
WHITE PAPER

SERVERLESS SERVICEMESH –
A HIGH PERFORMANCE PROXY FOR
SERVERLESS FUNCTIONS

Abstract

Agile software development space is quickly evolving by the day with greater
adoption with clients as part of their digital transformation strategy. To aid
swifter go-to-market for new products and services, deployment techniques
such as canary releases and blue-green deployments have served the industry
well however there are drawbacks with each approach. This paper explores the
burgeoning use of service mesh as an emerging alternative that combines the
pluses of the said approaches while doing away with the cons. It explores the
trend at the vanguard of being able to deliver high quality capabilities with
greater confidence to customers with speed and at scale. With the coming of
the part – II of this white paper’s edition – the paper aims to address sample
implementation use cases and associated considerations.

External Document © 2022 Infosys Limited

2. Rising demand for faster
frequent zero-defect
releases
Organisations are now increasingly
adopting microservices to address
complex business challenges. Its
ability to enable businesses with agility
and react to changing needs of the
customer and the volume of demand
while enriching the insights gained in
the process is only superseded by their
innate nature of being launched quickly.
Essential techniques aiding the swift
launch of these services, mainly as part
of capability uplift, include blue-green
deployments and canary software
release.

As for these deployment strategies,
the benefits include straightforward
roll-forward or roll-back in the case of
blue-green and the incremental/step-
wise availability of changes to the target
audience, thereby limiting the blast
radius should any roll-back decision
be taken when the deployment option
is exercised as a canary release. Either
way – the ostensible cons with these
approaches sometimes make them
less attractive, i.e. cost of spawning a
near production replica in the case of
blue-green deployments or the hyper-
care needed to test implementations in
production through canary upgrades
could take longer, mainly where manual
verification is required.

So, the question is – How can one
address this gap? Or a better question
would be – Is there a way to rollout
functionality into production, run a
failsafe QA exercise in the production
environment thus ensuring high
quality deliverables without having
to run switchovers across multiple
environments? We do have products
such as istio for containerized
applications however the options are
lacking for functions-as-a-service apps.

With the pay as you go model, the cost
of hosting a serverless application can
be orders of magnitude lower than any
alternative approach. The other apparent
benefit with FaaS is the burst scaling
capability to handle load spikes with
almost no notice. As called out in the
Thundra blog (https://blog.thundra.io/
serverless-is-taking-off-heres-why-its-
worth-hopping-on), a dramatic shift
is taking place. In 2018, less than 5%
of enterprises were using serverless
technology mainly in narrow tasks of a

specific nature however with corporations
such as Telenor, Netflix, Reuters, AOL among
others, serverless tech have registered
consistent growth of 75% making it the
fastest growing cloud service model.

The metrics & monitoring giant, datadog
calls out in its recent publication - https://
www.datadoghq.com/state-of-serverless/
that Lambda functions are getting more
popular, step functions (a serverless offering
from AWS) is powering a vast variety of
critical work-loads with more organisations
adopting this framework.

To support this technology with the
privileges extended to its Kubernetes
equivalent, there is an immediate need to
enable the deployment and test of FaaS
components directly in production with
minimal fuss and zero threat of breaking the
existing application especially in brownfield
applications.

For the solution to really stick with the
developer community, it needs marry
perfectly with the CICD infrastructure,

minimal cost footprint, reusable (preferably
as a library) and in a plugin form that is
external to their codebase regardless of
development language (no code coupling).
Addressing the afore mentioned NFRs, the
solution must cater to specifics such as QA in
the production environs for scenarios where
FaaS services like Lambdas are updated to a
newer version and bear the ability for FaaS
services to invoke different versions of FaaS
based on the presence of a header element.

3. Solution objective to support the growing popularity of FaaS

External Document © 2022 Infosys Limited

4. Serverless service mesh approaches
With the pay as you go model, the cost of hosting a serverless application can be orders of magnitude lower than any alternative approach
hence the incentive to address this requirement. Some of the solutions that were considered included the following

4.1. Code replication using
versioning

With the pay as you go model, the top-
of-mind solution happened to be that of
creating a replica of the service carrying
the updated version of the code. The
deployment arrangement would be
carried out through blue-green technique
thus enabling quality assessment in the
production environment.

Advantages include

• Simple solution and it does the trick

Disadvantages are

• Duplicating all serverless resources
and keeping them running
complicates the arrangement

• An inelegant & difficult to isolate
issues as part of debugging

• Higher cost footprint

• Routing logic to the right function
will have to be delegated to the
API gateway which may not be the
preferred pattern.

4.2. Differential routing using
state machines (relevant to AWS
step-functions/Azure logic apps
with function connector)

The Step-functions capability is a
serverless offering from AWS allows the
developer flexibility to build conditional
workflows to achieve business
requirements. Azure offers something
similar in logic apps with function
connectors. These capabilities carry the
feature that enables the state machine
definition to conditionally route flows to
different FaaS components (Functions/
lambdas etc.) i.e., production service or
customized service (to be tested) based
on the presence of a user-managed

header element passed through via the
API gateway. With the help of templating
engines such as cloud-formation, terraform
– the entire arrangement can be built up or
torn-down effortlessly.

Unlike the 4.1 solution, there is no
replication/duplication of components
required hence easier to implement,
manage, debug, and comprehend. This

arrangement can be automatically setup/
torn-down using CI-CD tools suite.

However alike the 4.1 solution, this
option does increase cost from the
greater number of transitions. It also
isn’t something that is reusable and
needs to be built each time to a specific
requirement therefore slowing down
adoption.

4.3. Reusable routing library as a service mesh

The solution options thus far detail using native capabilities offered by the platforms however currently both in Azure and AWS, this
capability lacks maturity. We envisage the creation of a library that functions as a routing layer on the serverless service (FaaS i.e., lambda/
function/step-function etc). This layer takes instructions from an external configuration store such as a parameter store, database, and such.
The CI-CD setup will essentially help modify the configuration entries as per the pipelines and flows designed.

Logical Architecture of routing library as a service mesh

4.3.1 How does this
architecture work?

Firstly, the developer refers to the user
story towards the change. He/she
then builds the change and commits
the change to the repo. The change
modifies the serverless component
(either lambda or stepfunction/lambda
combination) resulting in minor
version upgrade i.e., from v1.0 to v1.01.
Subsequently the next set of steps
follow through

• The build pipeline validates &
verifies the change to the lambda
service from v1.0 to v1.01

• Subsequently the cloudmap is
updated with configuration elements
associated with the new lambda
version indicating any header
elements, database, queue addresses
that needs to be referenced with
the new version. The cloudmap also
carries a toggle against this lambda
to help indicate whether the flow is
in synthetic mode or in production
mode. This flag influences the
logging/monitoring/tracing elements
of the flow as well to not corrupt any
of the existing production logs.

On the side of deployment, the cloudmap
is then considered by the CF script which

will then deploy any new infrastructure as
dictated by the configuration against the
lambda service in synthetic mode.

The serverless service mesh will wrap the
lambda service helping route the traffic
on the recommendation of the cloud map
settings to the lambda service (v1.01) every
time in the synthetic flow on the receipt of
the request from the API g/w or any other
service.

Once the mode is switched back into
production post quality assurance, the
CF script is triggered to redeploy the
infrastructure as before and route the
request back to the production instance v1.0

External Document © 2022 Infosys Limited

AWS Production VPC

AWS Cloud map

AWS IT Dev VPC

Lambda v1.0 Lambda v1.01

A
PI

 G
at

ew
ay

Con�g deployment

Authorise Deployment Telemetry checker

Policy Engine

Serverless service mesh

GitLab IDE

Jenkins

JIRA

4.3.2 Flow to enable test

a) Modify the flag entries and commit
to repo

b) Pipeline modifies the entries and
then deploys the version to be
tested.

c) Any incoming request will have the
header entry reflecting the settings
from the flag in the param store/
database

d) Post satisfactory testing, fire off the
pipeline to promote the code to
prod to deploy or if the flow needs to
revert to the former state.

4.3.3 Merits & challenges

The advantages with this technique

a) Clean solution with zero intervention
from FaaS definition and that of
deployment script

b) No need to deploy any file during
cutover. Simple updates to the
config/param store will enable flows
as needed

c) Plug and play solution – generic &
reusable

d) Small cost footprint – two executions
of the service in lieu of 1 for the
duration of the test

e) Easy adoption.

Practical challenges can be as follows

a) If the teams use different runtimes
i.e., Python, nodejs etc – this plugin
libraries need to be managed
separately

External Document © 2022 Infosys Limited

4.3.4 Comparison between serverless service mesh techniques.

Category
Option – 1 Version

based Code-
replication

Option – 2
Differential

routing using
state machines

Option – 3
Reusable routing

library as a service
mesh

Comments

Simplicity Option 1 is simplest of the lot given that it
replicates the entire environment as needed.

Cost Option 2 does increase cost from the greater
number of transitions. It also isn’t something
that is reusable (like option 3) and needs to
be built each time to a specific requirement
therefore slowing down adoption.

Applicability
to other cloud
providers

Options 1 & 3 are based on generic cloud
concepts available with all service providers
unlike option 2 which has certain specifics
available only in AWS

External Document © 2022 Infosys Limited

5. Conclusion
In my practical experience, the
approach using routing layer as a
service mesh to help route requests
thus enabling the release of high-
quality services with confidence
through apt levels of QA using
production data to the extent possible
especially for idempotent scenarios. In
the next edition the paper will explore
elements in sample implementation
use-cases along with associated cost
profile specifics & any additional
considerations.

External Document © 2022 Infosys Limited

© 2022 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

About the Author

Shreshta Shyamsundar
Senior Principal Technology Architect

mailto:Shreshta_Shyamsundar@infosys.com
https://au.linkedin.com/in/shreshta-shyamsundar
https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys

