionality,

such as a user interface plugin, a reusable control, etc.

Micro frontends

Micro frontends are a relatively new concept in software

engineering which aims to bring the benefits of the micro

services paradigm to frontend engineering and web development

(Mezzalira, 2019). Micro frontends essentially comprise of an

empty shell which is purely a technical component and serves

the purpose of bringing together multiple micro-applications

together and stitching them into a cohesive web application.

Each individual micro application typically handles a specific

business function and can be developed, maintained, and

deployed independently by distinct teams.

Web components

The HTML5 specification introduces a new concept of custom

HTML elements that can have self-contained functionality. These

packets of custom functionality are termed Web components.

Supported by all modern browsers, web components are an

ideal way to build modular user interface components with

specific functionality built into them, and then deploy the desired

functionality across existing systems.

External Document © 2023 Infosys Limited

Five key technical considerations while building
flexible user interfaces

While micro frontends and web components provide an ideal

mechanism for building modular, self-contained user interfaces,

the following aspects can be key in the success of flexible user

interfaces.

1. Run-time loading of configuration

Typically, in a web development project the configuration files are

stored within the codebase. However, with such an approach, any

change in the configuration values will require a recompilation of

the entire codebase, and a redeployment of the application code

for the new configuration values to take effect.

While there is no real harm in having to rebuild a web

development project, the need to do so every time a config value

needs to be changed can quickly become cumbersome.

import { Component } from '@angular/core';

import { environment } from '../environments/environment';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.scss']

})

export class AppComponent {

 private readonly config;

 constructor() {

 this.config = environment;

 }

}

The need to recompile the application every time a configuration

value needs to be modified becomes particularly tedious if the

application being recompiled is meant to be a flexible plugin that

should be embedded within other applications.

Hence, it is advisable to separate out the configuration files from

the codebase and load them at run-time.

import { HttpClient } from '@angular/common/http';

import { Component } from '@angular/core';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.scss']

})

export class AppComponent {

 private config;

 constructor(http: HttpClient) {

 http.get('path/to/run/time/configuration/file')

 .subscribe(config => (this.config = config));

 }

}

Such a mechanism allows for the configuration files to be

maintained separate from the code and allows for quick

configuration changes within the client environment during

the life of the web application.

2. Dynamic rendering & positioning

Another important aspect of building flexible user

interfaces is to have a dynamic rendering capability.

Dynamic rendering allows applications to be flexible in

terms of the type of widgets or layouts that are rendered on

screen depending on either configuration or the business

scenario.

Ability to render different widgets or layouts dynamically

expands the ability of the application to adapt and respond

differently to different use cases.

Most frontend frameworks provide mechanisms to

dynamically instantiate user interface components and

inject them into the page at run time. This capability must

be systemically leveraged to provide the capability to build

the page and user experience based on business needs,

user preference, localization needs, etc.

The following is an example of dynamic rendering

implemented using the Angular framework:

@Component({

 selector: 'crtx-component-renderer',

 template: '<ng-container #renderSlot></ng-container>',

 styleUrls: ['./component-renderer.component.scss']

})

export class ComponentRendererComponent

 implements AfterViewInit, OnChanges {

 @Input() model!: ComponentModel;
 @Output() output = new EventEmitter();

 @ViewChild('renderSlot', { read: ViewContainerRef })

 renderSlot!: ViewContainerRef;

 private cmpRef!: ComponentRef<{}> | null;

 constructor(

 private readonly resolver: ComponentFactoryResolver,

 private readonly injector: Injector

) {}

 ngAfterViewInit(): void {

 Promise.resolve().then(() => this.renderView());

 }

 ngOnChanges(changes: SimpleChanges): void {

 if (changes.model && this.cmpRef) {

 this.cmpRef?.instance.model = changes.model.currentValue;

 this.renderView();

 }

 }

 private renderView(): void {

 const cmpRef = this.cmpRef = this.resolver

 .resolveComponentFactory(this.model.component)

 .create(this.injector);

 cmpRef.instance.model = this.model.data;

 cmpRef.instance.output

 .subscribe(msgValue => this.output.emit(msgValue));

 this.renderSlot.insert(cmpRef.hostView);

 cmpRef.changeDetectorRef.detectChanges();

 }

}

External Document © 2023 Infosys Limited

3. Communication between user interface components

Building flexible user interfaces using either micro frontends or

web components essentially involves building separate pieces

and stitching them together at run time to build the overall

functionality. It is often necessary for these separate pieces

to be able to communicate with one another for the overall

functionality to work.

The following sections discuss a few options that can be

employed to get around this limitation.

Communication via the Route definitions

When user interfaces are built using Angular, communication

between the individual pieces can be established via the

Angular Router. The routing definition already has provision to

pass in a data property along with the individual routes. This

data property is used to communicate key information into the

individual micro applications.

An example route definition would look something as below:

RouterModule.forRoot([

 { path: '', component: HomeComponent, pathMatch: 'full' },

 {

 path: 'one',

 loadChildren: () => loadRemoteModule({...})

 .then(m => m.AppModule),

 data: { hostname: 'http://micro-host1.com' }

 },

Obviously, this approach only works within Angular

applications. If the micro frontends are built using a different set

of frameworks this wouldn’t be applicable.

Communication using CustomEvents

Another option for implementing inter-application

communication is to use CustomEvents that can be triggered on

the window object. The shell and the various micro applications

can be built to listen to these events and responding to them as

necessary.

When any of the applications needs to send out a message, it

would broadcast the message using a CustomEvent object and

using the window.dispatchEvent API.

In the first application:

window.addEventListener('app2-msg', msg => handleMsg(msg));

// Assuming variable message contains

// the value to be communicated to

// application-2

const event = new CustomEvent('app1-msg', message);

window.dispatchEvent(event);

by code in the second application to listen to that event:

window.addEventListener('app1-msg', evt => {

 const value = handleEvent(evt);

 // Creating a custom event with the

 // response from application-2

 const resp = new CustomEvent('app2-msg', value);

 window.dispatchEvent(resp);

});

External Document © 2023 Infosys Limited

 {

 path: 'two',

 loadChildren: () => loadRemoteModule({...})

 .then(m => m.AppModule),

 data: { hostname: 'http://micro-host2.com' }

 }

])

External Document © 2023 Infosys Limited

4. Module federation: sharing of common libraries &

modules

Another consideration is the use of Module federation

to share common libraries and modules across the

individual pieces of the user interface that may be

deployed.

Module federation is a new technique that has become

supported as part of Webpack version 5 and Angular

version 13. This technique ensures that common libraries

and modules --- for example: @angular/core, @angular/

common, @angular/router, rxjs to name only a few ---

are downloaded only once from a server and then shared

across all applications that are loaded subsequently.

Module federation across applications thus helps in

reducing the overall bundle sizes of the individual user

interface pieces that would otherwise have to be loaded

into the browser.

Module federation can be setup by tweaking the

Webpack configuration files appropriately to define

“remotes” and “shared modules”. Webpack is capable of

then packing these pieces of code in such a way as to

ensure that shared modules are downloaded only once

and then shared across the various bundles that may be

loaded within the browser.

 …

 // Plugin definition within the Webpack Configuration file to define

 // ModuleFederationPlugin & its configuration

 plugins: [

 new ModuleFederationPlugin({

 library: { type: "module" },

 // Remote modules that will be bundled and loaded separately

 remotes: {

 // "mfe1": "mfe1@http://localhost:3000/remoteEntry.js",

 },

 // Shared libraries that will be downloaded only once but

 // shared across all the bundles that are loaded

 shared: share({

 "@angular/core": {

 singleton: true,

 strictVersion: true,

 requiredVersion: 'auto'

 },

 "@angular/common": { singleton: true, …},

 "@angular/router": { singleton: true, …},

 "@angular/common/http": { singleton: true, …}

 })

 }),

 sharedMappings.getPlugin(),

],

While working within an Angular ecosystem, there are some very

powerful tools that enable us to quickly enable and configure

Module federation for Angular applications. The @angular-

architects/module-federation library can be easily incorporated

into any Angular application to do the heavy lifting while enabling

module federation (Streyer, 2020).

External Document © 2023 Infosys Limited

5. Common technical infrastructure

All user interface components typically share some technical

plumbing code. Be it for authentication, configuration

management, server communication, etc., the tasks to be done

are typically the same across individual pieces irrespective of

the business functionality handled. Such common services may

be packaged into a separate module/library which can then be

leveraged across all components.

Using such a common technical infrastructure, while not

essential, does help in maintaining a uniform developer

experience across all user interface components.

Building micro frontends in angular

In the following sections we will discuss the approach to build

micro frontends using the Angular framework. We will rely

heavily on the approach and tools laid out by Manfred Streyer

(Streyer, 2020).

Micro frontends typically comprise of a host “shell” application

which only serves to bring together multiple other applications

stitching them together into one unified experience for the

end users. The business functionalities are served by one or

many micro applications that can be developed, deployed, and

maintained separately, possibly by different teams.

Application shell

The shell loads first and establishes the main Angular

application run-time on the client-side. Once the application has

loaded successfully, it downloads the files related to each micro

application as and when the user navigates to that specific

route.

The routing in the main shell application looks as follows

(Streyer, 2020):

@NgModule({

 imports: [

 RouterModule.forRoot([

 { path: '', component: HomeComponent, pathMatch: 'full' },

 {

 path: 'one',

 loadChildren: () => // These routes are configured to load the

 loadRemoteModule({ // micro app from their remotes

 type: 'module',

 remoteEntry: 'http://micro-host.com/mico-app-one.js'

 exposedModule: 'OneModule'

 }).then(m => m.AppModule)

 },

 {

 path: 'two',

 loadChildren: () =>

 loadRemoteModule({

 type: 'module',

 remoteEntry: 'http://micro-host.com/mico-app-two.js'

 exposedModule: 'TwoModule'

 }).then(m => m.AppModule)

 }

])

],

 exports: [RouterModule]

})

export class AppRoutingModule {}

Here, we use the loadRemoteModule utility function from
@angular-architects/module-federation to dynamically
download the micro application, using the location and
filename on which that specific micro application exposes its
interface, and load it into the Angular application scope.

The application shell is also the only application within the
entire web application which must invoke RouterModule.
forRoot().

The approach is akin to normal Angular lazy loading, except
that the script being downloaded uses Webpack module

federation to share common libraries with the shell.

Micro applications

Each micro application handles its own routing to pages that

are part of it. However, these routes must be defined using

RouterModule.forChild(), like how they would be defined in a

typical lazy-loaded module.

The following is an example of a route configuration for a micro

application:

RouterModule.forChild([

 {

 path: '',

 component: AppComponent,// Micro-app main page

 children: [// All child routes within the application

 { path: 'child-one', component: ChildOneComponent },

 { path: 'child-two', component: ChildTwoComponent },

 { path: '', component: HomeComponent }

]

 }

];

The reason we mandate that the micro applications expose

their routes using RouterModule.forChild() is because

the micro application gets loaded into the same Angular

context as the shell, which would have already invoked

RouterModule.forRoot().

If the micro application also invokes forRoot(), Angular

would throw an error at run-time when it tries to load the

micro application. This is why micro applications must

always use forChild() to define their routes.

However, this prevents the micro application from being

run as a standalone application, effectively nullifying the

benefit of building micro frontends in the first place. To

get around this limitation, we wrap each micro application

within another wrapper module.

@NgModule({

 declarations: [StandaloneAppComponent],

 imports: [

 BrowserModule,

 RouterModule.forRoot([

 {

 path: 'two',

 loadChildren: () => import('./app.module').then(m => m.AppModule)

 },

 {

 path: '',

 redirectTo: 'two',

 pathMatch: 'full'

 }

])

],

 bootstrap: [StandaloneAppComponent]

})

export class StandaloneAppModule {}

This wrapper module is only used when running the micro

applications standalone, and can be used to do all the Angular

startup activities that would otherwise be expected to be done

within a main module of any Angular application, such as:

1.	 Importing BrowserModule, while the AppModule of the micro

application will only import the CommonModule

2.	 Defining basic start-up routes using RouterModule.forRoot(),

while the AppModule invokes RouterModule.forChild()

3.	 Any other application initialization processes that may be

necessary for effective running of the micro application; this

could include processes such as configuration initialization,

authentication, etc.

The stand-alone bootstrap process of the micro applications

can be updated to bootstrap the wrapper module instead of the

AppModule.

platformBrowserDynamic()

 .bootstrapModule(StandaloneAppModule)

 .catch(err => console.error(err));

External Document © 2023 Infosys Limited

Building web components in angular

Web components are defined on the page using specific HTML5

syntax which allows to register the custom element in the

CustomElementRegistry of the browser. After this, that custom

element can be added to the web application’s HTML code and

the browser will be able to recognize the functionality that should

be rendered in its place.

<html>

 <head>

 <title>Test Web Application</title>

 <script language=”Javascript” src=”/path/my-element.js” />

 </head>

 <body>

 <my-custom-element></my-custom-element>

 </body>

</html>

In the above example, <my-custom-element> is the

custom element tag that is added to the HTML and that

allows an entire functionality, maybe even an application,

to be provided at that place.

External Document © 2023 Infosys Limited

Web components in Angular using Angular elements

Angular provides a powerful set of tools to package Angular applications and components as web components: Angular elements

(@angular/elements).

Using the Angular elements createCustomElement() API, it becomes trivial to package any Angular component or even whole Angular

applications as a single Custom Element (Angular Team, n.d.).

External Document © 2023 Infosys Limited

References

Bachina, B., 2020. 6 Different Ways To Implement Micro-Frontends With Angular. [Online]

Available at: https://medium.com/bb-tutorials-and-thoughts/6-different-ways-to-implement-micro-frontends-with-angular-298bc8d79f6b

[Accessed 19 November 2020].

Bachina, B., 2020. How To Implement Micro-Frontend Architecture With Angular. [Online]

Available at: https://medium.com/bb-tutorials-and-thoughts/how-to-implement-micro-frontend-architecture-with-angular-e6828a0a049c

[Accessed 19 November 2020].

Mezzalira, L., 2019. YouTube: Micro Frontend Architecture - Luca Mezzalira, DAZN. [Online]

Available at: https://www.youtube.com/watch?v=BuRB3djraeM

[Accessed 12 May 2021].

Riches, D., 2018. A Micro Frontends Future: Using Angular with React and Vue in Enterprise apps. [Online]

Available at: https://www.youtube.com/watch?v=yPniBH5sjA4

[Accessed 12 May 2021].

Streyer, M., 2018. Micro Apps with Web Components using Angular Elements. [Online]

Available at: https://www.angulararchitects.io/aktuelles/micro-apps-with-web-components-using-angular-elements/

[Accessed 17 November 2020].

Streyer, M., 2019. 6 Steps to your Angular-based Microfrontend Shell. [Online]

Available at: https://www.angulararchitects.io/en/aktuelles/6-steps-to-your-angular-based-microfrontend-shell/

[Accessed 14 May 2021].

Streyer, M., 2020. Dynamic Module Federation with Angular. [Online]

Available at: https://www.angulararchitects.io/en/aktuelles/dynamic-module-federation-with-angular/

[Accessed 23 03 2022].

Streyer, M., 2020. The Microfrontend Revolution: Module Federation in Webpack 5. [Online]

Available at: https://www.angulararchitects.io/aktuelles/the-microfrontend-revolution-module-federation-in-webpack-5/

[Accessed 19 November 2020].

Streyer, M., 2020. The Microfrontend Revolution: Module Federation with Angular. [Online]

Available at: https://www.angulararchitects.io/en/aktuelles/the-microfrontend-revolution-part-2-module-federation-with-angular/

[Accessed 23 03 2022].

Streyer, M., 2021. Multi-Framework and -Version Micro Frontends with Module Federation: The Good, the Bad, the Ugly. [Online]

Available at: https://www.angulararchitects.io/en/aktuelles/multi-framework-and-version-micro-frontends-with-module-federation-the-good-
the-bad-the-ugly/

[Accessed 24 03 2022].

Strumpflohner, J., 2018. Compile-time vs. Runtime configuration of your Angular App. [Online]

Available at: https://juristr.com/blog/2018/01/ng-app-runtime-config/

[Accessed 10 October 2019].

Trajan, T., 2019. The Best Way To Lazy Load Angular Elements. [Online]

Available at: https://medium.com/@tomastrajan/the-best-way-to-lazy-load-angular-elements-97a51a5c2007

[Accessed 23 November 2020].

External Document © 2023 Infosys Limited

https://medium.com/bb-tutorials-and-thoughts/6-different-ways-to-implement-micro-frontends-with-angular-298bc8d79f6b

© 2023 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

About the Author About the Mentor
Kiran Janardhan Holla
Senior Project Manager, UI Architect

Vishal Manchanda
Senior Principal Technology Architect

mailto:kiranjholla%40infosys.com?subject=
mailto:Vishal_manchanda%40infosys.com?subject=
https://www.linkedin.com/in/kiranjholla
http://www.linkedin.com/in/vishal-manchanda-097a6643
https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys

