
VIEW POINT

SECURE END-TO-END DEPLOYMENT
WITH INTEGRATION OF ON PREMISE
AND AWS JENKINS

Abstract

For one of the European banking customer projects, Infosys is implementing a SaaS
Solution, deployed on Amazon Web Services (AWS)– a public cloud. Due to various
component dependencies and customer compliance requirements, codebase
needs to reside in customer network (i.e., on premise), whereas application must
be deployed on public cloud (i.e., AWS) With on premise code setup, deployment
of the code automatically is a challenge, particularly because the current client
infrastructure does not allow outbound calls.

Similar other engagements had opted the option of manual deployment that
involves getting the build artifacts manually (on Premise) and then pushing it to AWS
infrastructure followed by manual deployment in applicable AWS environments (Dev,
SIT, UAT et al). This process is error prone, unsecure, person dependent and can be
tinkered with to push undesired workloads to environments (including production).

The paper describes the implemented solution to provide end-to-end, secure,
automated deployment of UI and Java microservices components to S3 and
Kubernetes. The implemented pattern could be implemented across cloud projects
for use case mentioned above, we feel that this pattern can be useful for other Infosys
projects.

Technologies involved are Jenkins, Jenkins Remote Trigger, SFTP Server, EFS Mount,
Lambda, API Gateway, Cloudwatch, IAM

External Document © 2022 Infosys Limited

Introduction

Continuous integration and Continuous
deployment (CI/CD) are a critical stage
of software development life cycle.
CICD process needs to be automated
with minimal manual intervention.
CI/CD process requires additional
considerations where Continuation
Integration (CI) and Continuous

Deployment (CD) processes exist in different
system boundaries.

While organizations transition to clouds, due
to compliance requirement, and existing
infrastructure constraint, scenarios need to be
addressed where – Application development
and build is done on Local network (i.e., On

Prem) whereas application needs to be
deployed on public cloud (Example AWS).

While technology stack mentioned in the
paper includes Jenkin for CICD, AWS services
(EFS, API Gateway, Lambda, CloudWatch
etc.). The concepts could be applied for any
of the technologies.

Problem Statement

The setup in above diagram depicts
the use case where because of various
dependencies (including compliance
requirement, existing infrastructure)
codebase needs to reside on premises,
the application needs to be deployed on
AWS. The on-premises infrastructure does
not allow direct network outbound calls,
resulting target application servers (i.e., on
AWS) being in-accessible from on-prem.
This requires separate deployment pipeline
on cloud. This setup requires following
components–

• On Premise Jenkin Pipeline – The
pipeline is developed and maintained
by application team. The pipeline is
to access the source code repository,
creates build artifact, stores (optional)
on repository manager (ex. Nexus).

• SFTP Process – The responsibility of the
SFTP process is transfer build artifact to
predefined AWS Elastic file system (EFS)
using MFT gateway. As this process is

required across teams, is managed by
central team.

• Jenkin Pipeline on AWS – The pipeline
is developed and maintained by
application team. The pipeline reads the
deployable from AWS EFS and deploys
it to deploy location (ex. S3, Kubernetes
cluster etc.)

Challenges

The design described above poses few
of the challenges which needs to be
addressed –

• Manual intervention required

o On prem SFTP process requires
build artifact to be copied manually
to shared location in order it to be
FTPed to AWS.

o On AWS artifact needs to be
deployed by manually (including

in production) triggering Jenkin
pipeline.

• On Prem & AWS Jenkin are not
integrated

o On Prem and AWS Jenkin pipeline
work independently. It requires
due human diligence to ensure
correct build artifact generated by
on prem pipeline is deployed by
AWS pipeline.

• Security concerns

o Manual deployment of artifact is
person dependent, error prone
and does not ensure integrity
of artifact being deployed.
Artifacts could be tampered
with during SFTP process or
manual deployment process.
Compromised SFTP might result
in deployment of un-trusted build
artifact.

