
WHITE PAPER

DEVELOPERS OF THE FUTURE - ML
BASED CODE GENERATORS

Abstract

The space of building software using specialised programming languages
is ripe for disruption in the context of digital transformation. This paper will
introduce the landscape and the advancement of emerging machine-learning
models to direct translations between natural (NL) & programming language
(PL) constructs with increasing confidence levels. The paper explores the
trend at the vanguard of running bug-free translations on addressing complex
circumstances while staying grounded on the steps the industry needs to take
to keep on top of this transformational journey.

External Document © 2022 Infosys Limited

Rising demand for multi-
skilled developers
Organisations are adopting different
programming languages to solve
complex problems in their landscape.
Of the ~600 programming languages
in use, 240+ have emerged in the
last eight years resulting in clients
maintaining a hybrid technology
ecosystem. In that world, it is
getting difficult to find skilled
talents both in the past and present
for system maintenance & to run
legacy modernisation programs.
This ability continues to wane over
time with a drop-in supply of skilled
workforce in legacy technologies
such as mainframes, and those
who are experienced mainframe
developers are unlikely to carry equal
competence in some of the more
recent paradigms.

So, the question is – How can one
address this gap? Or a better question
would be – How is this different from
times before whenever technology
has taken a quantum leap? The
short answer is that technology
assimilation has been organic thus
far; however, now that has rocketed
into the exponential category.

Current ways of working - Traditional approaches of Coding
tasks automation

Typical Coding tasks are, Code generation
from English description (NL-PL), Code
translation between programming
languages (PL-PL), Code documentation
(PL-NL) and Code validation (generating unit
tests) (PL-PL).

Traditional approaches of automation of
PL-PL tasks relied heavily on their grammar.
Since handling all possibilities in code
via grammar is tedious, the conventional
techniques managed most frequently
occurring scenarios. Hence, limited coverage
& success. Proprietary software does exist
that claims to convert COBOL to C#/Java;
however, the accuracy is likely less than
60%, implying months of manual labour.
The demand was for alternate strategies
that could scale quickly to handle more
sophisticated scenarios.

Classic automation techniques of (NL)
text-related tasks involve parsing the
unstructured text as structured text
with a poor degree of convergence as
the unstructured text is amorphous
in many ways. Hence, these methods
also had lesser coverage, consequently
lesser success. Accordingly, the
demand matured for computing
systems that could comprehend text as
humans would.

Considering the future consisting
of a complex hybrid technology
landscape, how can organisations
akin to Infosys build a community of
future developers that could manage
any technology combination in quick
time with sufficiently high accuracy,
sustainably?

Developers of the future – Adopting Pair programming
with Code models

Developers of the past have had to
code by referring manuals/books for
syntax. Since then, developers use IDEs
with IntelliSense, Transcompiler for the
supported technologies, and google (code)
search to find relevant code samples. Onus
on appropriate usage of code samples
from external websites (in Github/Stack
Overflow), based on their licenses, has been
with developers. From here on, we see the
ML based NLP solutions driving this trend
to this next level.

Machine learning-based NLP solutions
do deem an alternative to rules/grammar
based traditional NLP approaches, as it is
easier to collect datasets than to write rules
in augmenting coding tasks.

Such NLP systems have made colossal
progress in comprehending text, from
looking for the presence of words to classify
documents to counting the occurrence of
words (Bag-of-words, TF-IDF), progressing
further towards understanding the non-

contextual meaning of the words (Word2Vec

[1] , GloVe [2]) and culminating in attaining
the contextual meaning of words in the
given sentence to excel at NLU tasks (BERT

[3]) and NLG tasks (GPT-2 [5]). These state-of-
the-art models mimic human-level accuracy
in comprehending code descriptions
written in English and generating code
documentation.

Success in ML-based text processing led
to progress in ML-based code processing.
Traditional ML-based PL to PL tasks using
Neural machine translation (NMT) involved
(supervised) training models from scratch
using task-specific labelled data, thus
demanding a large quantum of training
data, effort, and cost. However, supervised
finetuning of un-supervised pre-trained
models (EleutherAI’s GPT-J, OpenAI’s GPT-
3) [4] have evolved to a point demanding
lesser training data, effort, and cost, making
it easier to adopt for all coding tasks.
Employment of (supervised) few-shot
learning on (unsupervised) pre-trained

External Document © 2022 Infosys Limited

model (like, GPT-J, GPT-3) work well with
very little training data and with no training
effort and cost, suitable for tasks learnt well
during pre-training. Even though models
like GPT-2 [5] , GPT-J, GPT-3 [6] suit coding
assignments best, they were built for the
text-in-text-out category of tasks and not
exclusively for coding tasks. OpenAI’s Codex,
a GPT language model, finetuned with
code from GitHub, was constructed solely
for coding tasks. Github CoPilot, powered
by a distinct production version of Codex,
is an extension for code editors. GPT-3 [6],
Codex [8] and CoPilot, available as web-

APIs, transfer the code to a 3rd party server
for processing. While supervised machine
translation models (NMT) for programming
languages demands parallel data (Source
PL statements and its equivalent Target
PL statements) for training, Facebook’s
TransCoder [7] is an unsupervised machine
translation model built with the bulk
volume of monolingual code of source PL
and monolingual code of target PL.

Considering the afore stated trends
in ML-based code generation, our
recommendation towards building
developers of the future includes

•	 Build a team to specialise in
enhancing pre-trained ML code
generators to gain efficiency in
each domain or use-case (task),

•	 Evangelise code generators
through training and practice by
adopting internally as their pair
programmers in building their
projects to champion and measure
efficiency gain,

•	 Start strategising archival of code &
related assets to enhance relevant
models in the future.

2018-Pretrained language models
(Contextual meaning of words)

Books, Tutorials, Manuals

IDEs with IntelliSense

Transcompiler

Google (code) search

Github, Stack Over�ow

Rule-based, Grammar-based

2013–Non-contextual meaning of words
Word embeddings (Word2Vec, Glove)

2013-Neural networks for NLP

2015-Attention

2014-Sequence-to-sequence
models LSTM, GRU

NLP Progression Developers of the past

Developers of the future

Counting word occurrence
Bag of Words, TF-IDF

Unsupervised Training with monolingual data (Facebook Transcoder)

Unsupervised Pre-trained Language Model with Supervised Fine-tuning (Web API: OpenAI GPT-3)

GPT-Language Model �ne-tuned with code - Visual Studio plug-in (GitHub Co-pilot)

GPT-Language Model �ne-tuned with code - Web API (OpenAI Codex)

Unsupervised Pre-trained Language Model with Supervised Fine-tuning (Open-source: GPT-J)

Supervised Training with parallel data (NMT)

Conclusion
Our confidence to recommend the
solution stems from history. Clients,
over time, accepted cloud VMs (Cloud
is virtually our system, but somebody’s
hardware) to store their data; Clients
then progressed to use cognitive APIs
(web-APIs) for processing their image
files and audio files in 3rd party server.

Soon, the industry will accept code
generators regardless of whether they
are available as Web-API (like Codex)
or as they are built with open-source
training data (like GitHub Code) or as
enhanced open-source code generators
(like GPT-J) and we as industry veterans
must plan to capitalise the trend.

© 2022 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

About the Authors

Kamalkumar Rathinasamy
Principal Technology Architect

Shreshta Shyamsundar
Senior Principal Technology Architect

Varsha Jain
Data Scientist

Balaji Jayaram
Data Scientist

References

1 	 Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR abs/1301.3781 (2013).

2	 Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word representation. In Proceedings of the
2014 conference on empirical methods in natural language processing (EMNLP). 1532–1543.

3 	 J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of deep bidirectional transformers for language understanding, arXiv
preprint arXiv:1810.04805, 2018.

4	 A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, Improving Language Understanding by Generative Pre-Training, OpenAI, Tech.
Rep., 2018. [Online]. Available: https://openai.com/blog/language-unsupervised/

5	 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models are unsupervised multitask
learners. OpenAI blog, 1(8):9, 2019.

6 	 Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. (2020).

7 	 Roziere, Baptiste and Lachaux, Marie-Anne and Chanussot, Lowik and Lample, Guillaume. 2020. Unsupervised translation of programming
languages. Advances in Neural Information Processing Systems.

8 	M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M.
Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P.Such, D.
Cummings, M. Plappert, F. Chantzis, E. Barnes, A. HerbertVoss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S.
Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer,
P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, Evaluating Large Language Models Trained on Code,
arXiv:2107.03374 [cs], Jul. 2021, arXiv: 2107.03374.

https://arxiv.org/abs/1301.3781
https://nlp.stanford.edu/pubs/glove.pdf
https://arxiv.org/abs/1810.04805
C:\Users\kamalkumar_r\AppData\Local\Microsoft\Windows\INetCache\Content.Outlook\182HL35W\Improving Language Understanding by Generative Pre-Training
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/abs/2005.14165
https://arxiv.org/pdf/2006.03511.pdf
https://arxiv.org/pdf/2006.03511.pdf
https://arxiv.org/abs/2107.03374
mailto:Kamalkumar_R@infosys.com
mailto:Shreshta_Shyamsundar@infosys.com
mailto:Balaji_Jayaram@infosys.com
https://www.linkedin.com/in/kaml/
https://www.linkedin.com/in/varsha-jain-b7b762185/
https://au.linkedin.com/in/shreshta-shyamsundar
https://www.linkedin.com/in/balaji-aj/
mailto:Varsha.jain01@infosys.com
https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys

