
WHITE PAPER

THE POWER OF CONTEXT:
BUILDING SMARTER AI SOLUTIONS

Abstract

This paper delves into the significance of context-based paradigms
in modern software development for building a “live” or “sentient”
enterprise using a digital brain. The four paradigms discussed are
Context-Aware Computing (CAC), Context-Driven Architecture
(CDA), Context-Aware Architecture (CAA), and Context-Object
Pattern (COP). Each paradigm’s principles, practices, and
implementation examples are defined, along with a thorough
analysis of their pros and cons. The paper also explores how these
paradigms can be applied to modeling systems and artificial
intelligence. Specific examples are given of how each paradigm has
been used in various contextualized solutions, including building
a digital brain. This paper emphasizes the importance of context
in computing and how these paradigms can be employed to
enhance the development of intelligent systems for a live or sentient
enterprise.

Figure 1: Context-based Computing

External Document © 2023 Infosys Limited

1 Executive Summary
Context-based computing is required to address the limitations
and challenges of current systems built around a static, hardcoded
approach to service design. Such systems can struggle to
provide the flexibility and adaptability required to meet users’
ever-growing needs and demands and the evolving competitor
business landscape.

Context-based computing is, therefore, essential when building
a “live” or “sentient” enterprise. Context-based computing is an
approach to building solutions since it seeks to make computing
systems more responsive and intelligent by considering the
context in which they operate. Using contexts allows the
enterprise to understand and respond to the needs of its users
and environment. By incorporating context-based awareness
into an enterprise’s architecture and computing systems, the
solutions can gather and analyze data from various sources, such
as sensors, user inputs, and environmental factors, to make more
informed real-time decisions. Context-based computing can
improve efficiency, personalization, and overall user experience.
Additionally, context-based computing can enable solutions or
the entire enterprise to adapt to changing circumstances and
anticipate future needs, making it more agile and resilient.

Context-based computing can be achieved through the
application of one or more techniques, illustrated in Figure 1,
including:

• Context-aware computing (CAC) paradigm involves the
design of computing systems that possess an awareness of
the context in which they function. CAC involves using sensors
and other input devices to gather information about the
system’s environment and the use of this information to adapt
the system’s behavior accordingly. CAC is beneficial when the
software system must respond to environmental changes, such
as location-based services or smart building applications.

• Context-driven architecture (CDA) is an architectural approach
that emphasizes the importance of context in software systems.
It proposes that software systems should be designed to react
to changing contextual factors and organized in a way that
enables context to be managed effectively. CDA is particularly

useful when the software system is part of a larger, complex
environment, as it helps ensure that the system remains
responsive to environmental changes.

• Context-aware architecture (CAA) is an approach to designing

software systems that are aware of their environment and
can adapt their behavior accordingly. CAA focuses on using
sensors and other input devices to gather information about
the system’s context and on using this information to make
decisions about how the system should behave. CAA is
beneficial when the software system needs to interact with the
physical world, such as in a smart home or industrial control
applications.

• Context-object pattern (COP) is a software design pattern
that emphasizes the importance of context in object-oriented
programming. COP proposes that objects should be designed
to be aware of their context and organized to enable context to
be managed effectively. COP is particularly useful in situations
where objects need to interact with each other in complex ways,
such as in large-scale software systems.

2 Introduction
In today’s fast-paced and constantly changing world, businesses,
and organizations need software systems that quickly adapt
to new requirements and changing environments. Traditional
software development approaches often rely on pre-defined plans
and processes, limiting the ability to respond to evolving needs.
A system using context-based design (contextualization) offers

an alternative approach to software development. The context-
based design approach prioritizes the context of a system and
emphasizes flexibility, adaptability, and responsiveness through
the dynamic interpretation of these contexts.

Artificial Intelligence (AI) is transforming the world, and with each
passing day comes news about improved advancements in the

External Document © 2023 Infosys Limited

field. The possibilities for AI-driven technology are boundless.
As AI continues to evolve and mature, it becomes increasingly
important to understand the underlying principles of context-
driven design that guide the development of modern advanced
systems. Context-driven design concepts will become increasingly
important in creating more advanced AI systems better tuned
to the specific needs of the environment in which they operate.
An understanding of the context-driven design techniques of
context-aware architecture (CAA), context-driven architecture
(CDA), context-aware computing (CAC), and context-object
pattern (COP) can therefore be helpful for anybody designing or
developing an AI-based solution.

Before undertaking any further discussion on the context-driven
design, it is essential to define what is meant by “context”. A clear
definition of what “ context “ means is necessary to understand
contextualized design’s power. Context refers to all information
that can be interpreted and used to change the behavior of the
solution dynamically. Contextual information typically refers to a
point in time that is then used with other information to define
a dynamic state in which a solution should operate. Contextual
information also might include comparing one point in time with
one or more preceding points. Contextual information may also
represent a future time when the context relates to predictive or
prescriptive analytics. Contextual information might include things
like who the user is, what role the user is performing, the user’s

location, the user’s device, time of day, temperature, and other
user behavior. By actively considering contextual information,
systems can then orientate themselves to provide the best
possible solution to meet the specific and unique requirements
associated with the purpose of the system in response to the
contextual information. For example, which action is best to take,
what information to share, and how to interact with the user.

The remaining document will explore the context-driven design,
focusing on the four techniques of CAA, CDA, CAC, and COP. The
exploration will examine the principles and practices of each
paradigm and provide examples for better understanding. The
document will also compare each concept individually against
each other to give more insight and clarification of the sometimes-
subtle differences. CDA, for instance, is a software design
approach emphasizing contextual importance when building and
maintaining systems. However, CAC concerns a system’s ability to
understand and respond to user context. CAA is a more specific
type of CDA focused on creating system strategies that adapt
to changing contexts. At the same time, COP is a design pattern
that enables the creation of objects that can adapt to changing
contexts.

The aim is to provide readers with a comprehensive understanding
of these complex and vital components that should be considered
in modern AI system design, enabling them to make informed
decisions about which approach to use in different scenarios.

3 Context-Aware Computing

3.1 Introduction

CAC is a revolutionary approach to computing that seeks to
make technology more responsive and adaptable to users’ needs.
Furthermore, CAC represents a type of computing in which a
system or application can intelligently identify and respond to
the context in which it is being utilized. At its core, CAC uses
information about the user’s environment, preferences, and
behaviors to provide a more personalized and intuitive experience.
Using contextual information departs from traditional computing,
which typically relies on pre-programmed rules and algorithms to
perform tasks.

CAC is a critical area of research and development in artificial
intelligence, as it enables systems to interact with humans in more
natural and intuitive ways. In AI, CAC is the process that allows
machines to understand and respond to their environment by
analyzing the context in which they operate. AI contexts can be
physical, temporal, or social and include aspects such as location,
time of day, user behavior, and social interaction.

As with any innovative technology, CAC has its benefits and
drawbacks. On the one hand, context-aware computing can
make technology more intuitive, personalized, and responsive to
users’ needs. It can also help reduce cognitive load by automating
mundane tasks and providing more relevant information.

Conversely, there are apprehensions surrounding privacy and
data security, as context-aware computing frequently demands
access to sensitive user information. Moreover, constructing
resilient context-aware systems poses technical challenges, such
as ensuring data quality, context inference, and obtaining user
feedback.

External Document © 2023 Infosys Limited

3.2 Principles and practices

The foundation of CAC lies in the principles and practices that
revolve around the user’s context and the system’s awareness of it.
Several crucial principles and practices play a significant role in the
design and implementation of CAC systems, such as:

1. Context acquisition: The first step in CAC is to acquire relevant
context information from the user, their environment, and other
sources.

2. Context modeling: The context information is then modeled
and represented in a way that the system can easily use.

3. Context reasoning: Once the context is acquired and modeled,
the system can use reasoning techniques to make decisions
based on the context.

4. Context-awareness: The system must possess the capability to

adapt dynamically to modifications in the user’s context.

5. Personalization: CAC systems should be personalized to the
user’s individual needs and preferences.

6. Transparency: The system should be transparent in its decision-
making process, and the user should understand why the
system made certain decisions.