 SFTP

Deployable

On Prem AWS (Public Cloud)

Git (Source Code)

Jenkin (Build)

Repository
Manager

Individual Teams

Internet

SFTP
Process

Shared
location

M
F
T

EFS

Jenkin (Deploy)

Deploy Location
(s3/Docker)

Central
Teams

External Document © 2022 Infosys Limited

Proposed Solution

Overall Flow

1. On premise Jenkin pipeline reads
the source code from on premise
bitbucket’s git repository.

2. The pipeline encrypts the build
process generated artifact (tar-ball)
using secret key by reading it from
Jenkin Credential store. Symmetric/
Asymmetric key cryptography could
be used to encrypt the tar-ball.

3. The pipeline publishes the encrypted
tar-ball to Repository manager
(example Nexus)

4. The pipelines Invoke another

trigger Jenkin pipeline with

build meta-data. Meta data has

properties related to currently

published tar-ball (example

tar-ball name). the meta-data

is required during automated

deployment

 Metadata is represented in JSON

format for ease of processing.

Following attributes are part of

the meta data.

 { “fileName” : “tarball name”,

 “jobName” : “name of Jenkins job”

 “environment” : “dev”,

 “dryRun” : “true/false” // used to
execute the job without or with actual
deployment }

 Trigger Jenkins pipelines is scheduled
to execute on the virtual machines
that reside in a separate subnet that
is configured to connect to internet
along with intranet.

© 2022 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

About the Authors About the Mentor

Nachiket Deshpande
Senior Technology architect

Manish Pandey
Senior Technology architect

Chidambaram GS
Senior Technologist

Advantages

The proposed solution helps to achieve
following –

End to end automation

The taken approach results in end-to-end
automation without any manual intervention.

Integration of on prem and AWS
Jenkin Pipeline

Though OnPrem & AWS Jenkin pipeline has
different system boundary, On prem Jenkin
pipeline triggers AWS Jenkin pipeline during
CI lifecycle. As this interaction is automated,
the process is more robust, less error prone,
secure and repeatable.

Security

Security is the key consideration in the taken
approach. End to end automation makes
process more secured. Encryption/decryption
of deployable using industry standard
algorithm makes sure, tar-ball could not be
tampered with. On premise interacts with
AWS via SFTP & password protected secured
REST API, making end to end system more
secured and reliable.

5. Trigger Jenkin pipelines process
downloads encrypted tar-ball from
nexus based on input meta-data
values.

6. Copies the encrypted tar-ball to shared
location on premise.

7. As soon as tar-ball is copied to shared
location, a polling enabled automated
process reads the encrypted tar-ball.

8. Poller process SFTP the encrypted
tar-ball to AWS’s SFTP server. This file is
stored on predefined AWS EFS.

9. As soon as SFTP is completed, trigger
Jenkin process invokes AWS API
gateway end point, passing the meta-
data as input parameter. Meta data is
explained in #4.

10. The REST API initiates the deployment
on AWS.

11. API gateway internally calls AWS
Lambda function.

12. Lambda function invokes the Jenkin
API. Jenkin API is required to trigger
pipeline execution remotely.

13. Jenkin API triggers the deployment
pipeline. Deployment pipeline is

implemented as Jenkinsfile using
groovy language

14. Based on input metadata, Jenkin
Pipeline reads the encrypted tar-ball
from EFS. Symmetric encryption key is
known only by DevOps team on both
ends and cannot be read once set. This
key is rotated every month to prevent
any leaks.

15. Reads the decryption key from
Jenkin secrets, decrypts the tar-
ball. Alternatively, as a best practice
decryption key could be stored in AWS
Secret manager. Usage of asymmetric
key enables to use secret manager
auto rotation of keys.

16. Deploys the deployable to deploy
location. UI components i.e., angular
based SPA application is deployed
in S3 bucket while spring boot
microservices are deployed on Elastic
Kubernetes Cluster. The pipeline
pushes the job logs to cloudwatch
and published message to SNS topic
for successful and unsuccessful
deployments. This SNS topic is
configured to send emails to a
distribution list that development
team is part of.

mailto:Nachiket_deshpande@infosys.com
https://www.linkedin.com/in/nachiket-deshpande-9441a8189/
mailto:manish_pandey08@infosys.com
https://www.linkedin.com/in/manish-pandey-0b6387142/
mailto:Chidambaram_gs@infosys.com
https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys

