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DEVELOPERS OF THE FUTURE - ML 
BASED CODE GENERATORS

Abstract

The space of building software using specialised programming languages 
is ripe for disruption in the context of digital transformation. This paper will 
introduce the landscape and the advancement of emerging machine-learning 
models to direct translations between natural (NL) & programming language 
(PL) constructs with increasing confidence levels. The paper explores the 
trend at the vanguard of running bug-free translations on addressing complex 
circumstances while staying grounded on the steps the industry needs to take 
to keep on top of this transformational journey.
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Rising demand for multi-
skilled developers
Organisations are adopting different 
programming languages to solve 
complex problems in their landscape. 
Of the ~600 programming languages 
in use, 240+ have emerged in the 
last eight years resulting in clients 
maintaining a hybrid technology 
ecosystem. In that world, it is 
getting difficult to find skilled 
talents both in the past and present 
for system maintenance & to run 
legacy modernisation programs. 
This ability continues to wane over 
time with a drop-in supply of skilled 
workforce in legacy technologies 
such as mainframes, and those 
who are experienced mainframe 
developers are unlikely to carry equal 
competence in some of the more 
recent paradigms. 

So, the question is – How can one 
address this gap? Or a better question 
would be – How is this different from 
times before whenever technology 
has taken a quantum leap? The 
short answer is that technology 
assimilation has been organic thus 
far; however, now that has rocketed 
into the exponential category.

Current ways of working - Traditional approaches of Coding 
tasks automation

Typical Coding tasks are, Code generation 
from English description (NL-PL), Code 
translation between programming 
languages (PL-PL), Code documentation 
(PL-NL) and Code validation (generating unit 
tests) (PL-PL).

Traditional approaches of automation of 
PL-PL tasks relied heavily on their grammar. 
Since handling all possibilities in code 
via grammar is tedious, the conventional 
techniques managed most frequently 
occurring scenarios. Hence, limited coverage 
& success. Proprietary software does exist 
that claims to convert COBOL to C#/Java; 
however, the accuracy is likely less than 
60%, implying months of manual labour. 
The demand was for alternate strategies 
that could scale quickly to handle more 
sophisticated scenarios.

Classic automation techniques of (NL) 
text-related tasks involve parsing the 
unstructured text as structured text 
with a poor degree of convergence as 
the unstructured text is amorphous 
in many ways. Hence, these methods 
also had lesser coverage, consequently 
lesser success. Accordingly, the 
demand matured for computing 
systems that could comprehend text as 
humans would.

Considering the future consisting 
of a complex hybrid technology 
landscape, how can organisations 
akin to Infosys build a community of 
future developers that could manage 
any technology combination in quick 
time with sufficiently high accuracy, 
sustainably?

Developers of the future – Adopting Pair programming 
with Code models

Developers of the past have had to 
code by referring manuals/books for 
syntax. Since then, developers use IDEs 
with IntelliSense, Transcompiler for the 
supported technologies, and google (code) 
search to find relevant code samples. Onus 
on appropriate usage of code samples 
from external websites (in Github/Stack 
Overflow), based on their licenses, has been 
with developers. From here on, we see the 
ML based NLP solutions driving this trend 
to this next level.

Machine learning-based NLP solutions 
do deem an alternative to rules/grammar 
based traditional NLP approaches, as it is 
easier to collect datasets than to write rules 
in augmenting coding tasks.

Such NLP systems have made colossal 
progress in comprehending text, from 
looking for the presence of words to classify 
documents to counting the occurrence of 
words (Bag-of-words, TF-IDF), progressing 
further towards understanding the non-

contextual meaning of the words (Word2Vec 

[1] , GloVe [2] ) and culminating in attaining 
the contextual meaning of words in the 
given sentence to excel at NLU tasks (BERT 

[3] ) and NLG tasks (GPT-2 [5] ). These state-of-
the-art models mimic human-level accuracy 
in comprehending code descriptions 
written in English and generating code 
documentation.

Success in ML-based text processing led 
to progress in ML-based code processing. 
Traditional ML-based PL to PL tasks using 
Neural machine translation (NMT) involved 
(supervised) training models from scratch 
using task-specific labelled data, thus 
demanding a large quantum of training 
data, effort, and cost. However, supervised 
finetuning of un-supervised pre-trained 
models (EleutherAI’s GPT-J, OpenAI’s GPT-
3) [4] have evolved to a point demanding 
lesser training data, effort, and cost, making 
it easier to adopt for all coding tasks. 
Employment of (supervised) few-shot 
learning on (unsupervised) pre-trained 
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model (like, GPT-J, GPT-3) work well with 
very little training data and with no training 
effort and cost, suitable for tasks learnt well 
during pre-training. Even though models 
like GPT-2 [5] , GPT-J, GPT-3 [6] suit coding 
assignments best, they were built for the 
text-in-text-out category of tasks and not 
exclusively for coding tasks. OpenAI’s Codex, 
a GPT language model, finetuned with 
code from GitHub, was constructed solely 
for coding tasks. Github CoPilot, powered 
by a distinct production version of Codex, 
is an extension for code editors. GPT-3 [6], 
Codex [8] and CoPilot, available as web-

APIs, transfer the code to a 3rd party server 
for processing. While supervised machine 
translation models (NMT) for programming 
languages demands parallel data (Source 
PL statements and its equivalent Target 
PL statements) for training, Facebook’s 
TransCoder [7] is an unsupervised machine 
translation model built with the bulk 
volume of monolingual code of source PL 
and monolingual code of target PL.

Considering the afore stated trends 
in ML-based code generation, our 
recommendation towards building 
developers of the future includes

•	 Build a team to specialise in 
enhancing pre-trained ML code 
generators to gain efficiency in 
each domain or use-case (task),

•	 Evangelise code generators 
through training and practice by 
adopting internally as their pair 
programmers in building their 
projects to champion and measure 
efficiency gain,

•	 Start strategising archival of code & 
related assets to enhance relevant 
models in the future.

2018-Pretrained language models
(Contextual meaning of words) 

Books, Tutorials, Manuals

IDEs with IntelliSense

Transcompiler

Google (code) search

Github, Stack Over�ow

Rule-based, Grammar-based

2013–Non-contextual meaning of words
Word embeddings (Word2Vec, Glove) 

2013-Neural networks for NLP 

2015-Attention 

2014-Sequence-to-sequence 
models LSTM, GRU 

NLP Progression Developers of the past

Developers of the future

Counting word occurrence
Bag of Words,  TF-IDF

Unsupervised Training with monolingual data (Facebook Transcoder)

Unsupervised Pre-trained Language Model with Supervised Fine-tuning (Web API: OpenAI GPT-3)

GPT-Language Model �ne-tuned with code - Visual Studio plug-in (GitHub Co-pilot)

GPT-Language Model �ne-tuned with code - Web API (OpenAI Codex)

Unsupervised Pre-trained Language Model with Supervised Fine-tuning (Open-source: GPT-J)

Supervised Training with parallel data (NMT)

Conclusion
Our confidence to recommend the 
solution stems from history. Clients, 
over time, accepted cloud VMs (Cloud 
is virtually our system, but somebody’s 
hardware) to store their data; Clients 
then progressed to use cognitive APIs 
(web-APIs) for processing their image 
files and audio files in 3rd party server. 

Soon, the industry will accept code 
generators regardless of whether they 
are available as Web-API (like Codex) 
or as they are built with open-source 
training data (like GitHub Code) or as 
enhanced open-source code generators 
(like GPT-J) and we as industry veterans 
must plan to capitalise the trend.
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