7. Privacy: CAC systems should be designed with the user’s
privacy in mind, and appropriate safeguards should be
implemented to protect sensitive information.

Overall, the principles and practices of CAC are focused on
creating systems that can better understand and adapt to the
user’s context, leading to a more personalized and effective
computing experience.

3.3 Examples

CAC finds application in many areas, including intelligent personal
assistants, autonomous vehicles, smart homes, and wearables.
As the number of IoT (Internet of Things) devices, mobile devices,
and other smart technologies continue to expand, the demand
for context-aware computing is anticipated to escalate. There are
numerous examples of CAC applications across different domains:

1. Personalized recommendations: Companies like Netflix and
Amazon use context-aware computing to provide personalized
recommendations to their users. They analyze users’ viewing
and purchasing history and contextual data, such as time of day
and device type, to recommend relevant content.

2. Location-based services: Apps like Google Maps and Waze use
GPS data and contextual information such as traffic patterns and
weather to provide real-time navigation and traffic updates.

3. Healthcare monitoring: Wearable devices such as Fitbit and
Apple Watch use sensors to collect data such as heart rate, sleep
patterns, and physical activity. This data is then analyzed in the
context of the user’s age, gender, and other health factors to
provide personalized health insights and recommendations.

4. Smart homes: Smart home devices such as thermostats,
lighting systems, and security cameras use CAC to adjust
settings based on user behavior and preferences, as well as
environmental factors such as temperature and lighting.

5. Context-aware security: Security systems can use CAC to
identify unusual behavior or patterns that may indicate a
security threat. For example, a user logging in from an unfamiliar
location or at an unusual time may trigger additional security
checks.

6. Context-aware marketing: Companies can use CAC to deliver
targeted marketing messages based on the user’s location,
behavior, and preferences. For example, a coffee shop may send
a discount offer to a user who frequently visits nearby coffee
shops in the morning.

3.4 Benefits and drawbacks of CAC

CAC has its benefits and drawbacks, which should be considered
when designing and implementing systems:

CAC benefits include:

1. Improved user experience: By providing personalized and
relevant information to users, context-aware computing can
enhance their experience and satisfaction.

2. Increased efficiency: CAC can automate tasks based on the
user’s context, improving efficiency and productivity.

3. Better decision-making: CAC can provide users with valuable
insights based on their context, which can help them make
better decisions.

4. Enhanced security: CAC can improve security by providing
access to sensitive information only to authorized users in
specific contexts.

5. Increased revenue: CAC can increase revenue by enabling
personalized marketing and targeted advertising.

 CAC drawbacks include:

1. Privacy concerns: CAC can collect sensitive information about
users, which can raise privacy concerns.

2. Data accuracy: CAC relies on accurate data to provide relevant
information to users. If the data is inaccurate, the system may
not provide accurate information.

3. Implementation complexity: Implementing CAC systems can
be complex and require significant resources.

4. Integration challenges: CAC systems may need to be
integrated with other systems, which can pose integration
challenges.

5. Cost: Developing and implementing CAC systems can be
expensive, which may limit their adoption.

External Document © 2023 Infosys Limited

CDA is an approach to software design that places context at
the center of the development process. It is a way of building
systems that can adapt and respond to changing circumstances by
considering the specific context in which they are being used.

By leveraging the user’s environment, preferences, behavior, and
interactions, CDA empowers software to make decisions, leading
to a more personalized and tailored experience. This approach is
essential in applications where user experience is critical, such as
e-commerce, healthcare, and entertainment.

In CAD, the software is designed to be modular and flexible, with

4 Context-Driven Architecture

different modules responsible for handling various aspects of
the application’s behavior. The system can then use contextual
information to dynamically load and configure the appropriate
modules, allowing it to adapt to changing circumstances in real-
time.

CDA is an important aspect of the larger field of CAC, concerned
with building systems that can sense and respond to their
environment. By incorporating contextual information into
the software design, CDA can help create more intelligent and
responsive applications that meet users’ needs better.

4.1 Introduction

CDA is an approach to software architecture design that
emphasizes the importance of context in defining the structure
and behavior of a system. CDA builds upon the principles of
COP and aims to develop systems that can adapt dynamically to
changing contexts. Several crucial principles and practices play a
significant role in the design and implementation of CDA systems,
such as:

1. Context is the primary driver of architecture: The architecture
of a system is tailored to meet the contextual requirements of
its usage. The system is designed to be flexible and adaptable to
evolving contexts.

2. Separation of concerns: The system is designed to separate
concerns between the core functionality and context-specific
behavior. Separation of concerns allows for easier maintenance
and modification of the system.

3. Modularity and extensibility: The system is designed with a
modular architecture allowing easy extension and modification.
Context-specific functionality is encapsulated in modules that
can be added or removed on demand.

4. Dynamic composition and adaptation: The system is designed
to compose and adapt to changing contexts dynamically.
Context-specific functionality is incorporated and eliminated
as per the requirement, and the system can reconfigure itself to
cater to the needs of the present context.

5. Contextual variability management: The system is designed
to manage contextual variability through configuration files
or other mechanisms. Dynamic configuration allows for easily
modifying the system’s behavior in different contexts.

6. Context-aware testing: The system is tested in various contexts
to ensure it functions correctly and as expected.

7. Use of patterns and best practices: The system uses
established patterns and best practices for software
architecture.

The principles and practices of CDA are designed to create
adaptable and flexible systems in the face of changing contexts.
By focusing on context as the primary driver of architecture, CDA
enables creating systems that can meet the needs of a wide range
of contexts, making it a valuable approach for AI applications.

4.2 Principles and practices

4.3 Examples

CDA has various applications across domains, including finance,
healthcare, and e-commerce. The architecture is designed to
be adaptable and flexible, enabling it to meet the changing
contextual requirements of the system’s usage. By tailoring the
system’s architecture to its context, CDA can improve performance
and provide a more personalized user experience. Some examples
of CDA applications include:

• Amazon Recommendation System: Amazon is one of the
most successful examples of CDA implementation. The system
recommends products based on the user’s browsing and
buying history. The system can predict the user’s interests and

preferences by analyzing this information.

• Netflix Recommendation System: Recommendation systems
like Amazon and Netflix use CDA to recommend movies and TV
shows to their users based on their viewing history. The system
analyzes users’ preferences and behavior to suggest content
they are likelier to enjoy.

• Traffic Management Systems: Many cities implement CDA in
their traffic management systems. The systems use real-time
data from sensors and cameras to make decisions about traffic
flow, congestion, and accidents.

External Document © 2023 Infosys Limited

• Smart Home Devices: Smart home devices such as Google
Home and Amazon Alexa are also examples of CDA. These
devices use voice recognition technology to understand user
commands and control various devices within the home.

• Healthcare Systems: In healthcare, CDA improves patient
care by analyzing data from electronic health records, medical

devices, and other sources. Such systems can help healthcare
providers make more informed decisions and provide better
care.

Overall, CDA has many practical applications in various industries,
and as technology advances, we can expect to see more
implementations of CDA in the future.

4.4 Benefits and drawbacks
CDA has its benefits and drawbacks, which should be considered
when designing and implementing systems:

CDA benefits include:

1. Adaptability: CDA enables systems to adapt to changing
contexts, ensuring they are always relevant and effective.

2. Flexibility: CDA allows for flexibility in design and development,
allowing for changes to be made easily.

3. User-centered: CDA is designed with the user in mind, ensuring
systems are tailored to their needs and preferences.

4. Improved user experience: CDA has the potential to enhance
the user experience by offering customized and pertinent
information and services.

5. Better decision-making: CDA can help improve decision-
making by providing relevant information at the right time.

CDA drawbacks include:

1. Complexity: CDA can be complex to design and implement,
requiring careful consideration of context and user needs.

2. Cost: CDA can be more expensive to develop than traditional
systems, requiring more specialized knowledge and
development tools.

3. Privacy concerns: CDA relies on collecting and processing user
data, which can raise privacy concerns.

4. Compatibility issues: CDA may require systems to be designed
with compatibility in mind, which can be challenging when
working with existing legacy systems.

5. Maintenance: CDA may require ongoing maintenance to
ensure that systems remain effective and relevant, which can
add to the overall cost of development and operation.

5 Context-Aware Architecture
5.1 Introduction
CAA is an architectural design approach used in developing
software systems, which considers the contextual information
of the environment where the system operates. CAA is designed
to enable software systems to respond to context changes and
provide personalized services and experiences to users. The
contextual information may comprise location, time, device, and
user-specific preferences, which can be utilized to modify the
behavior and services offered by the system dynamically.

CAA is frequently employed in various applications, such as
personalized recommender systems, adaptive learning systems,
and personalized digital assistants. These systems utilize
contextual information to offer personalized experiences tailored
to individual users. This approach is also commonly used in IoT
devices and smart homes, where contextual information controls
the environment and enhances the user experience.

5.2 Principles and practices
The principles and practices of CAA are focused on building
systems that can sense, reason, and respond to the user’s context.
Some key principles and practices of CAA include:

1. Sensing: CAA systems must be able to sense the user’s context,
including data from sensors, GPS, or other sources.

2. Reasoning: CAA systems must be able to reason about the
user’s context and decide how to adapt to that context.

3. Adapting: CAA systems must be able to adjust their behavior
based on the user’s context. Adaptation might include changing
the user interface, adjusting the system’s performance, or
providing personalized recommendations.

4. Personalization: CAA systems must be able to personalize their
behavior based on the user’s context and preferences.

5. Privacy: CAA systems must be designed to protect the user’s
privacy and prevent unauthorized access to their data.

6. Scalability: CAA systems must be designed to work effectively
across various devices and platforms.

7. Context-Aware Services: CAA systems must be able to
provide services tailored to the user’s context, such as location-
based services, personalized recommendations, and targeted
advertising.

8. Context Modeling: CAA systems must be able to build a model
of the user’s context that is accurate and current.

9. Context-Aware Infrastructure: CAA systems must have the
infrastructure to support context-aware applications, such as
data storage, processing, and communication.

10. Context-Aware Design: CAA systems must be designed with 	
 the user’s context in mind, including the user interface, user ``	
 experience, and overall system architecture.

External Document © 2023 Infosys Limited

5.3 Examples

CAA has numerous applications across domains such as
transportation, smart cities, and environmental monitoring. The
architecture is designed to be flexible and adaptable, allowing it
to cater to the changing contextual requirements of the system’s
usage. By customizing the architecture to its context, CAA can
enhance performance and provide a more personalized user
experience. Some examples of CAA applications include:

1. Personalized content delivery: Streaming services like
Netflix and Spotify use CAA to personalize content delivery to
individual users. By analyzing user behavior and preferences, the
services recommend relevant content the user will enjoy.

2. Adaptive mobile apps: Mobile apps like Google Maps and
Waze use CAA to provide personalized navigation to users. The
apps suggest the most efficient routes and provide real-time
traffic updates based on the user’s location and preferences.

3. Smart home automation: Smart home devices like
thermostats, lighting systems, and security cameras use CAA
to provide a more comfortable and secure living environment.
By analyzing user behavior and preferences, the devices can
automatically adjust the temperature, lighting, and security
settings to suit the user’s needs.

4. Healthcare monitoring: Wearable health devices like Fitbit
and Apple Watch use CAA to monitor users’ health and provide
personalized recommendations. The devices can provide
personalized health and fitness advice by analyzing the user’s
activity levels and vital signs.

5. Contextual advertising: Online platforms like Google Ads and
Facebook Ads use CAA to provide users with more relevant and

personalized ads. By analyzing the user’s online behavior and
preferences, the platforms can serve ads more likely to interest
the user.

6. Intelligent customer service: Platforms like Zendesk and
Salesforce use CAA to provide more personalized and efficient
customer service. The platforms can provide customized
solutions and recommendations by analyzing the customer’s
history and behavior.

7. Smart traffic management: Traffic management systems in
cities and highways use CAA to optimize traffic flow and reduce
congestion. The systems can provide real-time traffic updates
and suggest alternative routes to drivers by analyzing traffic
patterns and driver behavior.

8. Contextual search: Search engines like Google and Bing use
CAA to provide users with more relevant and personalized
search results. By analyzing the user’s search history and
preferences, the engines can deliver results more likely to
interest the user.

9. Intelligent personal assistants: Personal assistants like Siri
and Alexa use CAA to provide personalized and contextually
relevant responses to user queries. The assistants can provide
customized solutions and recommendations by analyzing the
user’s history and behavior.

10. Industrial automation: Industrial automation systems use 	
 CAA to optimize manufacturing processes and improve 	
 efficiency. The systems can make real-time adjustments and 	
 recommendations to improve productivity by analyzing the 	
 production environment and machinery.

5.4 Benefits and drawbacks

CAA offers developers, designers, and end-users several benefits
and drawbacks, which should be considered when designing and
implementing systems:

CAA benefits include:

1. Personalized User Experience: CAA enables applications to
adapt to users’ needs, preferences, and environments. This
results in a more personalized and relevant user experience.

2. Improved Efficiency: By leveraging contextual data, CAA can
automate specific tasks, reducing the workload for the user and
increasing productivity.

3. Seamless Integration: CAA can integrate with other systems
and services, allowing seamless interactions and data exchange
between applications and devices.

4. Real-time Adaptation: CAA can adapt to changes in the
environment and user preferences in real-time, providing users
with relevant and up-to-date information.

5. Enhanced User Engagement: CAA can improve user

engagement by providing a more interactive and intuitive
experience.

CAA drawbacks include:

1. Privacy Concerns: Collecting and storing user data to inform
context-aware applications raises privacy concerns, as this data
can be misused or shared with third parties without the user’s
consent.

2. Data Overload: Generating vast amounts of data by CAA can
overwhelm users, making it challenging for developers to
manage and analyze.

3. Technical Complexity: Developing and implementing CAA can
be complex, requiring specialized skills and resources, such as
sensors, data analytics, and machine learning.

4. Battery Consumption: CAA relies on sensors and other
technologies that can drain device batteries quickly, reducing
battery life for users.

5. Compatibility Issues: CAA may not be compatible with all
devices or systems, limiting its use and adoption.

External Document © 2023 Infosys Limited

6 Context-Object Pattern

6.1 Introduction

The COP is a design pattern that facilitates communication
between objects by leveraging the context in which they exist.
The pattern involves creating objects responsible for capturing
and storing context information and making it available to other
objects within the same context. COP thus allows objects to access
and utilize the context in which they exist to make more informed
decisions and take more appropriate actions.

In the COP, the context object serves as a mediator between other
objects. It collects and stores context information and makes it
available to other objects when requested. COP helps to reduce
the amount of redundant code required to manage context
information and makes it easier to maintain the consistency of the
context across all objects within the same context.

COP is often used in software applications that require objects to
interact with each other within a particular context, such as in web
applications or mobile applications. It is also used in systems that
require objects to be dynamically reconfigured based on changes
in their operating context.

COP is a software design pattern used in object-oriented
programming to facilitate the exchange of information between
objects. It is an extension of the Observer pattern, which allows
objects to subscribe to changes in another object and be notified
when those changes occur. COP provides a mechanism for context
sharing between objects, allowing them to exchange information
about their current states and use that information to coordinate
their actions.

The main principle of COP is to separate the context of an object
from its behavior. Using COP implies that the context is not directly
stored in the object but is maintained by a distinct context object.
The context object is responsible for managing and distributing
the context to other objects that need it. COP allows objects to be
context-aware without being tightly coupled to the context itself.

COP involves defining a set of context objects representing
the various contexts in which objects operate. Context objects
should be designed to be reusable across different applications
and should be easy to extend as new contexts are identified.
The context objects should also be designed to be easily shared
between objects, either through direct references or through an
event-based messaging system.

Another practice of COP is to use a mediator object to manage
the exchange of information between objects. The mediator acts
as an intermediary between objects, facilitating the exchange of
context information and coordinating their actions based on that
information. COP helps to reduce the coupling between objects

6.2 Principles and practices

and promotes a more modular and flexible design.

Overall, the principles and practices of COP are focused on
promoting modularity, flexibility, and reusability. Developers can
create more robust and adaptable software systems by separating
context from behavior and using a mediator object to manage
context sharing.

Principles and Practices of COP:

1. Separation of concerns: The context-aware aspects of the
system are separated from the core application logic. COP allows
for easier maintenance and modification of the context-aware
parts of the system.

2. Encapsulation of context: The context of the application is
encapsulated in objects, which provides a way to manage the
complexity of context-aware systems.

3. Reusability: The COP design pattern promotes the reuse of
context-aware objects in different application parts.

4. Dynamic binding: COP allows for the dynamic binding of
context-aware objects to the application logic. Using COP
means that the system can adapt to changing contexts in real-
time.

5. Flexibility: Implementing context-aware systems using the
COP design pattern offers high flexibility. COP allows developers
to tailor the implementation to the specific needs of their
application.

External Document © 2023 Infosys Limited

6.3 Examples

COP can be applied to every solutions design and covers many
implementation patterns and approaches to meet its ideal
principles and practices. Consider the following examples:

1. Model-View-Controller (MVC) architecture: MVC (where
the model represents the data, the view represents the user
interface, and the controller acts as the intermediary) is a
well-known example of COP implementation in software
engineering. The context, in this case, is the user input, which is
used to update the model and the view accordingly.

2. Reactive programming: Reactive programming is another
example of a COP implementation in which the context is the
data flow through the system. Reactive programming allows
developers to create designs that respond to changes in data in
real-time.

3. Context-aware systems: CAS is built using the COP approach,
where the context is the environment in which the system is
being used. Examples include smart homes, which use sensors
to detect changes in the environment and adjust the lighting,
temperature, and other settings accordingly.

4. Aspect-oriented programming: In aspect-oriented
programming, developers create modular components that
can be applied to various parts of a system. The context, in this
case, is the specific part of the system in which the component
is applied.

5. Rule-based systems: Rule-based systems are built using

rules that describe how the system should behave in different
situations. The COP context, in this case, is the situation in which
the system finds itself, which is used to determine which rules
to apply.

6. Recommender systems: Recommender systems use context
to recommend products, services, or content to users. The
context, in this case, includes the user’s preferences, history, and
behavior.

7. Augmented reality: In augmented reality applications, the
context is the user’s physical environment, which is used to
overlay digital information on top of the real world. COP context
can include information about nearby landmarks, directions, or
other relevant data.

8. Chatbots: Chatbots use natural language processing and
machine learning to understand user input and provide relevant
responses. The context, in this case, is the user’s input, which is
used to determine the appropriate response.

9. Personal assistants: Personal assistants, like Siri or
Alexa, use context to provide personalized responses
and recommendations to users. COP context can include
information about the user’s location, preferences, and history.

10. Intelligent transportation systems: Intelligent transportation 	
 systems use context to optimize traffic flow and improve safety. 	
 COP context can include information about traffic patterns, 	
 weather conditions, and other relevant data.

6.4 Benefits and drawbacks

COP offers developers, designers, and end-users several benefits
and drawbacks, which should be considered when designing and
implementing systems:

COP benefits include:

1. Complexity: COP provides a way to manage the complexity of
context-aware systems.

2. Reuse: It promotes the reuse of context-aware objects in various
parts of the application

3. Dynamic Binding: It allows for the dynamic binding of context-
aware objects to the application logic, which means the system
can adapt to changing contexts in real-time.

4. Flexibility: COP provides high flexibility in the implementation
of context- aware systems.

COP drawbacks include:

1. Overhead: COP can introduce additional overhead in terms of
processing and memory usage.

2. Complexity: The use of COP can make the implementation of
systems more complex.

3. Effort: COP may require additional development effort to
implement correctly

External Document © 2023 Infosys Limited

7 Comparisons
7.1 Comparison of CAC and CDA
CDA and CAC aim to provide context-driven computing but differ
in their approach. CDA focuses on designing and implementing
software systems that can adapt to changing contexts, while
CAC focuses on identifying and using contextual information to
improve the user experience.

One significant distinction between CDA and CAC lies in their
approach to context. CDA employs context to direct the actions
of a software system, whereas CAC employs context to enhance
the user experience by accommodating the user’s requirements
and choices. CDA is typically used to develop complex systems
that require a high degree of adaptability, while CAC is used
in applications that must be responsive to user needs and
preferences.

Another point of contrast between CDA and CAC pertains to
the level of abstraction at which they function. CDA operates at
a granular level of abstraction, emphasizing the particulars of
system behavior and context. Conversely, CAC operates at a more
abstract level, prioritizing the user experience and the ways in
which contextual information can be utilized to enhance it.

Despite their dissimilarities, CDA and CAC play critical roles in
developing context-aware computing systems. The decision
regarding which approach to employ depends on the application’s
particular needs under construction.

7.2 Comparison of CDA and CAA

CDA and CAA are two related but distinct approaches to building
systems that can adapt to their environment. While both strategies
focus on building CAS, there are some critical differences between
them.

The main difference between CDA and CAA is their focus. CDA
is primarily concerned with identifying the different contexts
in which a system will be used and designing the system to be
flexible and adaptable in response to those contexts. CAA, on the
other hand, is primarily concerned with collecting and analyzing
data about the system’s environment in real-time and using that
data to make decisions and take actions that are appropriate to
the current context.

Another key difference between CDA and CAA is the way they
handle uncertainty. CDA is intended to function effectively even
in situations where the context in which the system is utilized is
highly uncertain. Conversely, CAA is designed to work best when
there is a high degree of certainty about the context and when the
system can collect and analyze data in real-time to make decisions.

Regarding implementation, CDA typically depends on a collection
of pre-established rules and patterns that dictate the system’s
conduct in diverse contexts. On the other hand, CAA often leans
on machine learning and different data analysis methodologies

to adapt flexibly to shifting contexts. To illustrate the differences
between CDA and CAA, consider the example of a smart home
system. A CDA approach to building a smart home system would
involve designing the system to be flexible and adaptable to
different contexts, such as various times of day, seasons, and
occupancy patterns. The system might use pre-defined rules to
adjust lighting, temperature, and other settings based on these
contexts.

In contrast, a CAA approach to building a smart home system
would involve collecting and analyzing real-time data to decide
lighting, temperature, and other settings. For example, the system
might use sensors to detect the presence of occupants in a room
and adjust the lighting and temperature based on the occupants’
preferences and behavior. The system might also use weather
data to adjust settings based on the current temperature and
humidity levels. In summary, while CDA and CAA focus on building
CAS, their focus, approach to uncertainty, and implementation
techniques differ. The primary focus of CDA is to devise a versatile
and adjustable system for diverse contexts. In contrast, CAA’s
primary focus is accumulating and scrutinizing data in real-time
to make informed decisions and undertake actions that are
appropriate for the present context.

When comparing CDA and COP, it is crucial to acknowledge that
they adopt distinct approaches to context. While CDA focuses on
how context influences the design of a system, COP focuses on
how the system can adapt to changing contexts.

A notable difference between these approaches is that CDA is
more top-down, incorporating context during a system’s design
and development phases. In contrast, COP is more bottom-up,
relying on sensors and other inputs to detect and react to changes
in the context in real time.

Another key difference is that CDA tends to be more static, with
the system designed to accommodate specific known contexts.
COP, however, is much more dynamic and responsive, with the
system constantly adapting to new contexts as they arise.

In terms of benefits, CDA can lead to more efficient and effective
system designs, as the system is tailored to specific contexts. COP,
on the other hand, is better suited for systems that must operate
in unpredictable or changing contexts.

One disadvantage of CDA is that it can lack flexibility, given

7.3 Comparison of CDA and COP

External Document © 2023 Infosys Limited

that the system may be unable to adjust to new or unforeseen
contexts. Conversely, COP can be more intricate and resource-
intensive since the system must continually monitor and adapt to
shifting contexts.

CDA and COP possess their respective advantages and
disadvantages, and the selection between them will hinge on the
specific requirements and limitations of a particular application.

7.4 Comparison of CCA and CAA

Comparing CAA and CAC reveals some significant differences.
While CAA focuses on adjusting the user interface based on
context, CAC is focused on adjusting a system’s underlying
architecture and processes. CAC is more closely related to CDA,
which focuses on the underlying software architecture.

In terms of implementation, CAA often involves using sensors and
other data sources to determine context. At the same time, CAC
may rely more on user input or other factors that are less reliant
on sensors. The processes used by CAC may require advanced

data analysis and decision-making methods to identify a suitable
response for the given context. In comparison, CAA may utilize
more straightforward rule-based approaches.

CAA and CAC have their advantages and limitations and selecting
one over the other would rely on the specific requirements of a
given application or system. For some use cases, such as those
involving complex data analysis, CAC may be more appropriate. In
contrast, CAA may be the better choice for others, such as those
involving user interfaces.

7.5 Comparison of CAA and COP

When comparing CAA and COP, both approaches aim to increase
the adaptability and flexibility of software systems, but they differ
in their focus and implementation. CAA primarily focuses on
context awareness, aiming to create systems that can adapt to
changing contexts and user needs. In contrast, COP focuses on
designing and implementing software systems based on objects
and their interactions, aiming to create modular and reusable
components.

One key difference between CAA and COP is the level of
granularity in the system’s design. CAA works at a more abstract
level, concentrating on contextual factors and the requirements
of users, whereas COP is oriented toward developing and
implementing specific software modules. Another key difference is
the context’s role in the system’s design. CAA makes context a first-

class citizen, incorporating it into the design of the system from
the outset. At the same time, COP does not inherently consider
context but instead focuses on designing software components
that can be easily reused in different contexts.

Regarding pros and cons, CAA has the benefit of creating more
adaptive and flexible systems that can better respond to changing
contexts and user needs.

However, this can come at the cost of increased complexity
and reduced modularity. In contrast, COP has the benefit of
creating modular and reusable software components, making
the development process more efficient and allowing for greater
reuse. However, this can come at the cost of reduced adaptability
and flexibility, as the focus is on creating generic components
rather than context-specific solutions.

7.6 Comparison of CAC and COP

CAC and COP share some similarities as both paradigms aim
to enhance the performance and efficiency of systems by
incorporating contextual information. However, CAC focuses on
utilizing context information for building software architectures
capable of adapting to environmental changes. In contrast, COP
provides a way to capture and encapsulate context information in
objects that can be reused in multiple contexts.

One of the key differences between CAC and COP is their approach
to context management. CAC architecture relies on a centralized
context manager responsible for collecting and disseminating
contextual information to different system components. On
the other hand, COP advocates for a decentralized approach to
context management, where context information is encapsulated
in objects and can be passed along to different system
components as needed.

Another significant difference between CAC and COP is their focus
on adaptability.

The CAC architecture is created with the aim of being adaptable to
alterations in the surroundings. In contrast, the COP architecture
is intended to be versatile and capable of being employed in
various situations. In CAC, the system adapts by reconfiguring
its components based on contextual changes, while in COP, the
context information is encapsulated in objects that can be reused
in different contexts.

In terms of their applicability, CAC is well-suited for large-scale
systems where the environment is dynamic and constantly
changing, such as smart cities. At the same time, COP is more
suitable for smaller-scale systems that require the reuse of
contextual information across different contexts.

Overall, CAC and COP are distinct paradigms addressing distinct
aspects of context-based computing. While they share some
similarities, they have different context management and
adaptability approaches, making them suitable for diverse
systems.

External Document © 2023 Infosys Limited

7.7 Comparison Summary
Table comparing the key differences between CAC, CDA, CAA, and COP

CDA CAA CAC COP

Definition Focuses on creating
software systems
that are adaptive
to changes in the
environment

Focuses on creating
context-aware
components that can
dynamically adapt to
their environment

Focuses on using context
to enhance the user
experience

Separates context-
specific behavior from
the core functionality
of software
components

Examples

		
	

Smart homes,
autonomous vehicles,
environmental control
systems

Mobile apps, virtual
assistants, location-based
services

Wearable technology,
augmented reality,
intelligent transportation
systems

Email applications, chat
applications, weather
applications

Pros		
	

Can improve the
responsiveness
and adaptability of
software systems

Can improve the user
experience by providing
contextually relevant
information and
services	

Can enhance the user
experience by adapting
to the user’s context

Can improve the
flexibility and
reusability of software
components

Cons		
	
	

Can present challenges
in defining and
designing context
models and rules

Can require significant
computational resources
and may raise privacy
concerns

May be limited by the
availability and accuracy
of contextual data

Can present challenges
in defining and
designing context-
specific objects

It is important to note that while there are differences between these approaches, they all share a common goal of leveraging context to
improve software functionality and user experience. Choosing the right approach depends on the specific requirements and goals of the
software system.

External Document © 2023 Infosys Limited

CDA CAA CAC COP

Principle 1: Focus on
Context

Context is a first-class
citizen in software
design and should be
explicitly modeled and
integrated into the
system

Components should
be designed to be
sensitive to the context
in which they are used
and should adjust their
behavior accordingly

Context is used to
improve the user
experience, such as
by providing location-
based services

Context-specific
behavior is separated
from the core
functionality of
software components

Principle 2: Dynamism Systems must be able
to adapt to changes
in context, which can
be unpredictable and
complex

Components should be
designed to respond
dynamically to changes
in context

Contextual information
is used in real-time
to provide context-
specific services

Objects are
dynamically created at
runtime based on the
current context

Principle 3: User-
Centricity

The user’s goals and
needs should drive
the design of the
system, and the system
should be adaptable
to the user’s changing
context

The user’s context and
needs should be the
primary focus of the
component design

The user’s context is
used to improve the
user experience, and
the system should
adapt to the user’s
needs

The user’s context is
used to modify the
behavior of software
components, making
them more flexible and
adaptable

Principle 4: Separation
of Concerns

Contextual logic
should be separate
from business logic to
improve modularity
and maintainability

Contextual logic should
be encapsulated
in components to
improve modularity
and maintainability

Contextual information
should be separated
from application data
to avoid clutter and
confusion

Context-specific
behavior is separated
from core functionality
to improve
maintainability and
flexibility

Principle 5: Context-
Awareness

Software systems
should be designed to
be aware of the user’s
context and use this
information to improve
functionality and user
experience

Components should
be context-aware
and should use this
information to improve
functionality and user
experience

The system should use
context to enhance the
user experience and
provide personalized
services

The system should
use context to modify
software components
based on the current
situation dynamically

7.8 Principles Comparison Summary
Table comparing the key principles of CAC, CDA, CAA, and COP:

It is important to note that while these approaches share some common principles, they have separate ways of implementing them and
different focus areas. Choosing the right approach depends on the specific requirements and goals of the software system.

7.9 Additional principles

While CAC, CDA, CAA, and COP have various individual nuances,
additional principles can be applied to any of their designs. Some
of these principles for implementing CAC, CDA, CAA, and COP
solutions include:

1. Embrace change: The architecture design ought to prioritize
flexibility and adaptability so that it can easily accommodate
changes in various contexts. The system must possess the
ability to respond rapidly and efficiently to context changes

without necessitating significant modifications or complete
re-architecting.

2. Support multiple contexts: The architecture should be able to
support numerous contexts simultaneously and handle conflicts
between them. For example, a mobile application may need to
support multiple languages, time zones, and user preferences.

External Document © 2023 Infosys Limited

3. Balance centralization and decentralization: The architecture
should balance the benefits of centralization (e.g., easier
management and improved security) with the benefits of
decentralization (e.g., greater scalability and more efficient use
of resources). System equilibrium will be determined by the
application’s requirements and the environment in which it is
intended to be utilized.

4. Address security and privacy concerns at the outset: The
architecture should consider the sensitive nature of contextual
information and ensure that user privacy is protected. Security
may involve encryption, limiting access to specific data, or
implementing other security measures.

5. Promote interoperability: The architecture should be designed
to facilitate interoperability between different systems and
components. Interoperability will allow various parts of the
system to communicate and share contextual information, even
if they were developed independently. Interoperability can
help ensure the system is flexible, scalable, and able to handle
changing contexts.

6. Provide appropriate feedback: The architecture should
provide relevant feedback to users based on the current
context. This may involve adjusting the user interface, providing
notifications, or offering suggestions for the next steps.

7. Consider the user experience: The architecture must give
precedence to the user experience, guaranteeing that the
system is user-friendly and straightforward to navigate, allowing
users to access the required information effortlessly.

8. Leverage user data: The architecture should leverage user
data to improve the user experience and provide personalized
recommendations. This may involve using machine learning
algorithms to analyze user behavior and predict future needs.

9. Foster collaboration: The architecture should promote
collaboration among users, enabling them to collaborate on
tasks and share information effortlessly. The architecture may
involve integrating with collaboration tools like chat or video
conferencing.

10. Enable continuous improvement: The architecture should 	
 enable continuous improvement, allowing for ongoing

refinement and optimization based on user feedback and
changing contexts.

11. Support offline functionality: The architecture must have the 	
 capability to support offline functionality, permitting users to 	
 access and modify data even when they are not connected to 	
 the internet.

12. Enable context-driven decision-making: The architecture 	
 should facilitate context-driven decision-making, equipping 	
 users with the relevant information necessary to make 	
 informed decisions based on the current context.

13. Foster transparency: The architecture must promote 		
 transparency, furnishing users with unambiguous and precise 	
 information about how their data is utilized and who has 	
 access to it.

14. Leverage open standards: The architecture should leverage 	
 open standards and protocols to promote interoperability and 	
 enable seamless integration with other systems.

15. Support multiple device types: The architecture should 	
 support various device types, including mobile devices, 	
 desktop computers, and IoT devices.

16. Optimize for performance: The architecture should be 	
 optimized for performance, ensuring it can handle and process 	
 substantial amounts of data quickly and efficiently.

17. Address ethical concerns: The architecture should consider 	
 ethical considerations, such as avoiding bias in decision-	
 making algorithms and ensuring that the system does not 	
 perpetuate inequalities or discrimination.

18. Enable accessibility: The architecture should be designed to 	
 be accessible to users with disabilities, including support for 	
 assistive technologies and accessible user interfaces.

19. Foster innovation: Architecture should foster innovation, 	
 encouraging experimentation and exploring innovative ideas 	
 and approaches.

20. Provide scalability: The architecture design should prioritize 	
 scalability, enabling it to manage larger quantities of data and 	
 traffic as the system expands.

8 Application to modeling systems

Modeling systems can be approached in numerous ways using
CAC, CDA, CAA, and COP. Modeling systems involve creating
representations of real-world entities, processes, and phenomena.
By utilizing these models, one can examine, forecast, and simulate
real-world behavior. Incorporating context-driven computing
principles can enhance such models’ precision and pertinence.

Utilizing CDA, intricate systems with numerous interacting
components can be modeled. Incorporating the context of each

element allows for creating a more precise and comprehensive
model. For instance, in modeling a transportation system, CDA
can be employed to factor in variables such as traffic, weather
conditions, and the accessibility of public transportation.

CAA can be used to model systems that rely on data from various
sources. CAA can help ensure that the data is accurate and
relevant by considering the context in which it was collected.
Consider the example of a weather forecasting model, where

8.1 Applicability

External Document © 2023 Infosys Limited

CAA can be utilized to consider various elements, such as the
positioning and altitude of the weather station, along with the
time of day and season.

CAC can be used to model systems that involve human interaction.
CAC can help create more realistic models by considering factors
such as user preferences, behavior, and location.

 As an illustration, in a virtual reality model of a shopping mall,
CAC can be employed to produce a more engaging and tailored
experience for the user.

COP can model complex systems involving interactions between
multiple objects, ensuring that these interactions are accurate

and contextually relevant. This approach is advantageous in
situations like traffic flow modeling, where a range of factors must
be considered. By using COP, we can analyze the speed, direction,
and location of individual vehicles, as well as the condition of the
road and the impact of traffic signals. This allows us to gain a more
complete and accurate understanding of how different system
elements interact.

By applying the principles of CDA, CAA, CAC, and COP, modeling
systems can become more accurate, comprehensive, and relevant
to real-world situations. These principles can help ensure that the
models help analyze, predict, and simulate real-world behavior.

CAC, CDA, CAA, and COP can provide several benefits when
applied to modeling systems.

First, it can improve the accuracy of models by considering various
contextual factors that could impact the model's outcome.
For example, considering the context, such as environmental
conditions or previous maintenance history, can improve the
model's accuracy in predictive maintenance modeling.

Second, using these concepts can lead to more efficient and
effective modeling. The model can be more targeted and specific
by incorporating relevant context, allowing for better predictions
or decision-making.

Third, using CDA, CAA, CAC, and COP can provide a more user-
centric approach to modeling. Considering the user's context,
the model can be tailored to their specific needs and preferences,
leading to a better user experience.

Finally, using these concepts can enable more proactive modeling,
allowing for better anticipation of future needs or issues. By
considering the context of a situation, models can be created that
consider potential future scenarios, leading to more preparedness
and better decision-making.

Applying CDA, CAA, CAC, and COP to modeling systems can
improve accuracy, efficiency, user experience, and proactive
capabilities.

8.2 Benefits

8.3 Examples
Here are several examples of how CAC, CDA, CAA, and COP have
been used in modeling systems:

1. Context-driven modeling of transportation systems: CDA has
been used to develop a context-driven transportation system
model. The model considered various contextual factors, such
as traffic congestion and weather conditions, to optimize the
routing and scheduling of vehicles.

2. Context-aware modeling of smart homes: CAA has been used
to develop context-aware models of smart homes that adapt to
the needs and preferences of individual occupants. The models
consider various contextual factors to control the home’s

lighting, heating, and other systems, such as the time of day and
the activities being performed.

3. Context-aware modeling of healthcare systems: CAC has been
used to develop context-aware models of healthcare systems
that optimize patient care based on contextual factors such as a
patient’s medical history, current symptoms, and environmental
factors.

4. Context-object modeling of financial systems: COP has been
used to develop context-object models of financial scenarios
that consider various contextual factors, such as market
conditions and investor sentiment, to optimize investment
strategies.

Using CDA, CAA, CAC, and COP in modeling systems can lead to
more accurate and effective models that consider the complex
contextual factors that can impact system behavior. Modeling
appropriate contexts can lead to better decision-making and more
efficient use of resources.

External Document © 2023 Infosys Limited

9 Application to artificial intelligence
9.1 Applicability

In the field of artificial intelligence (AI), CAC, CDA, CAAC, and
COP are fundamental concepts that have numerous applications.
This section will examine the several ways these concepts can be
employed in AI and the advantages of their implementation.

Firstly, CAC can be applied in AI by using the context of a situation
to inform the decisions made by an AI system. For example,
suppose an AI system is designed to provide personalized
recommendations for a user. In that case, it can use the user’s past
behavior, location, time of day, and other contextual factors to
make more relevant and valuable recommendations.

CAA can also be applied in AI by allowing an AI system to adapt to
different contexts and environments. For example, an AI system
that recognizes speech can use CAA to adjust to different accents
and background noises to improve accuracy.

CAC is another important concept in AI, as it allows an AI system
to use the context of a situation to improve its performance. For
example, a CAC system that is designed to recognize faces can use
the context of the lighting, background, and other environmental
factors to improve its accuracy.

Finally, COP can be used in AI to improve how AI systems interact
with objects and other entities in the world. For instance, an AI
system created to communicate with a robot could leverage COP
to grasp the context of the robot’s maneuvers and behaviors. This
understanding could enable the system to offer more efficient
guidance and feedback.

By using these concepts in AI, we can improve the performance
and capabilities of AI systems and make them more adaptable and
flexible to different contexts and situations.

9.2 Benefits
Applying context-aware computing techniques like CAC, CDA,
CAA, and COP can benefit artificial intelligence (AI) systems. One
of the main advantages is that context-based techniques can
help AI systems better understand the environment in which they
operate. Therefore, contexts can enable AI systems to make more
accurate predictions and decisions, leading to better performance
overall.

CAC can benefit AI systems as it enables them to respond
dynamically to changes in context, such as changes in user
behavior or environmental conditions. CAA can provide similar
benefits, allowing AI systems to consider the user’s context and
preferences when making decisions.

CDA, on the other hand, can help develop more flexible and
adaptable AI systems by enabling them to adjust their behavior
based on the context in which they operate. Moreover, COP
can help create more complex AI models by allowing for the
representation of contextual relationships and dependencies.

The benefits of using context-based computing techniques in
AI include improved performance, accuracy, and adaptability
to changing contexts. Such advantages can have far-reaching
implications across various fields, including healthcare, finance,
and transportation, among others, where AI systems can have a
substantial influence.

9.3 Examples
Here are several examples of how CAC, CDA, CAA, and COP have
been used in artificial intelligence:

1. CAC has been used in image recognition to improve accuracy.
Image recognition systems can enhance the precision
of identifying the content of an image by considering its
surroundings, such as the objects and scenery in the picture.

2. CDA has been used in natural language processing to improve
the accuracy of machine translation. By considering the
context in which a word appears, translation systems can more
accurately identify the intended meaning of the word.

3. CAA has been used in recommendation systems to provide

personalized recommendations to users. The recommendation
systems can make more relevant suggestions by considering the
user’s current context, such as location or recent search history.

4. COP has been used in reinforcement learning to improve the
efficiency of learning algorithms. Using COP to represent various
states and actions within a system as objects can streamline the
learning process and accelerate training times.

 The instances mentioned above illustrate how the employment
of context-based methodologies can enhance the efficiency and
performance of AI systems. When the context in which data is
generated or processed is considered, the systems can become
more astute and efficient.

10 Digital Brain
10.1 Introduction

A digital brain, also known as an artificial neural network or a deep
learning model, is an artificial intelligence system designed to
simulate the human brain’s workings. It is a computational model
comprising interconnected nodes or artificial neurons that work

together to process and analyze data.

The digital brain is designed to learn and adapt from substantial
amounts of data and can be trained to recognize patterns, classify

10.2 Applicability

The significance of CAC, CDA, CAA, and COP in AI is their ability to
enable systems to comprehend and respond to their operating
environment more effectively. This is especially crucial when
developing a digital brain capable of processing and reacting to
diverse inputs and stimuli.

CDA, for example, emphasizes the importance of considering the
specific context in which a system operates and designing the
system to adapt to that context. When it comes to a digital brain,
this entails considering a range of factors, such as the nature of
the data being processed, the system’s objectives, and the user’s
preferences and behaviors.

On the other hand, CAA emphasizes developing systems that
can dynamically adapt to real-time changes in their environment.
This would be especially critical for a digital brain as it needs to
respond rapidly to changes in its surroundings (such as new data
inputs or changes in user behavior).

CAC plays a vital role in AI as it enables systems to better

understand the operating context by considering numerous
factors such as the user’s location, device capabilities, and other
relevant information. This would be crucial for a digital brain,
which must process and respond to various inputs from multiple
sources.

Finally, COP is important for AI because it allows for more flexible
and adaptable programming by treating objects as context-aware
entities that can adjust their behavior based on their environment.
The ability to adapt to changes in its environment and respond to
new inputs in real time would be crucial for a digital brain.

Overall, CDA, CAA, CAC, and COP are all critical to developing AI
systems, including a digital brain, because they enable systems
to be more context-orientated and adaptable to changing
environments. By incorporating these principles and patterns
into AI systems, developers can create more sophisticated and
intelligent systems that can better process and respond to a wide
range of inputs and stimuli.

10.3 Examples

Several examples of how context-based computing concepts,
such as CAC, CDA, CAA, and COP, have been applied in developing
digital brains.

One example is the OpenAI GPT (Generative Pre-trained
Transformer) language models, which use large-scale
unsupervised deep learning techniques to process and
understand language in context. These models can generate
coherent and contextually appropriate responses to written
prompts by analyzing massive amounts of text data and
simulating human-like language interactions.

Another example is the development of virtual assistants, such as
Apple’s Siri and Amazon’s Alexa, which use voice recognition and
natural language processing technologies to understand spoken

10.4 Benefits
Using context-based computing techniques such as CAC, CDA,
CAA, and COP can be highly beneficial in building a digital brain.
By utilizing contextual information, a digital brain can better
understand and adapt to the environment and tasks at hand,
improving its performance and accuracy.

A key advantage of employing context-aware computing in
constructing a digital brain is its capacity to learn and adjust
to various environments and scenarios. By understanding the
context in which a task is being performed, the digital brain can

adapt its behavior and decision-making process accordingly. For
example, a digital brain that recognizes objects in images can use
contextual information such as lighting, background, and object
size to improve accuracy.

Another benefit is that context-aware computing can make a
digital brain more efficient. Minimizing unnecessary processing
can enhance the speed and performance of a digital brain by
allowing it to process more information within a shorter period.

Nevertheless, integrating context-based computing in

commands and queries in context. By considering the user’s
location, preferences, and previous interactions, these assistants
can provide personalized responses and recommendations
tailored to each user.

Furthermore, context-based computing has also been utilized
in developing autonomous vehicles, which depend on real-time
data from sensors and cameras to make informed decisions based
on the current driving context. These vehicles can navigate safely
and efficiently by considering factors such as weather conditions,
traffic patterns, and nearby objects.

Overall, integrating context-based computing concepts in
constructing digital brains can enhance AI systems’ precision,
efficiency, and contextual relevance across various applications.

External Document © 2023 Infosys Limited

information, and make predictions. This technique is widely
employed in machine learning and AI, including image and
speech recognition, natural language processing, and others.

A digital brain is a crucial tool in AI because it allows machines to
process and analyze data in a way that is like how humans do. It

can identify complex patterns and relationships in data that would
be difficult or impossible for humans to see. As a result, it has
the potential to revolutionize many fields, including healthcare,
finance, and manufacturing, by enabling faster and more accurate
analysis of copious amounts of data.

11 Implementation Steps
Implementing a contextual system involves several key steps.
Outlined below are several general guidelines for implementing
such a system, along with some examples:

1. Identify the system’s context: The first step in implementing a
contextual system is to identify the system’s context, including
the types of data the system will need to collect and analyze.
For example, a smart city system may need to collect data from
sensors installed throughout the city to monitor traffic, air
quality, and other environmental factors.

2. Determine the appropriate sensors and data sources: After
identifying the system’s context, the subsequent stage involves
determining the suitable sensors and data sources required to
collect the necessary data. For example, a healthcare monitoring
system may use wearable devices to collect data about a
patient’s vital signs and activity levels.

3. Develop a context-aware model: The context-aware model
is the core of the contextualized system and determines how
the system will analyze and respond to contextual data. For
example, a smart home system may use a context-aware model
to adjust lighting, temperature, and other settings based on the
time of day, the presence of occupants, and other factors.

4. Implement a rules engine: The rules engine is used to apply
the context-aware model to the data collected by the system.
For example, a smart building system may use a rules engine to

adjust HVAC settings based on temperature, humidity, and other
environmental factors.

5. Provide user interfaces: Contextualized systems often require
interfaces that allow users to interact with the system and
provide feedback. For example, a transportation system may
offer a mobile app that allows users to view real-time traffic
information and provide feedback on traffic conditions.

6. Implement an event-driven architecture: Contextualized
systems typically require an event-driven architecture that
allows the system to respond quickly to environmental changes.
For example, a logistics system may use an event-driven
architecture to quickly adjust delivery routes based on changes
in traffic or weather conditions.

7. Test and refine the system: Once the system has been
implemented, it is vital to test it thoroughly and refine it, as
necessary. This may involve collecting additional data, adjusting
the context-aware model, or tweaking the rules engine.

In summary, implementing a contextualized system involves
identifying the system’s context, determining appropriate
sensors and data sources, developing a context-aware model,
implementing a rules engine, providing user interfaces,
implementing an event-driven architecture, and testing and
refining the system.

constructing a digital brain poses some challenges. One of the
primary obstacles is the requirement for significant amounts of
high-quality data to train the system effectively. The more complex
the context, the more data is required to train the digital brain
effectively. Furthermore, the system must be capable of efficiently
managing and processing copious amounts of data within a
reasonable time frame, which can present significant technical
difficulties.Another challenge is the potential for errors or biases

in the data used to train the system. If the data used to train the
digital brain is biased or incomplete, the system’s behavior and
decision-making may also be biased or incomplete. This can lead
to inaccurate or even harmful results.

Overall, the benefits of using CAC, CDA, CAA, and COP in building
a digital brain are clear. Still, the challenges must also be carefully
considered and addressed to ensure the system is accurate,
efficient, and safe.

External Document © 2023 Infosys LimitedExternal Document © 2023 Infosys Limited

12 Infosys Context-Driven Platform

As part of Infosys’ Live Enterprise platform, we have developed a
context-driven service architecture platform to support the needs
of our new AI-first business model. Designing a context-driven
service architecture platform that incorporates CAC, CDA, CAA,
and COP necessitates a meticulous examination of the platform’s
operational context. For example, one of the first consumers of
this context-driven platform is our new flagship multi-tenant
Software-as-a-Service (SaaS) healthcare platform “Helix.” Helix
uses the developed context-driven service architecture platform
to underpin and dynamically transform all business and technical
services provided to its users in real-time.

The Live Enterprise platform has adopted a combination approach
using the best features of each of CAC, CDA, CAA, and COP that
centers around the utilization of a context container capable of

registering and deregistering an unlimited number of contexts.
This ensures the universality of context-driven design principles
and best practices. The context container does not have to be
aware of the specific details of any context it contains since the

Figure 2: Context Container implementation of COP

External Document © 2023 Infosys Limited

registered contexts are tailored to the specific requirements of
a given service interaction. The context container represents
all contexts configured for a given service interaction. Contexts
can be constructed dynamically based on multiple sources of
contextual information. The context container is propagated
through all layers in the architecture, allowing specific service
components to interact with the registered contexts and
subsequently morph and transform the service behavior
accordingly. Some of the contexts developed to change service
behavior for a SaaS platform dynamically include:

1. A user context that encapsulates the specific user details.
Additionally, it may include their role associated with the service
transaction being performed. The role can also incorporate
supplementary metadata, which can be utilized to manage low-
level data access security.

2. An action context that encapsulates the specific action type for
the service transaction being performed. For example, create
a new member, update an existing coverage, and retrieve a
person’s 360-degree view.

3. A component context that encapsulates the specific service
component within which the service transaction is being
executed. For example, a member service may require specific
information to complete its defined service execution.

4. A tenant context that encapsulates the specific information
associated with a particular user, action, and component as
it relates to features of the service that are tenant specific.
In a SaaS model, services can be shared, but they must be
dynamically changed to ensure the correct and complete
data isolation from a security perspective. For example, what
database technology is used for persistence, where is the
database’s location, and what encryption and decryption should
be used, including the associated key’s location in a secure key
vault? What messaging technology should be used, and what
topics messages should be published and subscribed to by the
service as part of its complete execution?

5. A tenant logging context that allows all users of a specific
tenant to be logged in a tenant-specific logger location instead
of merging multiple tenants into a single log. The logging of one
tenant does not impact the logging of another tenant.

6. A specific user logging context allows a particular user to have
logging enabled at a higher level of granularity to troubleshoot
problems by isolating all logging to one location for the user.
User-specific logging does not impact the logging granularity of
other users for a tenant.

7. A channel context defines the channel of entry into the service
so that appropriate security and controls can be associated with
the service execution.

8. A time context that encapsulates the specific time at which the
service transaction is being executed. This context can regulate
access to specific functionalities based on factors such as time of
day or day of the week.

9. 	 A location context that encapsulates the specific location 	
 of the user or device performing the service transaction.
This context can tailor the service response based on the
user’s location or restrict access to certain features based on
geographic location.

10. A language context that encapsulates the specific language 	
 in which the service transaction is being executed. This context 	
 can provide language-specific responses or control access to 	
 certain features based on the user’s language.

11. A device-type context that encapsulates the specific type of 	
 device used in executing the transaction. This context can 	
 tailor the service response based on the device type or restrict 	
 access to certain features based on the device’s capabilities.

12. A network context that encapsulates the specific network 	
 used in executing the transaction. This context can optimize 	
 the service response based on the network conditions or 	
 restrict access to certain features based on network security.

13. A regulatory context that encapsulates the specific regulatory 	
 requirements that the service transaction must comply with. 	
 This context can be utilized to guarantee that the service 	
 response adheres to the legal requirements and regulations 	
 applicable to the location.

14. A session context that encapsulates the specific user session 	
 information, such as the start time and end time of the session, 	
 the number of requests made during the session, and the 	
 user’s interaction with the service. This context can monitor 	
 user behavior and control access to certain features based on 	
 the session information.

15. A transaction context that encapsulates information about a 	
 specific service transaction, such as transaction ID, transaction 	
 status, and any relevant transaction-specific details.

16. An environment context that encapsulates information 	
 about the environment in which the service is being executed, 	
 including the deployment environment, server configuration, 	
 and any other relevant environmental details.

Overall, the context-driven Live Enterprise platform is a crucial
enabler for Infosys’ new business model, enabling us to deliver
more personalized and contextually relevant services to our
clients.

© 2023 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

14 Scholarly References:
•	 Context-Aware Computing (CAC)

https://ieeexplore.ieee.org/abstract/document/4624429

•	 Context Driven Architecture (CDA)
https://smartech.gatech.edu/handle/1853/3390

•	 Context-Aware Architecture (CAA)
https://koreascience.kr/article/JAKO201318450946201.pdf

•	 Context Object Pattern (COP)
https://www.dre.vanderbilt.edu/~schmidt/PDF/Context-Object-Pattern.pdf

About the Author/Mentor

Author
Dr. Steven Schilders
AVP - Senior Principal - Enterprise Applications

Mentor
Mohammed Rafee Tarafdar
EVP - Chief Technology Officer

13 Conclusion
In conclusion, CAC, CDA, CAA, and COP are all approaches to developing computing systems informed by contextual factors. Each technique
comes with a unique set of principles, practices, benefits, and drawbacks.

These approaches have the potential to significantly enhance the efficiency and effectiveness of computing systems in various applications.
However, they also present challenges, such as the need for significant data processing and analysis capabilities to identify and respond to
contextual factors accurately.

Looking forward, these approaches associated with contract-driven design discussed in this paper are likely to become increasingly
important as computing systems become more integrated into our daily lives. In particular, the development of a digital brain, which aims to
replicate the function and capabilities of the human brain, will require a deep understanding of contextual factors and the ability to respond
to them in real-time.

To fully realize the potential of these approaches, it will be essential to continue developing new techniques for identifying and analyzing
contextual factors and new methods for integrating contextual information into computing systems. With continued innovation and
development, these approaches will play an increasingly vital role in shaping the future of computing.

https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys/
https://www.youtube.com/user/Infosys
https://ieeexplore.ieee.org/abstract/document/4624429
https://smartech.gatech.edu/handle/1853/3390
https://koreascience.kr/article/JAKO201318450946201.pdf
https://www.dre.vanderbilt.edu/~schmidt/PDF/Context-Object-Pattern.pdf
mailto:mailto:steven.schilders01%40infosys.com?subject=
https://www.linkedin.com/in/dr-steven-schilders-816970/
mailto:mailto:Mohammed_Tarafdar%40infosys.com%0D%0D?subject=
https://www.linkedin.com/in/rafeetarafdar/
https://ieeexplore.ieee.org/abstract/document/4624429
https://smartech.gatech.edu/handle/1853/3390
https://koreascience.kr/article/JAKO201318450946201.pdf
https://www.dre.vanderbilt.edu/~schmidt/PDF/Context-Object-Pattern.pdf
mailto:askus%40infosys.com?subject=

